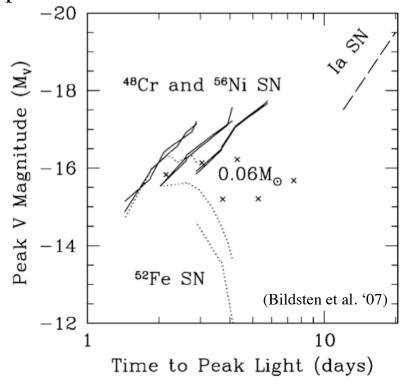
Stellar Death and Supernovae 2009

Hydrodynamical He Shell Burning in AM CVn Systems: SNe .Ia

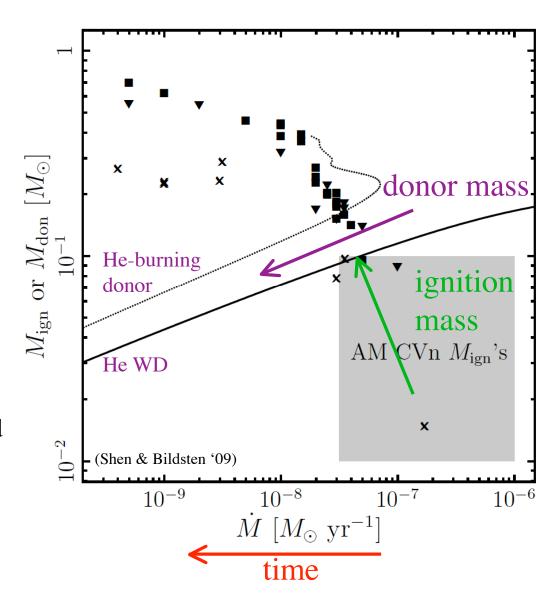

Ken Shen (UCSB), Lars Bildsten (KITP/UCSB)
Nevin Weinberg (UCB), Dan Kasen (UCSC)
Evan Scannapieco (ASU), Gijs Nelemans (Radboud U.)

Bildsten, Shen, Weinberg, & Nelemans '07, ApJL Shen & Bildsten '09, ApJ Shen et al. '09, in prep.

SN .Ia overview

(Bildsten, Shen, Weinberg, & Nelemans '07)

- AM CVn evolution naturally yields unstable He-burning shells of $\sim 0.1~M_{\odot}$
- Hydrostatic calculation shows these shells burn hydrodynamically, potentially yielding He detonations with short-lived radioactive products (⁴⁸Cr, ⁵²Fe, ⁵⁶Ni)
- Small ejecta mass \rightarrow short rise times (2–8 days), ~10% as bright as SNe Ia
- AM CVn birth rate → SN .Ia rate is few percent of Ia rate in an old stellar population

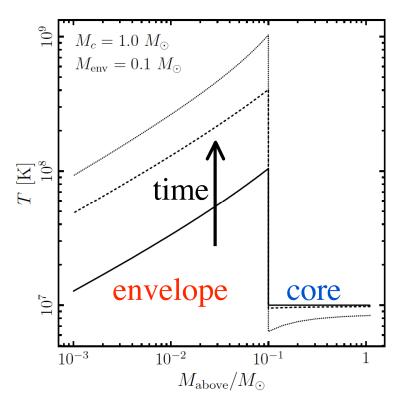


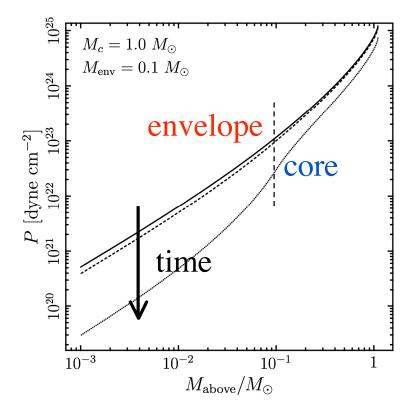
- PTF (R = 21; 2700 deg²; 5 day cadence): \sim few per yr
- PS-1 medium-deep survey (V = 24; 50 deg²; 4 day cadence):
 ~ few per yr

AM CVn evolution and He-burning

(Warner '95; Nelemans '05; Gijs's talk)

