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From mechanisms to metamaterials ...
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Can we understand these materials and 
design their motions?
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What can theoretical physics say about 
linkages?



Topological Matter

Electronic properties insensitive to smooth 
changes in material parameters

Kane, Mele, Science 2006
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Topological matter without QM

Physical properties insensitive to smooth 
changes in material parameters

Photonic crystals
Lu, Joannopoulos 
and Soljačić (2014)

Coupled pendula
Susstrunk and Huber 
(2015)

Gyroscopes
Nash et al. (2015)
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A simple topological mechanical 
system
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Figure1|1DSSHandisostaticlatticemodels.a,b,SchematicoftheSSH
modelofpolyacetalene,withAandBsublatticesindicatedinblueandred.
a,Thegaplessstatewithallbondsidentical.b,ThegappedABdimerized
state,withdouble(single)bondsontheAB(BA)bonds.TheBAdimerized
statewithsingleanddoublebondsinterchangedisnotshown.c,d,The1D
isostaticlatticemodelinwhichmasses,representedbythelargerbluedots,
areconnectedbyspringsinredandareconstrainedtorotateaboutfixed
pivotpointsrepresentedbysmallblackdots.c,Thegaplesshigh-symmetry
statewith¯✓=0.d,Thegappedlower-symmetryphasewith¯✓>0.c,dare
equivalenttoa,bifweidentifythemasses(springs)withtheA(B)
sublatticesites.e,AdomainwallinpolyacetaleneconnectingtheABand
BAdimerizedstates.Thereisatopologicallyprotectedzero-energystate
associatedwiththeAsublatticeatthedefect.f,Theequivalentstatefor
theisostaticmodelwithatopologicallyprotectedzero-frequencyfloppy
mode(fm)atthedomainwall.g,DomainwallconnectingtheBAandAB
dimerizedstates,whichhasazeroenergystateassociatedwiththeB
sublattice.h,Theequivalentisostaticstatewithastateofself-stress(ss)at
thedomainwall.

electronicHamiltonianhaspositiveandnegativeeigenvaluesfor
theconductionandvalencebands.Touncovertheconnection
betweenthetwoproblemswedrawourinspirationfromDirac,who
famouslytookthe‘squareroot’oftheKlein–Gordonequation33.To
takethesquarerootofthedynamicalmatrix,notethatD=QQThas
asupersymmetricpartnerD̃=QTQwiththesamenon-zeroeigen-
values.CombiningDandD̃givesamatrixthatisaperfectsquare,

H=
✓

0Q
QT0

◆
;H2=

✓
QQT0

0QTQ

◆
(2)

ThespectrumofHisidenticaltothatofD,exceptforthezero
modes.UnlikeD,thezeromodesofHincludeboththezero
modesofQTandQ,whichareeigenstatesof⌧z=diag(1dNs,�1Nb)
distinguishedbytheireigenvalue,±1.(Althoughtheconceptof
supersymmetryisnotessentialforderivingthisresult,thereisan
interestingconnectionbetweentheanalysisleadingtoequation(2)
andthetheoryofsupersymmetricquantummechanics34,35.)

ViewedasaHamiltonian,Hcanbeanalysedintheframework
oftopologicalbandtheory29.Ithasanintrinsic‘particle–hole’
symmetry,{H,⌧z}=0,whichguaranteeseigenstatescomein±E
pairs.AsQimisreal,H=H⇤has‘time-reversal’symmetry.These
definesymmetryclassBDI(ref.36).Inone-dimension,gapped
Hamiltoniansinthisclass,suchastheSSHmodel,arecharacterized
byanintegertopologicalinvariantn2Zthatisapropertyofthe
BlochHamiltonianH(k)(orequivalentlyQ(k))definedateach

wavenumberkintheBrillouinzone.AmappingofH(k)tothe
complexplaneisprovidedbydetQ(k)=|detQ(k)|ei�(k).Ifbulk
modesareallgappedthen|detQ(k)|isnon-zeroandQ(k)2GLp,
wherepisthedimensionofQ(k).Q(k)isthenclassifiedby
theintegerwindingnumberof�(k)aroundtheBrillouinzone:
�(k+G)��(k)=2⇡n,whereGisareciprocallatticevector,which
definesanelementofthehomotopygroup⇡1(GLp)=Z.Aconse-
quenceisthatadomainwallacrosswhichnchangesisassociated
withtopologicallyprotectedzeromodes31,37,38.Below,wepresent
anindextheoremthatunifiesthisbulk-boundarycorrespondence
withequation(1)andshowshowitcanbeappliedtod-dimensional
lattices,whichformtheanalogueofweaktopologicalinsulators28.

