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Which high-dimensional inference problems (leading to non-convex 

objectives) are solvable (close to) optimally with tractable algorithms? 

Which algorithms?  
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Collect Yij for every pair (ij). 

Goal: Recover cards (up to 
symmetry) purely from the 
knowledge of

• Each pair reports:    

‣ Yij=Zij+1/⎷N if cards the same.                 

‣ Yij=Zij-1/⎷N if cards different. 

Zij ⇠ N (0,�)

Y = {Yij}i<j

TYPICAL EXAMPLE



HOW TO SOLVE THIS?

Eigen-decomposition of Y (aka PCA) minimises                                                                   
X

i<j

(Yij � Ŷij)
2 with rank(Ŷ ) = 1

xPCA (leading eigen-vector of Y) estimates x* (up to a sign). 

true values of cards: Yij =
1

N
x*i x*j + Zij

BBP phase transition: 

Zij ⇠ N (0,�) x*i ∈ {−1, + 1}

Δ > 1
Δ < 1

xPCA ⋅ x* ≈ 0
|xPCA ⋅ x* | > 0

x* ∈ {−1, + 1}N

PCA: not optimal error value (does not maximise the number of correctly 
assigned cards)



BAYESIAN INFERENCE

Values of cards: 

Posterior distribution: 

Bayes-optimal inference = computation of marginals  
(argmax maximizes the number of correctly assigned values,        
mean of marginals minimises the mean-squared error). 

P(x |Y ) =
1

Z(Y, Δ)

N

∏
i=1

[δ(xi − 1) + δ(xi + 1)]∏
i<j

e− 1
2Δ (Yij − xixj / N)2

xi ∈ {−1, + 1}
x ∈ {−1, + 1}N

Physics: Sherrington-Kirkpatrick model with planted-disorder. 



BAYESIAN INFERENCE

Values of cards: 

Posterior distribution: 

xi ∼ PX(xi)

P(x |Y ) =
1

Z(Y, Δ)

N

∏
i=1

PX(xi)∏
i<j

e− 1
2Δ (Yij − xixj / N)2

Bayes-optimal inference = computation of marginals  
(argmax maximizes the number of correctly assigned values,        
mean of marginals minimises the mean-squared error). 



PROPERTIES OF THE  
BAYES-OPTIMAL ESTIMATOR

concentrates around maximum of 

Theorem 1: 

= replica symmetric free entropy

1
N

log Z(Y, Δ)

Φ(m) = 𝔼x,w[log 𝒵( m
Δ

,
m
Δ

x +
m
Δ

w)] −
m2

4Δ
w ∼ 𝒩(0,1)

m ∈ ℝ
Φ(m)

x ∼ PX

𝒫(x; A, B) =
1

𝒵(A, B)
PX(x)eBx−Ax2/2

𝒵(A, B) auxiliary function defined by: 

Proofs: +1/-1 Korada, Macris’10; generic: Krzakala, Xu, LZ, ITW’16, Barbier, Dia, 
Macris, Krzakala, Lesieur, LZ’16 & 18; simpler: Lelarge, Miolane’16; El-Alaoui, Krzakala’17



PROPERTIES OF THE  
BAYES-OPTIMAL ESTIMATOR

concentrates around maximum of 

Theorem 1: 
1
N

log Z(Y, Δ)

Φ(m) = 𝔼x,w[log 𝒵( m
Δ

,
m
Δ

x +
m
Δ

w)] −
m2

4Δ
w ∼ 𝒩(0,1)

m ∈ ℝ
Φ(m)

x ∼ PX

Theorem 2: mean-squared-error of the Bayes-optimal estimator

MMSE = 𝔼PX
(x2) − argmax Φ(m)

Proofs: +1/-1 Korada, Macris’10; generic: Krzakala, Xu, LZ, ITW’16, Barbier, Dia, 
Macris, Krzakala, Lesieur, LZ’16 & 18; simpler: Lelarge, Miolane’16; El-Alaoui, Krzakala’17



Can tractable algorithms achieve the Bayes-optimal error? 



