Iterative Projection Methods

for noisy and corrupted systems of linear equations

Deanna Needell

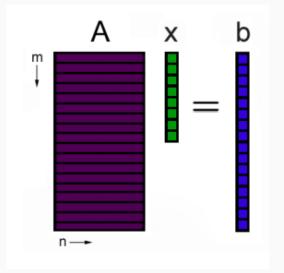
February 1, 2018

Mathematics UCLA

> joint with Jamie Haddock and Jesús De Loera https://arxiv.org/abs/1605.01418 and forthcoming articles

Setup

We are interested in solving highly overdetermined systems of equations, $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and m >> n. Rows are denoted \mathbf{a}_i^T .

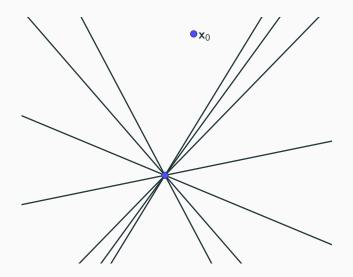


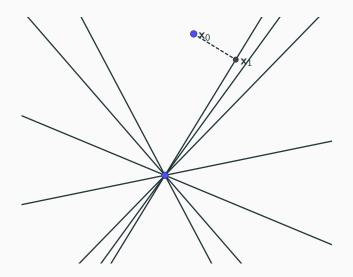
If $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}\}$ is nonempty, these methods construct an approximation to an element:

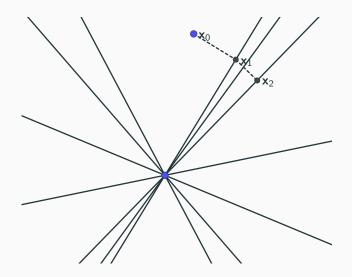
- 1. Randomized Kaczmarz Method
- 2. Motzkin's Method(s)
- 3. Sampling Kaczmarz-Motzkin Methods (SKM)

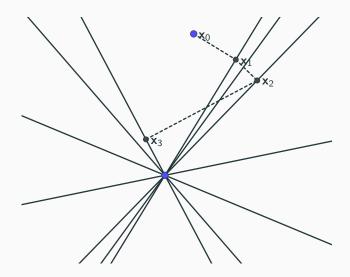
Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. Choose $i_k \in [m]$ with probability $\frac{\|\mathbf{a}_{i_k}\|^2}{\|A\|_F^2}$.
- 2. Define $\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}$.
- 3. Repeat.









Theorem (Strohmer - Vershynin 2009)

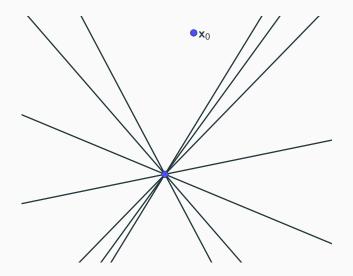
Let **x** be the solution to the consistent system of linear equations $A\mathbf{x} = \mathbf{b}$. Then the Random Kaczmarz method converges to **x** linearly in expectation:

$$\mathbb{E} ||\mathbf{x}_k - \mathbf{x}||_2^2 \leq \left(1 - rac{1}{||\mathcal{A}||_F^2 ||\mathcal{A}^{-1}||_2^2}
ight)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2.$$

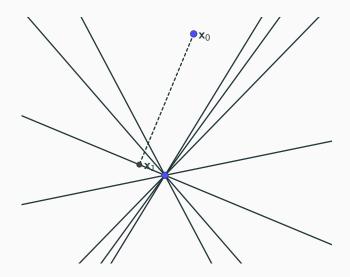
Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. If \mathbf{x}_k is feasible, stop.
- 2. Choose $i_k \in [m]$ as $i_k := \underset{i \in [m]}{\operatorname{argmax}} |\mathbf{a}_i^T \mathbf{x}_{k-1} b_i|.$
- 3. Define $\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{\mathbf{b}_{i_k} \mathbf{a}_{i_k}^\mathsf{T} \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}.$
- 4. Repeat.