Topologicaledgemodeshavebeenpreviouslypredictedin2D
photonic39,40andphononic41systems.Thesedifferfromthepresent
theorybecausetheyoccurinsystemswithbandgapsatfinite
frequencyandbrokentime-reversalsymmetry(symmetryclassA).
Localizedendmodeswerefoundinatime-reversalinvariant1D
model(classAI;ref.42).However,thepresenceofthosefinite
frequencymodesisnottopologicallyguaranteed.

1Dmodel
Beforediscussingtheindextheoremweintroduceasimple1D
elasticmodel,equivalenttotheSSHmodel,thatillustratesthe
topologicalmodesintheirsimplestsetting.Considera1Dsystem
ofspringsconnectingmassesconstrainedtorotateataradiusR
aboutfixedpivotpoints.InFig.1cthespringlengthsaresetso
thattheequilibriumconfigurationish✓ii=0.Figure1dshowsa
configurationwithshorterspringswithh✓ii=✓̄.Expandingin
deviations�✓iabout✓̄,theextensionofspringmis�`m=QT

mi�✓i,
withQT

mi=q1(✓̄)�m,i+q2(✓̄)�m,i+1and

q1(2)=rcos✓̄(rsin✓̄±1)/
p

4r2cos2✓̄+1

Thenormalmodedispersionis!(k)=|Q(k)|,where
Q(k)=q1+q2eik.When✓̄=0,q1=�q2,andtherearegaplessbulk
modesneark=0.ForafinitesystemwithNsitesandN�1springs,
therearenostatesofself-stressandonlyasingleextendedzero
mode,asrequiredbyequation(1).For✓̄6=0thebulkspectrum
hasagap.Inthiscase,thezeromoderequiredbyequation(1)is
localizedatoneendortheother,dependingonthesignof✓̄.The
✓̄>0and✓̄<0phasesaretopologicallydistinctinthesensethatitis
impossibletotunebetweenthetwophaseswithoutpassingthrough
atransitionwherethegapvanishes.Thetopologicaldistinctionis
capturedbythewindingnumberofthephaseofQ(k),whichis1
(0)for|q1|<(>)|q2|.

ViewedasaquantumHamiltonian,equation(2)forthismodel
isidenticaltotheSSHmodel31,asindicatedinFig.1a,b.Thesites
andthebondscorrespond,respectively,totheAandBsublatticesof
theSSHmodel.For✓̄=0thebondsintheSSHmodelarethesame
(Fig.1a),whereasfor✓̄6=0theyaredimerized(Fig.1b).Thetwo
topologicalphasescorrespondtothetwodimerizationpatternsfor
polyacetalene.AsiswellknownfortheSSHmodel31,37,aninterface
betweenthetwodimerizationsbindsazeromode,asindicatedin
Fig.1e,g.Thisismosteasilyseenfor✓̄=±✓cwherethesprings
arecolinearwiththebars,sothatq1orq2=0.Figure1fshowsa
domainwallbetween+✓cand�✓c,inwhichthecentretwosites
sharealocalizedfloppymode.Figure1hshowsaninterfacebetween
�✓cand+✓cwithastateofself-stresslocalizedtothemiddlethree
bonds,inadditiontofloppymodeslocalizedateitherend.Aslongas
thereisabulkgap,thezeromodescannotdisappearwhen✓̄deviates
from±✓c.Thezeromodesremainexponentiallylocalized,witha
localizationlengththatdivergeswhen✓̄!0.

Indextheorem
Thereseemtobetwodistinctoriginsforzeromodes.In
equation(1)theyarisebecauseofamismatchbetweenthenumber
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Figure 1 | 1D SSH and isostatic lattice models. a,b, Schematic of the SSH
model of polyacetalene, with A and B sublattices indicated in blue and red.
a, The gapless state with all bonds identical. b, The gapped AB dimerized
state, with double (single) bonds on the AB (BA) bonds. The BA dimerized
state with single and double bonds interchanged is not shown. c,d, The 1D
isostatic lattice model in which masses, represented by the larger blue dots,
are connected by springs in red and are constrained to rotate about fixed
pivot points represented by small black dots. c, The gapless high-symmetry
state with ¯✓ = 0. d, The gapped lower-symmetry phase with ¯✓ > 0. c,d are
equivalent to a,b if we identify the masses (springs) with the A (B)
sublattice sites. e, A domain wall in polyacetalene connecting the AB and
BA dimerized states. There is a topologically protected zero-energy state
associated with the A sublattice at the defect. f, The equivalent state for
the isostatic model with a topologically protected zero-frequency floppy
mode (fm) at the domain wall. g, Domain wall connecting the BA and AB
dimerized states, which has a zero energy state associated with the B
sublattice. h, The equivalent isostatic state with a state of self-stress (ss) at
the domain wall.