APPROXIMATE MESSAGE PASSING

AMP algorithm estimates means 
and variances  of the marginals:

Bt
i =

1

Δ N

N

∑
l=1

Yilat
l −

1
Δ ( 1

N

N

∑
l=1

vt
l)at−1

i

At =
1

NΔ

N

∑
l=1

(at
l)2

at+1
i = f(At, Bt

i )

vt+1
i = ∂B f(At, Bt

i )

𝒫(x; A, B) =
1

𝒵(A, B)
PX(x)eBx−Ax2/2

f(A, B) auxiliary function defined by: 
f(A, B) = 𝔼𝒫(x)

Derived in: Rangan, Fletcher’12; Matsushita, Tanaka’13; Javanmard, 
Montanari’13; Deshpande, Montanari’14; Lesieur, Krzakala, LZ’15



AMP-MSE given by the local maximum of the free entropy 
reached ascent starting from small m/large MSE. (Proofs: 
Rangan, Fletcher’12, Javanmard, Montanari’12, Deshpande, Montanari’14) 

MMSE is given by the global maximum of the free entropy.

STATE EVOLUTION
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Φ(m) = 𝔼x,w[log 𝒵( m
Δ

,
m
Δ

x +
m
Δ

w)] −
m2

4Δ

MMSE = 𝔼PX
(x2) − argmax Φ(m)

MSEAMP = 𝔼PX
(x2) − mAMP

argmaxΦ(m)



PX(xi) =
⇢

2
[�(xi � 1) + �(xi + 1)] + (1� ⇢)�(xi)

From fixed points to phase transitions:
Lesieur, Krzakala, LZ’17
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Sparse PCA: 



ALGORITHMIC INTERPRETATION

• Easy by approximate message passing. 
• Impossible information theoretically.  
• Hard phase: in presence of a first order phase transition.
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ρ = 0.08



HARD PHASE

Hard phase identified in: 
‣ dense planted sub-matrix;       
‣ sparse principal component analysis;                   
‣ Gaussian mixture clustering;         
‣ low-rank tensor completion;       

‣ stochastic block model 
‣ planted constraint satisfaction;                        
‣ low-density parity check error 

correcting codes;      

‣ generalised linear regression;  
‣ compressed sensing;                                                                                                        
‣ learning in binary perceptron;  
‣ phase retrieval; 
‣ committee machine; …                    

Hard phase = spinodal region 
of first order phase transitions. 

Algorithmic threshold shared 
by spectral methods and SDPs. 

Conjecture:   
AMP achieves (in the large N 
limit) the lowest error among 
all polynomial algorithms. 

Deshpande, Montanari’13: AMP 
optimal within a large class of 
related algorithms. 



LANDSCAPE OF THE HARD PHASE

What are the properties of the Gibbs measure, in the hard phase 
and around, conditioned not to be close to the ground-truth x*? 



GLASSY NATURE OF THE HARD PHASE

Analyzed by 1-step replica symmetry breaking (see Mezard’s tutorial).  

The hard phase is glassy - many spurious local minima 
potentially blocking the dynamics. 

The glassiness extends even below the algorithmic threshold. 

Antenucci, Franz, Urbani, LZ, Phys. Rev. X’19 
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ρ = 0.08



SURVEY PROPAGATION 

Developed for the k-satisfiability problem 

Algorithm that takes into account the glassiness (1RSB 
structure). 

Provides large algorithmic improvement in K-SAT. State-of-
the art on random K-SAT still today.  

Can this provide improvement in the inference-hard-phase? 

Mezard, Parisi, Zecchina, Science’02

as in Mezard’s tutorial 



APPROXIMATE SURVEY PROPAGATION

Message passing algorithm with state evolution = 1RSB fixed 
point equations for the Parisi parameter s. 