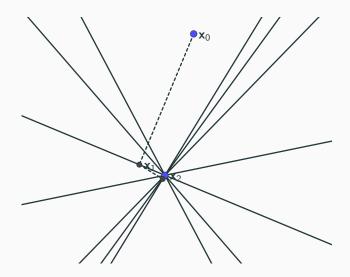
Motzkin's Method



Motzkin's Method



Motzkin's Method



Theorem (Agmon 1954)

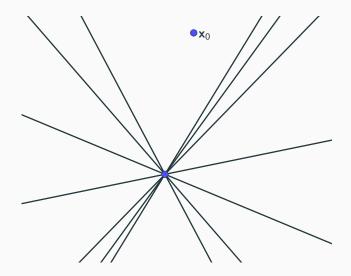
For a consistent, normalized system, $\|\mathbf{a}_i\| = 1$ for all i = 1, ..., m, Motzkin's method converges linearly to the solution \mathbf{x} :

$$\|\mathbf{x}_k - \mathbf{x}\|^2 \le \left(1 - \frac{1}{m\|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2.$$

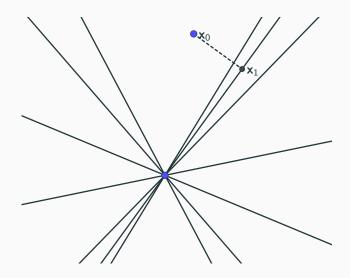
Given $\mathbf{x}_0 \in \mathbb{R}^n$:

- 1. Choose $\tau_k \subset [m]$ to be a sample of size β constraints chosen uniformly at random from among the rows of A.
- 2. From among these β rows, choose $i_k := \underset{i \in \tau_k}{\operatorname{argmax}} |\mathbf{a}_i^T \mathbf{x}_{k-1} b_i|.$
- 3. Define $\mathbf{x}_k := \mathbf{x}_{k-1} + \frac{b_{i_k} \mathbf{a}_{i_k}^T \mathbf{x}_{k-1}}{||\mathbf{a}_{i_k}||^2} \mathbf{a}_{i_k}$.
- 4. Repeat.

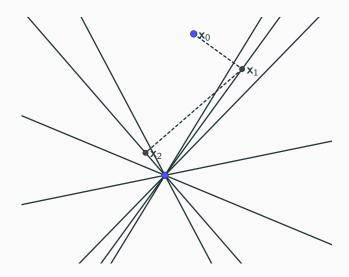
SKM



SKM



SKM

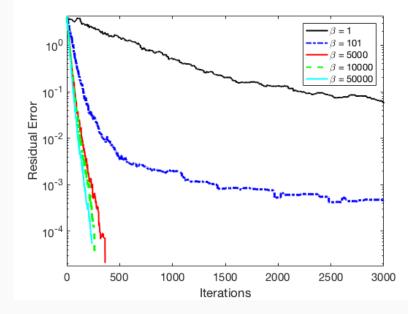


Theorem (De Loera - Haddock - N. 2017)

For a consistent, normalized system the SKM method with samples of size β converges to the solution x at least linearly in expectation: If s_{k-1} is the number of constraints satisfied by x_{k-1} and $V_{k-1} = \max\{m - s_{k-1}, m - \beta + 1\}$ then

$$egin{aligned} \mathbb{E}\|\mathbf{x}_k - \mathbf{x}\|^2 &\leq \left(1 - rac{1}{V_{k-1}\|A^{-1}\|^2}
ight)\|\mathbf{x}_0 - \mathbf{x}\|^2 \ &\leq \left(1 - rac{1}{m\|A^{-1}\|^2}
ight)^k\|\mathbf{x}_0 - \mathbf{x}\|^2. \end{aligned}$$