electronic Hamiltonian has positive and negative eigenvalues for
the conduction and valence bands. To uncover the connection
between the two problemswe draw our inspiration fromDirac, who
famously took the ‘square root’ of the Klein–Gordon equation33. To
take the square root of the dynamicalmatrix, note thatD=QQT has
a supersymmetric partner D̃=QTQ with the same non-zero eigen-
values. CombiningD and D̃ gives amatrix that is a perfect square,

H =
✓

0 Q
QT 0

◆
; H2 =

✓
QQT 0
0 QTQ

◆
(2)

The spectrum of H is identical to that of D, except for the zero
modes. Unlike D, the zero modes of H include both the zero
modes of QT and Q, which are eigenstates of ⌧ z = diag(1dNs ,�1Nb )
distinguished by their eigenvalue, ±1. (Although the concept of
supersymmetry is not essential for deriving this result, there is an
interesting connection between the analysis leading to equation (2)
and the theory of supersymmetric quantummechanics34,35.)

Viewed as a Hamiltonian, H can be analysed in the framework
of topological band theory29. It has an intrinsic ‘particle–hole’
symmetry, {H,⌧ z} = 0, which guarantees eigenstates come in ±E
pairs. As Qim is real, H = H⇤ has ‘time-reversal’ symmetry. These
define symmetry class BDI (ref. 36). In one-dimension, gapped
Hamiltonians in this class, such as the SSHmodel, are characterized
by an integer topological invariant n 2 Z that is a property of the
Bloch Hamiltonian H(k) (or equivalently Q(k)) defined at each

wavenumber k in the Brillouin zone. A mapping of H(k) to the
complex plane is provided by detQ(k) = |detQ(k)|ei�(k). If bulk
modes are all gapped then |detQ(k)| is non-zero and Q(k) 2GLp,
where p is the dimension of Q(k). Q(k) is then classified by
the integer winding number of �(k) around the Brillouin zone:
�(k+G)��(k)= 2⇡n, where G is a reciprocal lattice vector, which
defines an element of the homotopy group ⇡1(GLp)= Z. A conse-
quence is that a domain wall across which n changes is associated
with topologically protected zero modes31,37,38. Below, we present
an index theorem that unifies this bulk-boundary correspondence
with equation (1) and shows how it can be applied to d-dimensional
lattices, which form the analogue ofweak topological insulators28.

Topological edge modes have been previously predicted in 2D
photonic39,40 and phononic41 systems. These differ from the present
theory because they occur in systems with bandgaps at finite
frequency and broken time-reversal symmetry (symmetry class A).
Localized end modes were found in a time-reversal invariant 1D
model (class AI; ref. 42). However, the presence of those finite
frequencymodes is not topologically guaranteed.

1D model
Before discussing the index theorem we introduce a simple 1D
elastic model, equivalent to the SSH model, that illustrates the
topological modes in their simplest setting. Consider a 1D system
of springs connecting masses constrained to rotate at a radius R
about fixed pivot points. In Fig. 1c the spring lengths are set so
that the equilibrium configuration is h✓ii = 0. Figure 1d shows a
configuration with shorter springs with h✓ii = ✓̄ . Expanding in
deviations �✓i about ✓̄ , the extension of spring m is �`m =QT

mi�✓i,
withQT

mi = q1(✓̄)�m,i+q2(✓̄)�m,i+1 and

q1(2) = r cos✓̄(r sin✓̄ ±1)/
p
4r2cos2 ✓̄ +1

The normal mode dispersion is !(k) = |Q(k)|, where
Q(k)= q1 +q2eik . When ✓̄ = 0, q1 =�q2, and there are gapless bulk
modes near k=0. For a finite systemwithN sites andN�1 springs,
there are no states of self-stress and only a single extended zero
mode, as required by equation (1). For ✓̄ 6= 0 the bulk spectrum
has a gap. In this case, the zero mode required by equation (1) is
localized at one end or the other, depending on the sign of ✓̄ . The
✓̄ >0 and ✓̄ <0 phases are topologically distinct in the sense that it is
impossible to tune between the two phases without passing through
a transition where the gap vanishes. The topological distinction is
captured by the winding number of the phase of Q(k), which is 1
(0) for |q1| < (>)|q2|.

