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Topology

constrains 
the number 
and type of 

defects

A B

C D

Geometry

affects their 
arrangement

Dynamics

determines 
the range of 
accessible  

states

Three effects control shape-order 
problems
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On a plane, the problem is 
trivial: optimal packing is the 
hexagonal lattice

Presence of curvature 
necessitates introduction of 

defects.

Sphere packing is a great problem to show 
how topology and geometry affect order

Pickering emulsions — emulsions with 
colloidal particles absorbed onto the fluid-
fluid interface are a great model system to 
study this



15µm

Coloring particles by number of neighbors 
reveals defect structure



sion, representing subunit conformational rigidity, plus a
longer-range attraction, corresponding to the driving force
(e.g., hydrophobic interaction) for capsomer aggregation. The
capsomer-capsomer binding energy !0 is taken to be 15 kBT
(25),! a typical value reported from atomistic calculations of
subunit binding energies (24). (Here kB is the Boltzmann
constant and T the absolute temperature.) Another essential
feature of viral capsids is the existence of two different
morphological units (pentamers and hexamers). To account
for the intrinsic differences between capsomer units we assume
that they can adopt two internal states: P(entamer) and
H(examer). The potential has the same form for interactions
between different capsomer types except that the equilibrium
spacing [the minimum of V(r)] includes the geometrical size
difference between pentamers and hexamers of the same edge
length (size ratio !0.85). The energy difference "E between
a P and an H capsomer, which ref lects differences between
individual contact interactions and folding conformations of
pentamer and hexamer proteins, enters as a Boltzmann factor
e#"E/kBT that provides the relative thermal probability for a
noninteracting unit to be in the P state. For each fixed total
number of capsomers N, the number NP of P units (and hence
the number NH $ N # NP of H units) is permitted to vary and
was not fixed to be 12 (as in the CK construction). We carry
out Monte Carlo simulations in which N interacting capsomers
are allowed to range over a spherical surface while switching
between P and H states, thus exploring all possible geometries
and conformations. In this way we obtain the optimal structure
for a given number N of capsomers and a given capsid radius
R.†† The finite-temperature internal energy E(R) is evaluated
for each of a range of equilibrated sphere radii R and then
minimized with respect to R, leading to a special radius R* for
each N. We tested different forms for V(r) and found the
conclusions discussed below to be robust.

Results
Two Different Morphological Units. The results of our Monte Carlo
simulations are shown in Fig. 2 in the form of a plot of the
minimized internal energy per capsomer !(N) (in units of !0)
versus the number N of capsomers.

The solid curve shows !(N) for the case where the energy
difference "E between the P and H capsomer states equals
zero. For large N values, !(N) is slightly %3!0, the binding
energy per capsomer (including non-nearest-neighbor inter-
actions) for a f lat hexagonal array of capsomers. Pronounced
minima of !(N) are seen at N $ 12, 32, 42, and 72; the capsid
structures associated with these minima are shown in Fig. 3a.
All four minimal structures have icosahedral symmetry. More-
over, they correspond precisely to T $ 1, T $ 3, T $ 4, and T $
7 CK structures, respectively. (The N $ 32"T $ 3 structure
should, for instance, be compared with Fig. 1.) Thus, we find
that the appearance of both icosahedral symmetry and the
T-number organization is indeed a direct consequence of free
energy minimization of a very generic interaction that captures
the crucial elements of capsid self-assembly: the attraction
required for the aggregation, the excluded volume repulsion,
and the existence of two different morphological units. In all
four cases the equilibrium configuration developed spontane-

!A somewhat smaller value of !!0 $ 12 kBT has been recently reported by Zlotnick (25),
corresponding to a protein–protein interaction of 6 kBT. We have repeated our simulations
based on this new estimate. Although the energy value associated with each structure
changes because of the change in !0, we obtain qualitatively the same results as those
reported in Figs. 2 and 3.