Convergence



$$\triangleright \ \mathsf{RK}: \mathbb{E}||\mathbf{x}_k - \mathbf{x}||_2^2 \le \left(1 - \frac{1}{||A||_F^2 ||A^{-1}||_2^2}\right)^k ||\mathbf{x}_0 - \mathbf{x}||_2^2$$

$$\triangleright \ \mathsf{RK}: \mathbb{E}||\mathbf{x}_{k} - \mathbf{x}||_{2}^{2} \leq \left(1 - \frac{1}{||A||_{F}^{2}||A^{-1}||_{2}^{2}}\right)^{k} ||\mathbf{x}_{0} - \mathbf{x}||_{2}^{2}.$$
$$\triangleright \ \mathsf{MM}: \ \|\mathbf{x}_{k} - \mathbf{x}\|^{2} \leq \left(1 - \frac{1}{m\|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2}.$$

Convergence Rates

$$\mathsf{P} \ \mathsf{RK}: \mathbb{E} ||\mathbf{x}_{k} - \mathbf{x}||_{2}^{2} \leq \left(1 - \frac{1}{||A||_{F}^{2}||A^{-1}||_{2}^{2}}\right)^{k} ||\mathbf{x}_{0} - \mathbf{x}||_{2}^{2}.$$

$$\mathsf{P} \ \mathsf{MM}: \|\mathbf{x}_{k} - \mathbf{x}\|^{2} \leq \left(1 - \frac{1}{m\|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2}.$$

$$\mathsf{P} \ \mathsf{SKM}: \mathbb{E} \|\mathbf{x}_{k} - \mathbf{x}\|^{2} \leq \left(1 - \frac{1}{m\|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2}.$$

$$\begin{split} & \triangleright \ \mathsf{RK}: \ \mathbb{E}||\mathbf{x}_{k} - \mathbf{x}||_{2}^{2} \leq \left(1 - \frac{1}{||A||_{F}^{2}||A^{-1}||_{2}^{2}}\right)^{k} ||\mathbf{x}_{0} - \mathbf{x}||_{2}^{2}. \\ & \triangleright \ \mathsf{MM}: \ \|\mathbf{x}_{k} - \mathbf{x}\|^{2} \leq \left(1 - \frac{1}{m\|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2}. \\ & \triangleright \ \mathsf{SKM}: \ \mathbb{E}\|\mathbf{x}_{k} - \mathbf{x}\|^{2} \leq \left(1 - \frac{1}{m\|A^{-1}\|^{2}}\right)^{k} \|\mathbf{x}_{0} - \mathbf{x}\|^{2}. \end{split}$$

 \triangleright Why are these all the same?

Theorem (Haddock - N. 2018+)

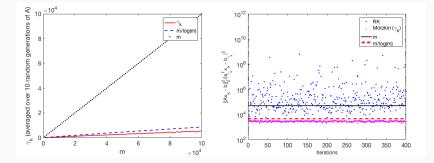
Let **x** denote the solution of the consistent, normalized system $A\mathbf{x} = \mathbf{b}$. Motzkin's method exhibits the (possibly highly accelerated) convergence rate:

$$\| {f x}_{\mathcal{T}} - {f x} \|^2 \leq \prod_{k=0}^{\mathcal{T}-1} \left(1 - rac{1}{4\gamma_k \| \mathcal{A}^{-1} \|^2}
ight) \cdot \| {f x}_0 - {f x} \|^2$$

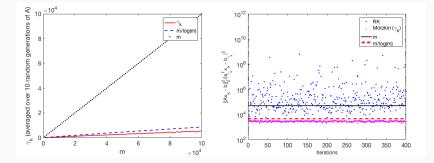
Here γ_k bounds the dynamic range of the kth residual, $\gamma_k := \frac{\|A\mathbf{x}_k - A\mathbf{x}\|^2}{\|A\mathbf{x}_k - A\mathbf{x}\|_{\infty}^2}$.