Viewed as a quantum Hamiltonian, equation (2) for this model
is identical to the SSH model31, as indicated in Fig. 1a,b. The sites
and the bonds correspond, respectively, to the A and B sublattices of
the SSH model. For ✓̄ = 0 the bonds in the SSHmodel are the same
(Fig. 1a), whereas for ✓̄ 6= 0 they are dimerized (Fig. 1b). The two
topological phases correspond to the two dimerization patterns for
polyacetalene. As is well known for the SSHmodel31,37, an interface
between the two dimerizations binds a zero mode, as indicated in
Fig. 1e,g. This is most easily seen for ✓̄ = ±✓c where the springs
are colinear with the bars, so that q1 or q2 = 0. Figure 1f shows a
domain wall between +✓c and �✓c, in which the centre two sites
share a localized floppymode. Figure 1h shows an interface between
�✓c and +✓c with a state of self-stress localized to the middle three
bonds, in addition to floppymodes localized at either end. As long as
there is a bulk gap, the zeromodes cannot disappearwhen ✓̄ deviates
from ±✓c. The zero modes remain exponentially localized, with a
localization length that diverges when ✓̄ !0.

Index theorem
There seem to be two distinct origins for zero modes. In
equation (1) they arise because of a mismatch between the number
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Figure1|1DSSHandisostaticlatticemodels.a,b,SchematicoftheSSH
modelofpolyacetalene,withAandBsublatticesindicatedinblueandred.
a,Thegaplessstatewithallbondsidentical.b,ThegappedABdimerized
state,withdouble(single)bondsontheAB(BA)bonds.TheBAdimerized
statewithsingleanddoublebondsinterchangedisnotshown.c,d,The1D
isostaticlatticemodelinwhichmasses,representedbythelargerbluedots,
areconnectedbyspringsinredandareconstrainedtorotateaboutfixed
pivotpointsrepresentedbysmallblackdots.c,Thegaplesshigh-symmetry
statewith¯✓=0.d,Thegappedlower-symmetryphasewith¯✓>0.c,dare
equivalenttoa,bifweidentifythemasses(springs)withtheA(B)
sublatticesites.e,AdomainwallinpolyacetaleneconnectingtheABand
BAdimerizedstates.Thereisatopologicallyprotectedzero-energystate
associatedwiththeAsublatticeatthedefect.f,Theequivalentstatefor
theisostaticmodelwithatopologicallyprotectedzero-frequencyfloppy
mode(fm)atthedomainwall.g,DomainwallconnectingtheBAandAB
dimerizedstates,whichhasazeroenergystateassociatedwiththeB
sublattice.h,Theequivalentisostaticstatewithastateofself-stress(ss)at
thedomainwall.

electronicHamiltonianhaspositiveandnegativeeigenvaluesfor
theconductionandvalencebands.Touncovertheconnection
betweenthetwoproblemswedrawourinspirationfromDirac,who
famouslytookthe‘squareroot’oftheKlein–Gordonequation33.To
takethesquarerootofthedynamicalmatrix,notethatD=QQThas
asupersymmetricpartnerD̃=QTQwiththesamenon-zeroeigen-
values.CombiningDandD̃givesamatrixthatisaperfectsquare,

H=
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0Q
QT0
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✓
QQT0
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ThespectrumofHisidenticaltothatofD,exceptforthezero
modes.UnlikeD,thezeromodesofHincludeboththezero
modesofQTandQ,whichareeigenstatesof⌧z=diag(1dNs,�1Nb)
distinguishedbytheireigenvalue,±1.(Althoughtheconceptof
supersymmetryisnotessentialforderivingthisresult,thereisan
interestingconnectionbetweentheanalysisleadingtoequation(2)
andthetheoryofsupersymmetricquantummechanics34,35.)

