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Langevin particles x; = (x{)1<j<n € RV,
dx; = —f/(||x¢||2/N)xsdt — BV Hy(x:)dt + dB;

B; is N-dimensional Brownian motion
Ix||? = (x,x), Euclidean norm

Langevin dynamics is invariant for (random) Gibbs measure
GlL(A) = Z;2, / 28NN X gy A C RN
’ TJA
fi(r) = L(r —1)®> +r®™ as L — co get x; near SN = SN=1(\/N).

Hy : RN — R centered Gaussian of covariance

Cov(Hy(x), Hi(y)) = Nv(NHxy)), o ZerP
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Band initial condition, conditional disorder

dXt = —fL/(HXtH2/N)Xtdt — BVHJ(Xt)dt + dBt

For g, € (0,1], |lo|| = VNgx, |g| < gx let xo ~ pg (band 1c).

p1g is uniform measure on sub-sphere {x € SN : L(x, o) = q}.
For J conditional to {Hy(¢) = —NE,, VHy(o) = —G.o}

study empirical covariance, integrated response & spatial-overlap:

~ 1 1 1

Cn(s, t) = N(xs,xt>, Xn(s, t) = N<X5’ B:), gr(s) = N<XS’J> .



Thermodynamical convergence of dynamics
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Thermodynamical convergence of dynamics

~0

~ 1 - 1 1
Cun(s, t) = =(xs,%x¢), Xn(s,t)= N(x57 B:), qgn(s) = N<XS’U>'

N<
3(C, X1, qL) non-random (depends on E,, G,, gy, q), so
N— oo

(@) = {II€n = Cllr + IRw = xull7 + 135 — acllr ) =30

for any T < oo (in L, WRT B, xo and the conditional J).

xi(s,t) = f§ Ru(s,u)du, Ri(s,s)=1, C1(0,0)=1, q.(0) =g,
Ri(s,t) =0 for t >s, Ci(s,t) = C.(t,s), and q.(s)

solve for s > t explicit integro-differential equations.
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0.9(5) = ~($)als) + 5 | a(uR(s, ) (C(s,0))dr+Ba2va(a(s)

du+Bq(t)wv(q(s)),

(to get u(s) set 14 205C(s, t)|e=s = 0; recall C(s,t) = C(t,s)).
Vi(+) (explicit in v/(-) and g.) is linear in (E,, Gy).

v(0) =0, /(0) =0, so g(0) = g=0 = g(s) =0 (ck-equations).

xo uniform on (x,0) = Nq, {Hi(¢) = —NE., VH(o) = —G.o}.
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1 N, N— oo
1 _E PYI(An(e) > )] 25 0.

Further, if M M

Jlimlim P {14 (8w)| > BEIEL (0w)] } = 1, (1)
then 1

i Z P T{An(o) > e} — "23°0, in prob.

[EH O], cexis

o (5n)



Low temperature Gibbs measure: pure p-spins

Theorem (Subag ‘17)

For the pure spherical models with p > 3 and large enough £,
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i-th lowest local minimum of Hj(x). ’
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o) are roughly orthogonal.
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Theorem (Ben Arous, Subag, Zeitouni ‘18) [informal version]

For models ‘close’ enough to pure, and large (3, we have (essentially)
the same picture but with modified definition for the bands.



Low temperature Gibbs measure: near pure case

Theorem (Ben Arous, Subag, Zeitouni ‘18) [informal version]

For models ‘close’ enough to pure, and large (3, we have (essentially)
the same picture but with modified definition for the bands.

Now centers are local minima o of Hjy(-) on
.SV and their bands (on SN) are

Band(o) = {x e sV }%(x,aﬁ —q7| < 6,\,}.

b



Thank you!