Antenucci, Krzakala Urbani, LZ, arXiv:1807.01296 

Result n. 1: ASP never better than Bayes-optimal-AMP.  
Physically a mystery. Mathematically follows from proofs about 

optimality of AMP’s denoising function (Deshpande, Montanari’13) 

ρ = 0.08



Result n.2: Residual glassiness below the algorithmic 
threshold. = Strong yet indirect indication of trouble for 
Gibbs-sampling or gradient based algorithms. 

GLASSY NATURE OF THE HARD PHASE
Antenucci, Franz, Urbani, LZ, Phys. Rev. X’19 

How to confirm this? 

• Numerically — work in progress by Ricci-Tersenghi et al.  
• Analytically — Gibbs samplers and gradient descents are much 

harder to analyse than message passing ….  let’s try anyway! 



SEEKED INGREDIENTS OF THE MODEL

Kind of spherical spin glass so that Langeving dynamics 
solvable via Crisanti-Horner-Sommers-Cugliandolo-
Kurchan’93 equations (see Cugliandolo’s tutorial on Thursday). 

Inference model with a AMP-hard phase.  

Model where AMP conjectured optimal, i.e. algorithmic 
threshold of the same order as the information theoretic 
(excludes spiked tensor model).   



MIXED SPIKED MATRIX-TENSOR MODEL

On the same signal x* observe a matrix Y and tensor T as: 

Yij =
1

N
x*i x*j + ξij

Ti1…ip =
(p − 1)!

N(p−1)/2
x*i1 …x*ip + ξi1…ip

ξij ∼ 𝒩(0,Δ2)

ξi1,…,ip ∼ 𝒩(0,Δp)

Bayes-optimal estimation = marginals for Hamiltonian 

ℋ(x) = −
1

Δ2 N ∑
i<j

Yijxixj −
(p − 1)!

ΔpN(p−1)/2 ∑
i1<…<ip

Ti1…ipxi1…xip

Spiked version of the mixed 2+p spherical spin glass model. 

N

∑
i=1

x2
i = Nspherical constraint:



PHASE DIAGRAM P=3

Bayes-optimal performance and AMP 



LANGEVIN ALGORITHM

·xi(t) = − μ(t)xi(t) −
∂ℋ
∂xi

+ ηi(t)

⟨ηi(t)ηj(t′�)⟩ = 2δijδ(t − t′�)

At large time (exponentially) samples the posterior measure.  
Where does it go in large constant time? 

T=1 noise

gradient

spherical constraint 



LANGEVIN STATE EVOLUTION

Generalization of the CHSCK equations to include the spike x*. 



LANGEVIN STATE EVOLUTION

Generalization of the CHSCK equations to include the spike x*. 

Without spike:  
See Cugliandolo’s tutorial & Ricci-Tersenghi’s talk on Thursday! 
Proof without spike: BenArous, Dembo, Guionnet’06. 
(proof with spike: let’s work on it?)



LANGEVIN STATE EVOLUTION 
(NUMERICAL SOLUTION)
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github.com/sphinxteam/spiked_matrix-tensor

Δ2 = 0.7



EXTRAPOLATION OF  
LANGEVIN CONVERGENCE TIME

Δ2 = 0.7

Δp = 1.0



LANGEVIN PHASE DIAGRAM



MARVELS AND PITFALLS
Langevin fails because of residual glassiness. AMP ignores 
glassiness, optimises physically wrong objective, yet performs 
better. How is this physically possible?  

Can Langevin match AMP? Yes: anneal in Δp, but not Δ2. 
Bayesian puzzle: It is more efficient to mismatch Δp from the 
true one. Ever observed before?
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State evolution for Langevin.  

AMP superior by making 
physically wrong assumptions.  

Bayesian puzzle - wrong priors 
may bring computational 
advantage. 

Poster of S. Sarao: gradient 
descent, Kac-Rice annealed and 
quenched, and AMP at T=0.  

SUMMARY



We expect the same picture to hold in all problems having 
hard phase associated to the first order phase transition. (e.g. 

neural networks with hidden units … ) - work in progress. 
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