 \triangleright improvement over previous result when $4\gamma_k < m$

γ_k : Gaussian systems

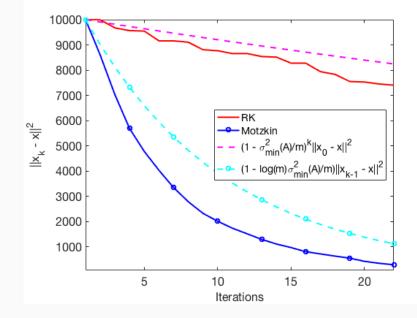


γ_k : Gaussian systems



$$\gamma_k \lesssim \frac{m}{\log m}$$

Gaussian Convergence



Is this the right problem?

Is this the right problem?

Theorem (N. 2010)

Let A have full column rank, denote the desired solution to the system $A\mathbf{x} = \mathbf{b}$ by \mathbf{x} , and define the error term $\mathbf{e} = A\mathbf{x} - \mathbf{b}$. Then RK iterates satisfy

$$\mathbb{E}\|\mathbf{x}_k - \mathbf{x}\|^2 \leq \left(1 - \frac{1}{\|A\|_F^2 \|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2 + \|A\|_F^2 \|A^{-1}\|^2 \|\mathbf{e}\|_\infty^2$$

Theorem (N. 2010)

Let A have full column rank, denote the desired solution to the system $A\mathbf{x} = \mathbf{b}$ by \mathbf{x} , and define the error term $\mathbf{e} = A\mathbf{x} - \mathbf{b}$. Then RK iterates satisfy

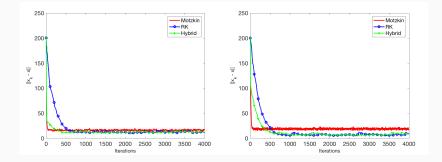
$$\mathbb{E}\|\mathbf{x}_k - \mathbf{x}\|^2 \leq \left(1 - \frac{1}{\|A\|_F^2 \|A^{-1}\|^2}\right)^k \|\mathbf{x}_0 - \mathbf{x}\|^2 + \|A\|_F^2 \|A^{-1}\|^2 \|\mathbf{e}\|_\infty^2$$

Theorem (Haddock - N. 2018+)

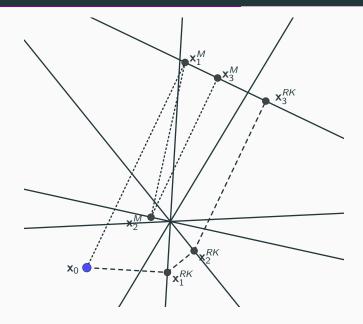
Let \mathbf{x} denote the desired solution of the system $A\mathbf{x} = \mathbf{b}$ and define the error term $\mathbf{e} = \mathbf{b} - A\mathbf{x}$. If Motzkin's method is run with stopping criterion $||A\mathbf{x}_k - \mathbf{b}||_{\infty} \le 4||\mathbf{e}||_{\infty}$, then the iterates satisfy

$$\|\mathbf{x}_{T} - \mathbf{x}\|^{2} \leq \prod_{k=0}^{T-1} \left(1 - \frac{1}{4\gamma_{k} \|A^{-1}\|^{2}}\right) \cdot \|\mathbf{x}_{0} - \mathbf{x}\|^{2} + 2m\|A^{-1}\|^{2}\|\mathbf{e}\|_{\infty}^{2}$$

Noisy Convergence



What about corruption?