††We have used Metropolis Monte Carlo (MC) simulation with 105 equilibration steps and
105 production steps. An elementary MC step consisted of either an attempt to move a
randomly chosen disk over the surface of a sphere in a random direction or an attempt
to change its size. The ratio of MC attempts of moving a disk versus switching the size of
a disk was set to 10. However, we tested different ratios and the result was robust,
independent of the ratio.

Fig. 1. Icosahedral symmetry of a viral capsid. (a) Cryo-TEM reconstruction of CCMV. (b) Arrangement of subunits on a truncated icosahedron; A, B, and C denote
the three symmetry nonequivalent sites. [Reproduced with permission from ref. 3 (Copyright 1998, Elsevier)].

Fig. 2. Energy per capsomer for "E $ 0 (black curve) and &"E"!o& large
compared to one (dotted curve).

Zandi et al. PNAS # November 2, 2004 # vol. 101 # no. 44 # 15557
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In the rest of this talk I’m going to—

1. Show how geometry controls the packing of spherical 
particles on a surface of nonuniform curvature. 

2. Show how this can be used to stabilize non-spherical 
    fluid droplets.

3. Characterize the relative influence of geometry and     
    dynamics that determines the ordering. 

4. Connect these systems to jamming.
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Fluid droplet ejected from pipette relaxes to 
spherical ground state:

Volume 
conserved, but 
surface area 
decreases as a 
function of time. 

Video courtesy of Patrick Spicer and Marco Caggioni

We can use microfluidics to produce 
nonequilibrium droplet shapes



Jamming





Temperature

1/Density of particles
Applied shear

Jamming is described by a phase diagram as 
a function of the influences on the system



Inflation

Simulated Annealing

Our computational toolkit contains efficient 
algorithms to produce packings on surfaces



A B

C D

Prolate

Oblate

Prolate and oblate ellipsoids have similar 
defect structures, but they’re placed differently



9Defects migrate to regions of high curvature
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10Scar transition is softened

Prolate Oblate
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Number of particles
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Boundary conditions can lead to favorable or 
unfavorable packing

E.g. Particles in a box

Particle packings break ellipsoidal symmetry.

Packings must fall into a subgroup of 
ellipsoidal symmetry group D1h

…but which?



11Commensurate packings
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Commensurate packings
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Commensurate packings

Number of particles

Number of particles

As
pe

ct
 ra

tio
As

pe
ct

 ra
tio

4

1

4

2

2

4

1

4

2

2

pr
ol

at
e

ob
la

te
pr

ol
at

e
ob

la
te

B C D E

G H

A

F

I J

achiral group order

chiral group order

2 28

2 12

1 2 3 4 5 6 71 7
rotational group

order



10µm

Having predicted these shapes, we’ve now 
seen them:



And we now have multiple ways of making 
them…

…and controlling 
stability by changing 
the chemical 
environment.
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Ordering particles on curved surfaces
Andrew Mascioli, Christopher Burke, Timothy Atherton

Department of Physics and Astronomy, Tufts University 

softmattertheory

1. Introduction

3. Bidisperse Packing 4. Anisotropic Particles

5. Conclusions

Planar spherical 
packing results in 
a hexagonal 
crystalline lattice.

Packing on curved 
surfaces require 
that defects form. 
Defects often 
form chains of 
defects, or scars, 
pictured here.

The open surface of a cap results in localized edge defects 
with scars tending to orient themselves perpendicular to 
the edge. Gaussian curvature induces additional defects 
similar to closed surface behavior. In these images, color 
indicates coordination number.

Analyzing defects in 
equal area slices of 
a cap allows 
quantification of 
defect placement.

Burke et al. Soft Matter (2015)
arXiv:1504.03889 

Higher Gaussian 
curvature 
generically attracts 
defects. Flatter 
caps experience 
fewer defects in 
the interior region, 
but a greater 
number of edge 
localized defects.

Bidispersivity, or two different 
sized particles, affects the overall 
packing in a nontrivial way. Note, 
increasing bidispersivity 
corresponds to increasing 
difference in particle size.

Similarly sized 
particles induce 
disorder and 
disrupt optimal 
packing.
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As bidispersivity 
increases, the smaller 
particles efficiently fill 
in gaps.

