Measuring the Spectrum of Deepnet Hessians

Vardan Papyan
Postdoc advisor: David Donoho

The Rough High-Dimensional Landscape Problem

Outline

- Rough landscapes in deep learning
- Hessians in deep learning
- Measurements of Hessians at large scale
- Structure in the outliers

Deepnet Loss surfaces have rough landscapes, however...

Traditional notion of landscape assumes:

One is exploring the whole landscape

Deep learning:

- Run SGD and converge to some solution
- Observe a range of behaviors along the path
- No exploration of the whole landscape

This talk:

- The global topology of the landscape will not be at issue
- The path will not be at issue
- We focus on the *converged solution*

Landscapes & generalization performance

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima Keskar et. al

large batch SGD leads to sharp minima

Hessian-based Analysis of Large Batch Training and Robustness to Adversaries Yao et. al

large batch SGD converges to higher Hessian spectrum

2015

1997

2016

2017

Flat Minima

Hochreiter & Schmidhuber

flat minima lead to better generalization

Sharp Minima Can Generalize For Deep Nets Dinh et. al

most notions of flatness are problematic

Landscapes & speed of training

Three Factors Influencing Minima in SGD Jastrzębski et. al

generalization \approx flatness $\approx \frac{\text{learning rate}}{\text{batch size}}$

Gradient Descent Happens in a Tiny Subspace

Gur-Ari et. al

2017

gradients of SGD spanned by top eigenvectors of the Hessian

2015

1997

2016

2019

Entropy-SGD: Biasing Gradient Descent Into Wide Valleys

Chaudhari et. al

modification to SGD that favors flat minima

An Empirical Model of Large-Batch Training McCandlish et. al

 $\frac{tr(H\Sigma)}{G^THG}$ predicts the largest "useful" batch size

Landscapes & optimization guarantees

Choromanska, Henaff, Mathieu, Ben Arous & LeCun

lowest critical values are located in a band near the global minimum

Geometry of Neural Network Loss Surfaces via Random Matrix Theory Pennington & Bahri

number of negative eigenvalues at critical points of small index scales like the 3/2 power of the energy

Outline

- Rough landscapes in deep learning
- Hessians in deep learning
- Measurements of Hessians at large scale
- Structure in the outliers

Today's question

- Properties of Hessian crucial to:
 - Generalization performance
 - Training speed
 - Optimization guarantees
- Hessians of today's deepens enormous:
 e.g., 30 million x 30 million!
- Not previously widely studied at full scale

• Bulk distribution

- Bulk distribution
- Many negative eigenvalues

- Bulk distribution
- Many negative eigenvalues
- Number of outliers = number of classes

- Bulk distribution
- Many negative eigenvalues
- Number of outliers = number of classes
- Scaling of outliers with training/sample size

(a) 10 examples per class.

(b) 51 examples per class.

(c) 506 examples per class.

Outline

- Rough landscapes in deep learning
- Hessians in deep learning
- Measurements of Hessians at large scale
- Structure in the outliers

Number of outliers = number of classes

- Empirical Analysis of the Hessian of Over-Parametrized Neural Networks [Sagun et. al '17]
- 100 dimensional Gaussian mixture model with $C \in \{2,5,10,20,50\}$ classes
- Two hidden layers with 30 neurons each

Measurements at scale

- Recent paper
- The Full Spectrum of Deep Net Hessians At Scale:
 Dynamics With Sample Size [Papyan '18]
- https://arxiv.org/abs/1811.07062

Train Hessian of VGG11 (28 million parameters)

Test Hessian of VGG11 (28 million parameters)

Decomposing the Hessian into two components

Hessian =
$$\operatorname{Ave}_{i,c} \left\{ \frac{\partial \ell(z;\theta)}{\partial z} \Big|_{z=f(x_{i,c};\theta)} \frac{\partial^2 f(x_{i,c};\theta)}{\partial^2 \theta} \right\}$$

H – Hessian of predictions

$$+\operatorname{Ave}_{i,c}\left\{\frac{\partial f(x_{i,c};\theta)}{\partial \theta}^{T}\frac{\partial^{2}\ell(z;\theta)}{\partial z^{2}}\Big|_{z=f(x_{i,c};\theta)}\frac{\partial f(x_{i,c};\theta)}{\partial \theta}\right\}$$

G – covariance of gradients

Attribution of outliers

VGG11 trained on MNIST sub-sampled to 2599 examples per class

Attribution of bulk

VGG11 trained on MNIST sub-sampled to 2599 examples per class

Tail properties

VGG11 trained on MNIST sub-sampled to 2599 examples per class

Scaling of outliers with training/sample size

VGG11 trained on CIFAR10

We show here

- Outliers are induced by G, covariance of gradients
- Bulk is induced by H, hessian of predictions
- Tail of bulk follows power law

How did we make measurements at such massive scale?

- Algorithms that do not work:
 - Power method will get you 1/30,000,000 eigenvalues
 - Subspace iteration will get you 10/30,000,000 eigenvalues
 - SVD will get you spectra of **small** Hessians (thousands of eigenvalues)
- Comparison:
 - Previous work: thousands of parameters
 - Our work: 30 million parameters
- How???

