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Deepnet Loss surfaces have rough landscapes, 
however…
• Traditional notion of landscape assumes:
• One is exploring the whole landscape

• Deep learning:
• Run SGD and converge to some solution
• Observe a range of behaviors along the path
• No exploration of the whole landscape

• This talk:
• The global topology of the landscape will not be at issue
• The path will not be at issue
• We focus on the converged solution



Flat Minima
Hochreiter & Schmidhuber

flat minima lead to better generalization
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20182016

On Large-Batch Training for Deep Learning: 
Generalization Gap and Sharp Minima
Keskar et. al

large batch SGD leads to sharp minima

Hessian-based Analysis of Large Batch 
Training and Robustness to Adversaries
Yao et. al

large batch SGD converges to higher 
Hessian spectrum

Sharp Minima Can Generalize For Deep Nets
Dinh et. al

most notions of flatness are problematic

Landscapes & generalization performance



1997

2015 2017
2018

Three Factors Influencing Minima in SGD
Jastrzębski et. al

generalization ≈ ,latness ≈ learning rate
batch size

2016

An Empirical Model of Large-Batch Training
McCandlish et. al

12 34
5635 predicts the largest “useful” batch size

Gradient Descent Happens in a 

Tiny Subspace
Gur-Ari et. al

gradients of SGD spanned by 

top eigenvectors of the Hessian

Entropy-SGD: Biasing Gradient Descent Into 

Wide Valleys
Chaudhari et. al

modification to SGD that favors flat minima

Landscapes & speed of training
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The Loss Surfaces of Multilayer Networks
Choromanska, Henaff, Mathieu, Ben Arous & LeCun

lowest critical values are located in a band near the global minimum

Geometry of Neural Network Loss Surfaces via Random Matrix Theory
Pennington & Bahri

number of negative eigenvalues at critical points of small index scales 
like the 3/2 power of the energy

Landscapes & optimization guarantees
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Today’s question

what do we actually
know about the Hessian?

• Properties of Hessian crucial to:
• Generalization performance
• Training speed
• Optimization guarantees

• Hessians of today's deepens enormous:
e.g., 30 million x 30 million!
• Not previously widely studied at full scale



Slogans about eigenvalue distributions

• Bulk distribution



Slogans about eigenvalue distributions

• Bulk distribution
• Many negative eigenvalues



Slogans about eigenvalue distributions

• Bulk distribution
• Many negative eigenvalues
• Number of outliers = number of classes



Slogans about eigenvalue distributions

• Bulk distribution
• Many negative eigenvalues
• Number of outliers = number of classes
• Scaling of outliers with training/sample size
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Number of outliers = number of classes

• Empirical Analysis of the Hessian of Over-Parametrized Neural Networks 
[Sagun et. al ’17]

• 100 dimensional Gaussian mixture model with ! ∈ 2,5,10,20,50 classes

• Two hidden layers with 30 neurons each



Measurements at scale

• Recent paper
• The Full Spectrum of Deep Net Hessians At Scale:

Dynamics With Sample Size [Papyan ‘18]

• https://arxiv.org/abs/1811.07062



Train Hessian of VGG11 (28 million parameters)



Test Hessian of VGG11 (28 million parameters)



Decomposing the Hessian into two components
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Attribution of outliers
VGG11 trained on MNIST sub-sampled to 2599 examples per class

!
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Attribution of bulk
VGG11 trained on MNIST sub-sampled to 2599 examples per class

!
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Hessian



Tail properties
VGG11 trained on MNIST sub-sampled to 2599 examples per class



Scaling of outliers with training/sample size
VGG11 trained on CIFAR10

test

train



We show here

• Outliers are induced by G, covariance of gradients
• Bulk is induced by H, hessian of predictions
• Tail of bulk follows power law



How did we make measurements at such 
massive scale?
• Algorithms that do not work:
• Power method – will get you 1/30,000,000 eigenvalues
• Subspace iteration – will get you 10/30,000,000 eigenvalues
• SVD – will get you spectra of small Hessians (thousands of eigenvalues)

• Comparison:
• Previous work: thousands of parameters
• Our work: 30 million parameters

• How???



How did we make measurements at such 
massive scale?
• 1970’s:

Quantum mechanics and physicists study the energy levels of Hamiltonians

• 2018:
We leverage these ideas to approximate the spectrum of deepnet Hessians

• Survey of algorithms used  [Approximating Spectral Densities of Large Matrices, ‘14]



Lanczos

• We implemented Lanczos in
• Many non-trivial engineering tricks
• We plan to release a package so anyone can 

compute spectra of deepnet Hessians
• Complexity similar to training a model
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Importance of spectral outliers

• Outliers due to !
• The only generalizable eigenspaces of ! are the outlying ones
• Gur-Ari et. al show that SGD trapped in tiny subspace
• This subspace is outlier subspace!



Insights

• Gradients have structured means
• Mean structure induces outliers
• Outliers cause low-dimensionality
• Low-dimensionality causes slow SGD
• Possibilities to exploit means in SGD?



What is causing the outliers to appear?

• Recent paper
• A Three-Level Hierarchical Model for the Outliers in the Spectrum of 

Deepnet Hessians
• arXiv posting soon



Observation 1:
gradient vectors have a structure on indices
• !" = gradient induced by #-th element
• Coordinate index # has this structure: $, $′, ' = [$(#), $′(#), '(#)]

• ' = observation (i.e. image)
• $ = true class of observation
• $′ = classifier coordinate (i.e. potential class)

there are -×/×/ elements
• Define:

!0,01 = Ave{!": $(#) = $, $′(#) = $′}
Σ0,01 = Covar !": $ # = $, $= # = $=

• Gradient induced by observation # is sampled from population with mean !0,01
and covariance Σ0,01



Observation 2:
! is a second moment matrix
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Observation 3:
The means !","$ themselves have structure
• Define:

!" = Ave{!","$ ∶ +′ = 1,… , / }
• The means !","$ can be viewed as sampled from a population with 

mean !"



t-SNE visualization of !" " and !","$ ","$
ResNet18 trained on CIFAR10 with 365 examples per class



Decomposing !
ResNet18 trained on MNIST with 702 examples per class 

spectrum approximation of !
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Proof that mean structure induces outliers

• Spiked second moment model [Benaych-Georges and Raj Rao Nadakuditi, ‘09]

• ! + ##$
• # or ! orthogonally invariant
• ! low rank



Deliverables

• Measurements of spectral distributions of Hessians of modern deepnets at 
full scale on real data
• Confirmation of characteristics observed in toy models:

• Bulk
• Negative eigenvalues
• C outliers

• Attribution of characteristics to substructure of gradient and hessian:
• Bulk and negative eigenvalues due to H - hessian of predictions
• Outliers due to second moment of gradients G
• Outliers due to mean structure of embedding

• Exciting opportunities for optimization
• We are told Google researchers have made related observations (e.g. Behrooz

Ghorbani and the team he works in)