As the bidispersivity 
approaches the 
Apollonian Limit, we 
achieve a maximum.

As the number of particles increases, 
the system approaches a continuum 
limit. By studying the packing of 
anisotropic particles, such as 
ellipsoids, we will examine whether 
these packings resemble the well-
studied case of a nematic on a 
sphere.

   Packing on spherical and ellipsoidal caps displays an 
interplay of curvature and edge induced defects
   Bidispersity effects result in complex behavior of the 
overall packing. Features of which are not fully 
understood.

Sphere packing is an important model problem for 
understanding the interaction of geometry and 
order.

The authors gratefully acknowledge funding from Research 
Corporation and the Society of Physics Students

2. Spherical and Ellipsoidal Caps

Bidispersity disprupts crystallinity



What is the effect of dynamics?

0 1

Hexatic order parameter
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We are currently investigating the effect of inter- 
particle interactions

Weak short-range attractive interaction



Are the final states jammed? 

0 1
hexatic order



Packings can be categorized by the types of 
motion available to particles

Locally jammed—each particle is trapped by its neighbors. 

Collectively jammed—collective motions cannot unjam the system 

Strictly jammed—collective motions + boundary deformations 
cannot unjam the system

New category: 
Metric jamming—collective motions + surface evolution cannot  

unjam the system



A linear program uncovers feasible motions 
that may unjam the system

Resulting unjamming motion:

max

�R
FT

�R AT�R  �l

|�R|  �R
max

subject to

�RTN = 0

(impenetrability)

(boundedness)

new constraint: (surface constraint)

(adapted from A. Donev’s work)
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Minimize by gradient descent

We also use minimization of an auxiliary 
energy functional to condition the packings

U = �(x� r)

2
log(x� r)



Combining linear program with energy 
minimization quickly finds unjamming motions.
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Minimization better conditions the problem by shifting 
particles to the center of the jamming polytope

Particle configuration Jamming polytope

After 
minimization

actual

linearized

Before 
minimization

Better motions can be found 
from center of polytope
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Contact number must be assessed 
as a function of contact tolerance
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Packing approaches isostaticity as 
contact tolerance is increased.
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Rattlers



Contact number plot is insensitive to the cutoff for 
removing rattlers

Contact tolerance
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Mechanical stability requires four contacts per 
particle.

# of degrees of freedom = # of constraints

n particles in 2D

Z contacts per particle

2n degrees of freedom

nZ/2 contacts 
(each contact is shared 
between two particles)

Z=4 for spheres in 2D



This need not be the case on curved surfaces 
due to the nonlinearity of the surface constraint

6 particles on a sphere
6*2 = 12 degrees of freedom

6*4/2 = 12 contacts OK!

5 particles on a 
commensurate ellipsoid
5*2 = 10 degrees of freedom

(3*4+2*3)/2 = 9 contacts Apparently 
unstable?



Our counterexample is unstable with respect to linearized 
constraints, but not with respect to the full problem

Linear program finds an 
“allowed” motion
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Nonspherical packings can also be under 
constrained

Donev et.al., PRE 2007

Spheres can rotate 
(but we don’t care)

Add faces: 
Break rotational symmetry, 
but still stable without adding contacts

2D nonspherical particles require Z=4

Appears underconstrained, but low 
curvature faces add constraints at 
higher order



Summary
Geometry largely controls placement and type of defects

A B

C D

Dynamics alters the preferred position and affects 
the point of arrest

The initially arrested state then evolves towards a new 
metric jammed state through glassy dynamics



We’re now looking at problems 
where order and shape co-evolve

Line tension Electrostatic Boundary Condition

Area constraint

Minimize:

Subject to:



Finite element simulation with 
Morpho. 



Relative strengths of line tension and 
voltage difference control aspect ratio
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A LC in a flexible geometry requires 
simultaneous minimization of shape and order



a language for shapemorpho

Surface minimization
Multicomponent 

systems

Particles and 
interacting 
manifolds
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