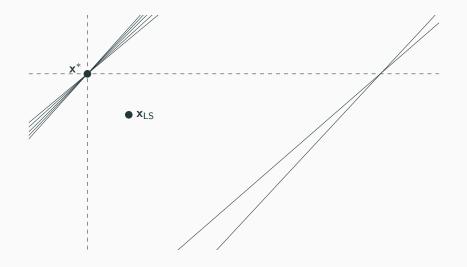


Applications: logic programming, error correction in telecommunications

Applications: logic programming, error correction in telecommunications

 $\label{eq:alpha} \begin{array}{ll} \mbox{Problem:} & A\mathbf{x} = \mathbf{b} + \mathbf{e} \\ \hline \mbox{(Noisy)} & \mbox{Error (e):} & \mbox{small, evenly distributed entries} \\ & \mbox{Solution (x_{LS}):} & \mbox{x}_{LS} \in \mbox{argmin} \| A\mathbf{x} - \mathbf{b} - \mathbf{e} \|^2 \end{array}$

Why not least-squares?



MAX-FS: Given $A\mathbf{x} = \mathbf{b}$, determine the largest feasible subsystem.

MAX-FS: Given $A\mathbf{x} = \mathbf{b}$, determine the largest feasible subsystem.

 \triangleright MAX-FS is NP-hard even when restricted to homogenous systems with coefficients in $\{-1, 0, 1\}$ (Amaldi - Kann 1995)

MAX-FS: Given $A\mathbf{x} = \mathbf{b}$, determine the largest feasible subsystem.

- ▷ MAX-FS is NP-hard even when restricted to homogenous systems with coefficients in {-1,0,1} (Amaldi - Kann 1995)
- \triangleright no PTAS unless P = NP

Goal: Use RK to detect the corrupted equations with high probability.

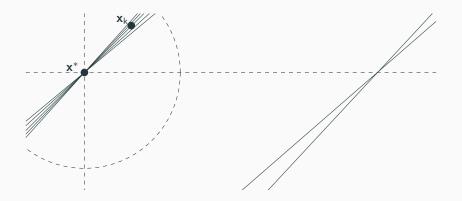
Goal: Use RK to detect the corrupted equations with high probability. **Lemma (Haddock - N. 2018+)**

Let $\epsilon^* = \min_{i \in [m]} |A\mathbf{x}^* - \mathbf{b}|_i = |e_i|$ and suppose $|supp(\mathbf{e})| = s$. If $||\mathbf{a}_i|| = 1$ for $i \in [m]$ and $||\mathbf{x} - \mathbf{x}^*|| < \frac{1}{2}\epsilon^*$ we have that the $d \leq s$ indices of largest magnitude residual entries are contained in supp(\mathbf{e}). That is, we have $D \subset supp(\mathbf{e})$, where

$$D = \underset{D \subset [A], |D|=d}{\operatorname{argmax}} \sum_{i \in D} |A\mathbf{x} - \mathbf{b}|_i.$$

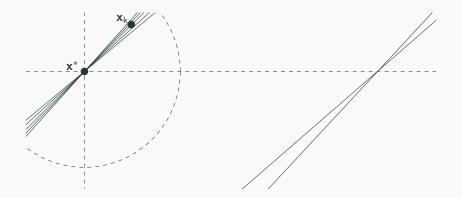
Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.



Proposed Method

Goal: Use RK to detect the corrupted equations with high probability.



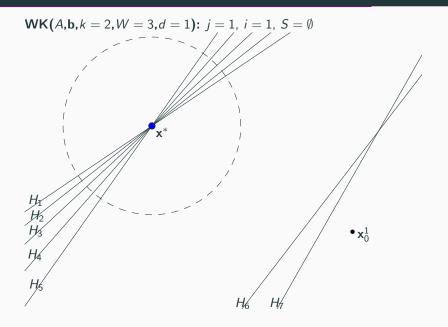
We call $\epsilon^*/2$ the *detection horizon*.