How did we make measurements at such massive scale?

• 1970's:

Quantum mechanics and physicists study the energy levels of Hamiltonians

• 2018:

We leverage these ideas to *approximate* the spectrum of deepnet Hessians

Survey of algorithms used [Approximating Spectral Densities of Large Matrices, '14]

Lanczos

- We implemented Lanczos in PYTORCH
- Many non-trivial engineering tricks
- We plan to release a package so anyone can compute spectra of deepnet Hessians
- Complexity similar to training a model

Algorithm 2: FASTLANCZOS(H, M)

Input: Linear operator $H \in \mathbb{R}^{p \times p}$ with spectrum in the range [-1,1].

Number of iterations M.

Result: Eigenvalues and eigenvectors of the tridiagonal matrix T_m .

$$\begin{aligned} & \textbf{for } m = 1, \dots, M \textbf{ do} \\ & \textbf{ if } m == 1 \textbf{ then} \\ & | & \text{ sample } v \sim \mathcal{N}(0, I); \\ & v = \frac{v}{\|v\|_2}; \\ & v_{\text{next}} = Hv; \\ & \textbf{ else} \\ & | & v_{\text{next}} = Hv - \beta_{m-1}v_{\text{prev}}; \\ & \textbf{ end} \\ & \alpha_m = v_{\text{next}}^T v; \\ & v_{\text{next}} = v_{\text{next}} - \alpha_m v; \\ & \beta_m = \|v_{\text{next}}\|_2; \\ & v_{\text{next}} = \frac{v_{\text{next}}}{\beta_m}; \\ & v_{\text{prev}} = v; \\ & v = v_{\text{next}}; \end{aligned}$$

end

Outline

- Rough landscapes in deep learning
- Hessians in deep learning
- Measurements of Hessians at large scale
- Structure in the outliers

Importance of spectral outliers

- Outliers due to G
- The only generalizable eigenspaces of **G** are the outlying ones
- Gur-Ari et. al show that SGD trapped in tiny subspace
- This subspace is outlier subspace!

Insights

- Gradients have structured means
- Mean structure induces outliers
- Outliers cause low-dimensionality
- Low-dimensionality causes slow SGD
- Possibilities to exploit means in SGD?

What is causing the outliers to appear?

- Recent paper
- A Three-Level Hierarchical Model for the Outliers in the Spectrum of Deepnet Hessians
- arXiv posting soon

Observation 1: gradient vectors have a structure on indices

- δ_k = gradient induced by k-th element
- Coordinate index k has this structure: c, c', i = [c(k), c'(k), i(k)]
 - i = observation (i.e. image)
 - c = true class of observation
 - c' = classifier coordinate (i.e. potential class)

there are $I \times C \times C$ elements

• Define:

$$\delta_{c,c'} = \text{Ave}\{\delta_k : c(k) = c, c'(k) = c'\}$$

$$\Sigma_{c,c'} = \text{Covar}\{\delta_k : c(k) = c, c'(k) = c'\}$$

• Gradient induced by observation k is sampled from population with mean $\delta_{c,c'}$ and covariance $\Sigma_{c,c'}$

Observation 2:

G is a second moment matrix

$$\mathbf{G} = c \sum_{k} \delta_{k} \delta_{k}^{T}$$

$$=\sum_{c}\sum_{c'}\sum_{i}\delta_{i,c,c'}\delta_{i,c,c'}^{T}$$

$$= c \sum_{c} \sum_{c'} \delta_{c,c'} \delta_{c,c'}^T + c \sum_{c} \sum_{c'} \Sigma_{c,c'}$$

Observation 3: The means $\delta_{c.c'}$ themselves have structure

• Define:

$$\delta_c = \text{Ave}\{\delta_{c,c'}: c' = 1, \dots, C\}$$

• The means $\delta_{c,c'}$ can be viewed as sampled from a population with mean δ_c

t-SNE visualization of $\{\delta_c\}_c$ and $\{\delta_{c,c'}\}_{c,c'}$

ResNet18 trained on CIFAR10 with 365 examples per class

Decomposing G

ResNet18 trained on MNIST with 702 examples per class

Proof that mean structure induces outliers

- Spiked second moment model [Benaych-Georges and Raj Rao Nadakuditi, '09]
- $P + ZZ^T$
- Z or P orthogonally invariant
- P low rank

Deliverables

- Measurements of spectral distributions of Hessians of modern deepnets at full scale on real data
- Confirmation of characteristics observed in toy models:
 - Bulk
 - Negative eigenvalues
 - C outliers
- Attribution of characteristics to substructure of gradient and hessian:
 - Bulk and negative eigenvalues due to H hessian of predictions
 - Outliers due to second moment of gradients G
 - Outliers due to mean structure of embedding
- Exciting opportunities for optimization
 - We are told Google researchers have made related observations (e.g. Behrooz Ghorbani and the team he works in)