- Ultracompact binary with lowmass He donor + C/O or O/Ne WD accretor
- WD donor: initially, very high Mdot > $10^{-6} M_{\odot}/\text{yr}$: stable Heburning supersoft sources (Tutukov & Yungelson '96; Shen & Bildsten '07)
- Binary evolves to lower Mdot:
 ~10 unstable helium flashes
 (Iben & Tutukov '89)
- Eventually, $M_{\text{donor}} < M_{\text{ign}}$:
 - No flashes < $10^{-8} M_{\odot}$ /yr and $P_{\rm orb}$ > 10 min, just He accretion
 - Last flash has largest $M_{\rm ign} \sim 0.1 M_{\odot}$

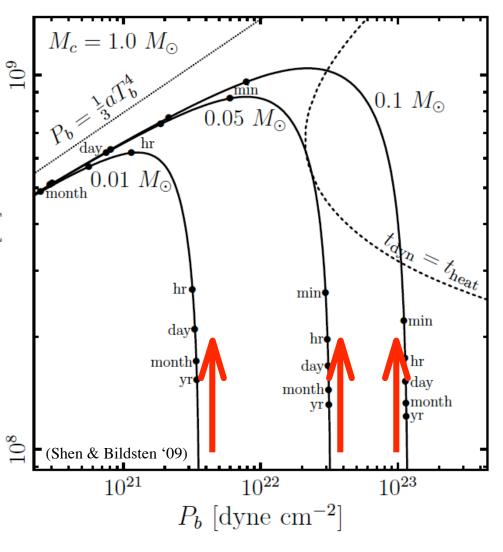



Evolution of the convective phase

- Radiative diffusion becomes inefficient at transporting heat → convection
- He-burning injects entropy into the convective (isentropic) shell, raising T:

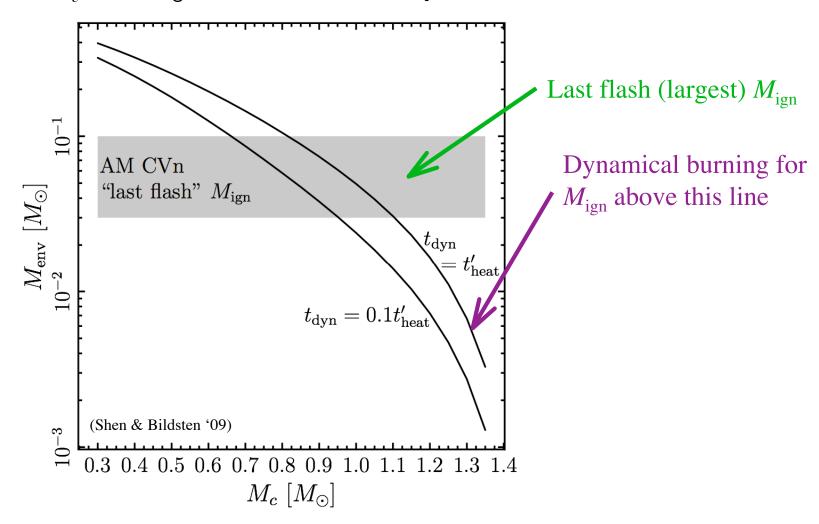
$$Tds = du + Pd(1/\rho)$$

• Initially no expansion work done because shell is geometrically thin (i.e., $P_b \sim GM_cM_{\rm env}/4\pi R^4$), but eventually $T_b \sim T_{\rm virial}$

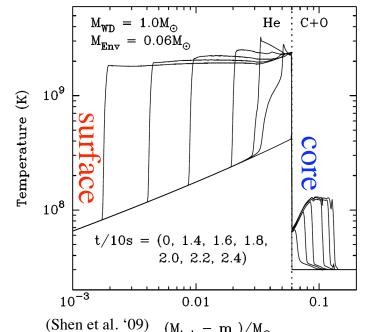


Small M_{ign} : He nova Large M_{ign} : He detonation(?)