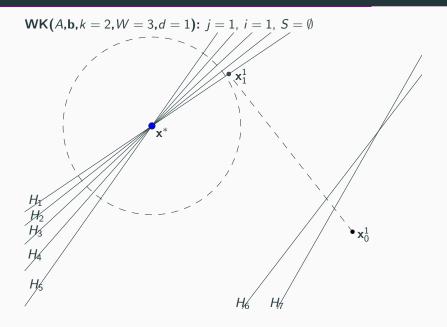
Method 1 Windowed Kaczmarz

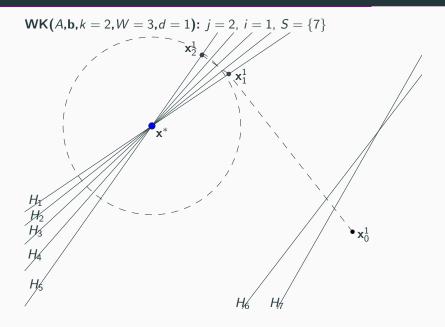
1: procedure $WK(A, \mathbf{b}, k, W, d)$

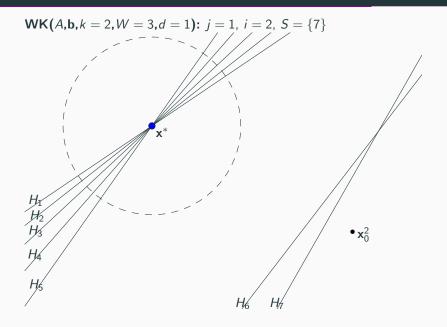
2:
$$S = \emptyset$$

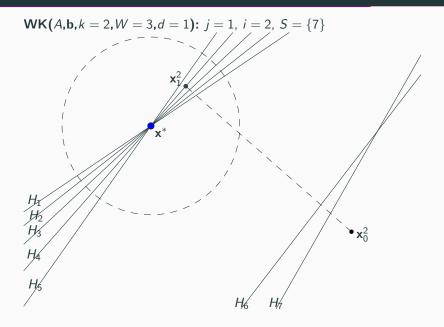
- 3: **for** i = 1, 2, ... W **do**
- 4: $\mathbf{x}_k^i = k$ th iterate produced by RK with $\mathbf{x}_0 = \mathbf{0}$, A, **b**.
- 5: D = d indices of the largest entries of the residual, $|A\mathbf{x}_k^i \mathbf{b}|$.
- 6: $S = S \cup D$
- 7: **return x**, where $A_{S^c} \mathbf{x} = \mathbf{b}_{S^c}$

