Of Bodies Chang'd To New Forms

I. J. Atherton

softmattertheory

Three effects control shape-order problems

Topology
Geometry
Dynamics

constrains the number and type of defects
affects their
arrangement
determines the range of accessible states

Sphere packing is a great problem to show how topology and geometry affect order

On a plane, the problem is trivial: optimal packing is the hexagonal lattice

Presence of curvature necessitates introduction of defects.

Pickering emulsions - emulsions with colloidal particles absorbed onto the fluidfluid interface are a great model system to study this

Coloring particles by number of neighbors reveals defect structure

Also important in

 architecture... ... and viral structure.

B

 2
(\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In the rest of this talk I'm going to-

1. Show how geometry controls the packing of spherical particles on a surface of nonuniform curvature.
2. Show how this can be used to stabilize non-spherical fluid droplets.
3. Characterize the relative influence of geometry and dynamics that determines the ordering.
4. Connect these systems to jamming.

We can use microfluidics to produce nonequilibrium droplet shapes

Fluid droplet ejected from pipette relaxes to spherical ground state:

00:00

Volume
conserved, but surface area decreases as a function of time.

Video courtesy of Patrick Spicer and Marco Caggioni

Jamming

$1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$

Jamming is described by a phase diagram as a function of the influences on the system

Temperature

Applied shear
1/Density of particles

Our computational toolkit contains efficient algorithms to produce packings on surfaces

Inflation

Simulated Annealing

Prolate and oblate ellipsoids have similar defect structures, but they're placed differently

Prolate

Oblate

Defects migrate to regions of high curvature

Scars tend to

 align with lower principal curvature

Scar transition is softened

Oblate

Scar transition is also shifted by inter-particle interactions

Boundary conditions can lead to favorable or unfavorable packing

Particle packings break ellipsoidal symmetry.
Packings must fall into a subgroup of ellipsoidal symmetry group $D_{\infty h}$

Commensurate packings

Commensurate packings

Number of particles chiral group order \square
achiral group order12

$$
2
$$

Commensurate packings

Having predicted these shapes, we've now seen them:

And we now have multiple ways of making them...

...and controlling stability by changing the chemical environment.

Bidispersity disprupts crystallinity

What is the effect of dynamics?

Hexatic order parameter

Slower relaxation leads to later arrest

Faster relaxation relocates defects to the center

We are currently investigating the effect of interparticle interactions

Weak short-range attractive interaction

Are the final states jammed?

Packings can be categorized by the types of motion available to particles

Locally jammed—each particle is trapped by its neighbors.
Collectively jammed—collective motions cannot unjam the system
Strictly jammed-collective motions + boundary deformations cannot unjam the system

New category:
Metric jamming-collective motions + surface evolution cannot unjam the system

A linear program uncovers feasible motions that may unjam the system

$\max \mathbf{F}^{\mathrm{T}} \Delta \mathbf{R} \quad$ subject to $\quad \mathbf{A}^{\mathrm{T}} \Delta \mathbf{R} \leq \Delta \mathbf{l} \quad$ (impenetrability) $\Delta \mathbf{R}$
\[\begin{aligned} \& \qquad|\Delta \mathbf{R}| \leq \Delta R_{\max } \quad (boundedness)
\& new constraint: \Delta \mathbf{R}^{\mathrm{T}} \mathbf{N}=0 \quad (surface constraint) \end{aligned} \]

Resulting unjamming motion:

(adapted from A. Donev's work)

We also use minimization of an auxiliary energy functional to condition the packings

Minimize by gradient descent

Combining linear program with energy minimization quickly finds unjamming motions.

~6 min

Minimization better conditions the problem by shifting particles to the center of the jamming polytope

Particle configuration
Jamming polytope

Better motions can be found from center of polytope

Repeated unjamming and relaxation creates better packings

Contact number must be assessed as a function of contact tolerance

Contact tolerance δ / D

Packing approaches isostaticity as contact tolerance is increased.

Packings AFTER unjamming

$1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$

Contact number plot is insensitive to the cutoff for removing rattlers

Metric-jammed packing

cutoff range:
10^{-7} to 10^{-4}

Isostatic

Contact tolerance

Mechanical stability requires four contacts per particle.

\# of degrees of freedom = \# of constraints
n particles in 2D $\longrightarrow 2$ 2n degrees of freedom

Z contacts per particle

nZ/2 contacts (each contact is shared between two particles)
$\rightarrow Z=4$ for spheres in 2D

This need not be the case on curved surfaces due to the nonlinearity of the surface constraint

6 particles on a sphere
$6 * 2=12$ degrees of freedom
$6 * 4 / 2=12$ contacts
OK!

5 particles on a commensurate ellipsoid
$5^{*} 2=10$ degrees of freedom
$\left(3^{*} 4+2^{*} 3\right) / 2=9$ contacts
Apparently unstable?

Our counterexample is unstable with respect to linearized constraints, but not with respect to the full problem

Linear program finds an "allowed" motion

But applying it doesn't unjam
the packing

Nonspherical packings can also be under constrained

2D nonspherical particles require $Z=4$

Spheres can rotate (but we don't care)

Add faces:
Break rotational symmetry, but still stable without adding contacts

Appears underconstrained, but low curvature faces add constraints at higher order

Donev et.al., PRE 2007

Summary

Geometry largely controls placement and type of defects

Dynamics alters the preferred position and affects the point of arrest

The initially arrested state then evolves towards a new metric jammed state through glassy dynamics

We're now looking at problems where order and shape co-evolve

$$
V_{B}=V_{0}
$$

$$
V_{B}=0
$$

Minimize: $\quad E=\sigma \int_{\partial C} d l+\epsilon_{0} \int_{C}(\nabla V)^{2} d A+W \int_{\partial C}\left(V-V_{B}\right)^{2} d l$
Line tension Electrostatic Boundary Condition
Subject to: $\int_{C} d A=A_{0}$

Finite element simulation with Morpho.

Relative strengths of line tension and

 voltage difference control aspect ratio

A LC in a flexible geometry requires simultaneous minimization of shape and order

morpho a language for shape

Surface minimization

Multicomponent systems

Minimize arbitrary functionals defined on a manifold C

Particles and interacting manifolds

$$
\int_{C} f(q, \nabla q) d^{n} x+\int_{\partial C} g(q, \nabla q) d^{n-1} x
$$

with respect to a set of field quantities q defined on it and the shape of the manifold.

I'd like to thank...

Our experimental collaborators...

softmattertheory