- For smaller envelopes $< 10^{-2} M_{\odot}$, entropy increase eventually leads to expansion, like a hydrogen classical nova in a regular CV: He nova (e.g., V445 Pup)
- For larger envelopes, the heating timescale can become shorter than the dynamical timescale, yielding hydrodynamical burning:


$$t_{
m heat} = rac{c_P T}{\epsilon_{
m nuc}}$$
 $t_{
m dyn} = rac{H}{c_s} = \sqrt{rac{P}{\gamma
ho g^2}}$

• There is a minimum M_{env} that achieves hydrodynamical burning and could detonate

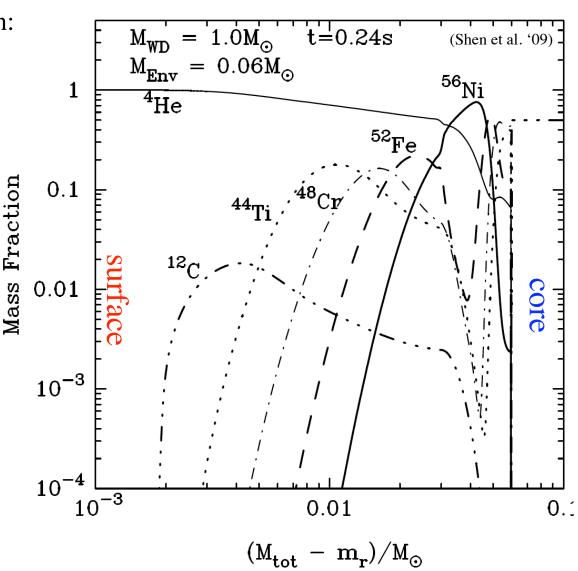


Many AM CVn's could undergo He detonations

- Last flash for each system is the biggest
- For $M_c > 0.8 M_{\odot}$, last flash should be dynamical / detonation

Outcome of 1D radially propagating detonation: $0.06 + 1 M_{\odot}$

- 1D spherically symmetric detonation initiated at interface between $0.06~M_{\odot}$ He envelope and $1.0~M_{\odot}$ C/O core
 - This is a *single* example; different M_{ign} , M_{WD} , composition will yield a *range*
 - Actual detonation geometry could be different (e.g., tangentially propagating)

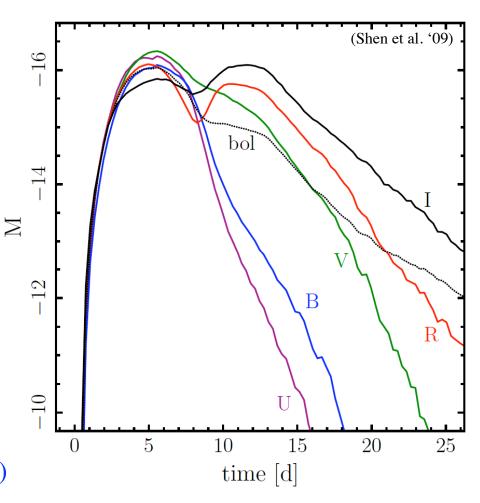

- (Shen et al. '09) $(M_{tot} m_r)/M_{\odot}$ Ejecta velocity [0.7]
- Edge of C/O core not detonated by shock (but maybe focusing could do it in the center; Woosley & Weaver '84; Livne & Glasner '90, '91; Fink et al. '07)
- Nearly all of the envelope ejected with $v_{ei} \ge 8000 \text{ km/s}$

Nucleosynthesis

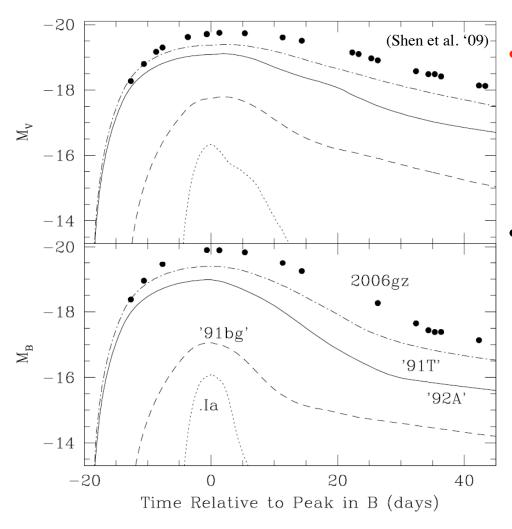
• Dominant ejecta composition:

Isotope	$M [M_{\odot}]$
⁴ He	0.025
⁴⁰ Ca	0.001
⁴⁴ Ti	0.004
⁴⁸ Cr	0.007
⁵² Fe	0.007
$^{56}\mathrm{Ni}$	0.015

- Lots of unburned He
- Everything else combined $< 10^{-3} M_{\odot}$
 - Very few IMEs

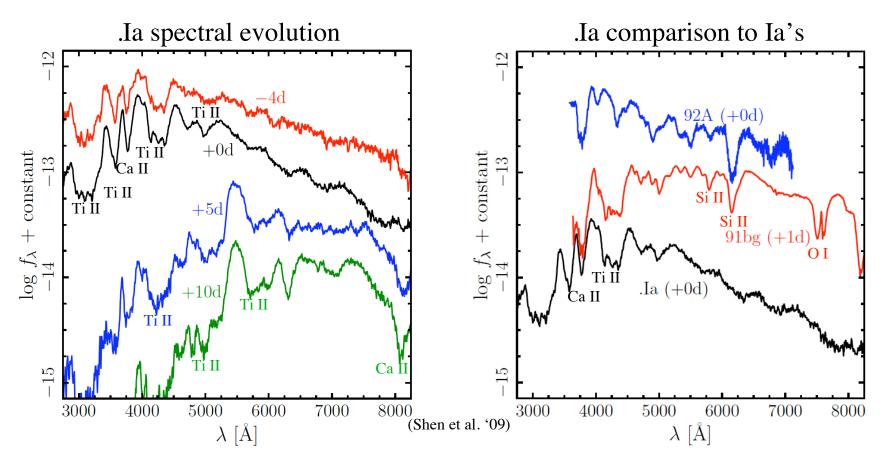


Light curves


• Time to peak is when rise time equals t_{diff} (Arnett '82; Pinto & Eastman '00):

$$t_{
m peak} \simeq \sqrt{rac{\kappa M_{
m ej}}{7cv_{
m ej}}} \sim 4 {
m ~d}$$
 (Bildsten et al. '07)

- L_{peak} set by instantaneous radioactive decay: can catch quick decays of ⁴⁸Cr, ⁵²Fe, and ⁵⁶Ni
 - NB: code is missing energy input from ⁴⁸Cr and ⁵²Fe decays
- Secondary NIR max due to Fe-group recombination effects on UV/blue opacity (Kasen '06)
 - $M_B < -14$ for 9 d (for this example)
 - $M_R < -14 \text{ for } 17 \text{ d}$



Comparison to SNe Ia

- Definitely faster than even subluminous Ia's
 - Hard to get around that result given small M_{ei}
- Think of magnitude as a guide:
 - Fainter than typical SNe Ia, but depending on exact nucleosynthesis, could be much dimmer or could be comparable to faint Ia's
 - I.e., don't rule out .Ia's if magnitudes don't quite match

Spectral evolution and comparison at peak

- Strong Ti features as in subluminous Ia's
- But essentially no Si (only $7 \times 10^{-5} M_{\odot}$)

Caveats and conclusions

- AM CVn evolution leads to dynamical He shell explosions
- Does He detonation propagate?
 - ZND length (reaction width) << scale height, and accelerants like ¹²C, ¹⁴N, and ¹⁶O will make it even more likely; more work in progress
- Can core be detonated by focusing of inward shocks?
 - Double detonations previously studied with larger $M_{\rm env}$, but Fink et al. '07 found shock focusing and core detonation with .Ia-sized envelopes
 - O/Ne core?
 - Jury is still out, but if core is detonated, we'd definitely see those events too
- If propagating He detonation and undetonated C/O core: .Ia supernova
 - Quick rise of a few days, ~10% as long as SNe Ia, allowing short-lived radioactivity to be seen
 - Peak ~10% as bright as SNe Ia (but likely a large range)
 - AM CVn birth rate gives upper limit of a few percent of the Ia rate in E/S0
 - Upcoming (and maybe current) optical surveys could see a few every year!
 (And 05E, 08ha, and others [Perets et al. '09; Foley et al. '09; Dovi's talk tomorrow] are definitely interesting...)