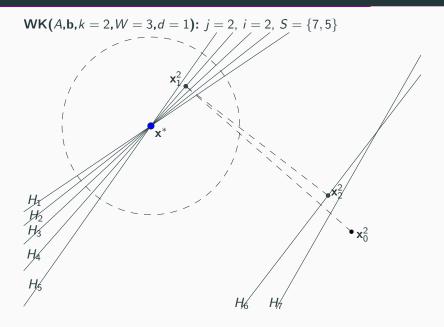


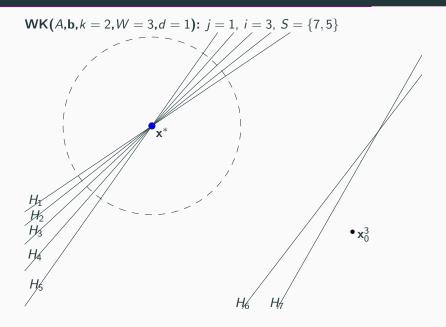


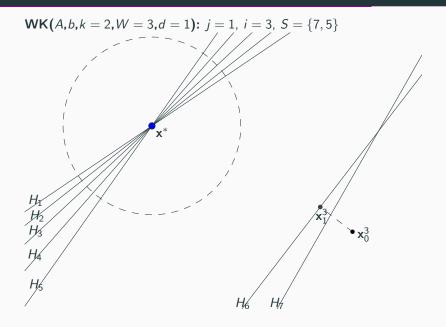


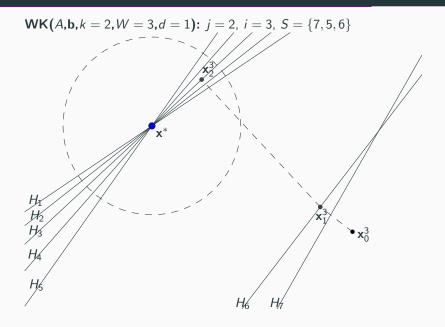




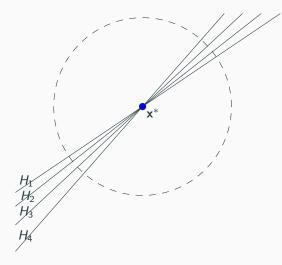








Solve $A_{S^c} \mathbf{x} = \mathbf{b}_{S^c}$.

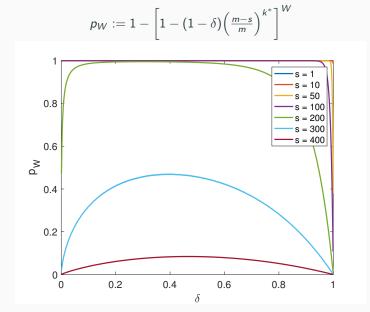


Theorem (Haddock - N. 2018+)

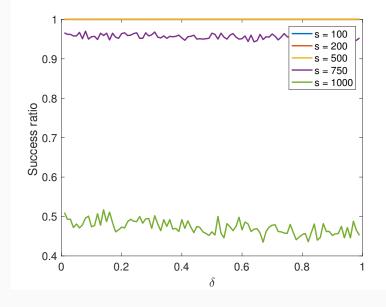
Assume that $\|\mathbf{a}_i\| = 1$ for all $i \in [m]$ and let $0 < \delta < 1$. Suppose $d \ge s = |supp(\mathbf{e})|$, $W \le \lfloor \frac{m-n}{d} \rfloor$ and k^* is as given in the detection horizon lemma. Then the Windowed Kaczmarz method on A, \mathbf{b} will detect the corrupted equations ($supp(\mathbf{e}) \subset S$) and the remaining equations given by $A_{[m]-S}$, $\mathbf{b}_{[m]-S}$ will have solution \mathbf{x}^* with probability at least

$$p_W := 1 - \left[1 - (1 - \delta) \left(\frac{m - s}{m}\right)^{k^*}\right]^W$$

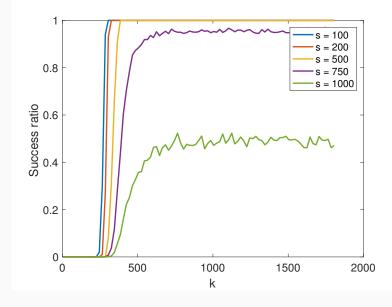
Theoretical Guarantee Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)



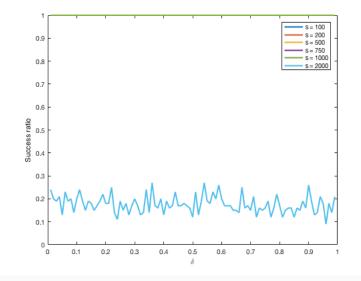
Experimental Values (Gaussian $A \in \mathbb{R}^{50000 imes 100}$)



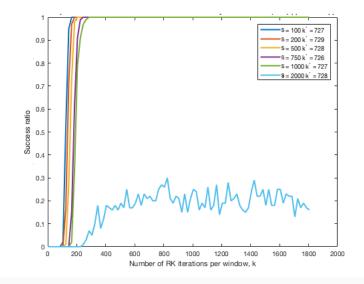
Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)



Experimental Values (Gaussian $A \in \mathbb{R}^{50000 imes 100}$)



Experimental Values (Gaussian $A \in \mathbb{R}^{50000 \times 100}$)



- Motzkin's method is accelerated even in the presence of noise
- RK methods may be used to detect corruption
- identify useful bounds on γ_k for other useful systems
- reduce dependence on artificial parameters in corruption detection bounds