ViewedasaHamiltonian,Hcanbeanalysedintheframework
oftopologicalbandtheory29.Ithasanintrinsic‘particle–hole’
symmetry,{H,⌧z}=0,whichguaranteeseigenstatescomein±E
pairs.AsQimisreal,H=H⇤has‘time-reversal’symmetry.These
definesymmetryclassBDI(ref.36).Inone-dimension,gapped
Hamiltoniansinthisclass,suchastheSSHmodel,arecharacterized
byanintegertopologicalinvariantn2Zthatisapropertyofthe
BlochHamiltonianH(k)(orequivalentlyQ(k))definedateach

wavenumberkintheBrillouinzone.AmappingofH(k)tothe
complexplaneisprovidedbydetQ(k)=|detQ(k)|ei�(k).Ifbulk
modesareallgappedthen|detQ(k)|isnon-zeroandQ(k)2GLp,
wherepisthedimensionofQ(k).Q(k)isthenclassifiedby
theintegerwindingnumberof�(k)aroundtheBrillouinzone:
�(k+G)��(k)=2⇡n,whereGisareciprocallatticevector,which
definesanelementofthehomotopygroup⇡1(GLp)=Z.Aconse-
quenceisthatadomainwallacrosswhichnchangesisassociated
withtopologicallyprotectedzeromodes31,37,38.Below,wepresent
anindextheoremthatunifiesthisbulk-boundarycorrespondence
withequation(1)andshowshowitcanbeappliedtod-dimensional
lattices,whichformtheanalogueofweaktopologicalinsulators28.

Topologicaledgemodeshavebeenpreviouslypredictedin2D
photonic39,40andphononic41systems.Thesedifferfromthepresent
theorybecausetheyoccurinsystemswithbandgapsatfinite
frequencyandbrokentime-reversalsymmetry(symmetryclassA).
Localizedendmodeswerefoundinatime-reversalinvariant1D
model(classAI;ref.42).However,thepresenceofthosefinite
frequencymodesisnottopologicallyguaranteed.

1Dmodel
Beforediscussingtheindextheoremweintroduceasimple1D
elasticmodel,equivalenttotheSSHmodel,thatillustratesthe
topologicalmodesintheirsimplestsetting.Considera1Dsystem
ofspringsconnectingmassesconstrainedtorotateataradiusR
aboutfixedpivotpoints.InFig.1cthespringlengthsaresetso
thattheequilibriumconfigurationish✓ii=0.Figure1dshowsa
configurationwithshorterspringswithh✓ii=✓̄.Expandingin
deviations�✓iabout✓̄,theextensionofspringmis�`m=QT

mi�✓i,
withQT

mi=q1(✓̄)�m,i+q2(✓̄)�m,i+1and

q1(2)=rcos✓̄(rsin✓̄±1)/
p

4r2cos2✓̄+1

Thenormalmodedispersionis!(k)=|Q(k)|,where
Q(k)=q1+q2eik.When✓̄=0,q1=�q2,andtherearegaplessbulk
modesneark=0.ForafinitesystemwithNsitesandN�1springs,
therearenostatesofself-stressandonlyasingleextendedzero
mode,asrequiredbyequation(1).For✓̄6=0thebulkspectrum
hasagap.Inthiscase,thezeromoderequiredbyequation(1)is
localizedatoneendortheother,dependingonthesignof✓̄.The
✓̄>0and✓̄<0phasesaretopologicallydistinctinthesensethatitis
impossibletotunebetweenthetwophaseswithoutpassingthrough
atransitionwherethegapvanishes.Thetopologicaldistinctionis
capturedbythewindingnumberofthephaseofQ(k),whichis1
(0)for|q1|<(>)|q2|.

ViewedasaquantumHamiltonian,equation(2)forthismodel
isidenticaltotheSSHmodel31,asindicatedinFig.1a,b.Thesites
andthebondscorrespond,respectively,totheAandBsublatticesof
theSSHmodel.For✓̄=0thebondsintheSSHmodelarethesame
(Fig.1a),whereasfor✓̄6=0theyaredimerized(Fig.1b).Thetwo
topologicalphasescorrespondtothetwodimerizationpatternsfor
polyacetalene.AsiswellknownfortheSSHmodel31,37,aninterface
betweenthetwodimerizationsbindsazeromode,asindicatedin
Fig.1e,g.Thisismosteasilyseenfor✓̄=±✓cwherethesprings
arecolinearwiththebars,sothatq1orq2=0.Figure1fshowsa
domainwallbetween+✓cand�✓c,inwhichthecentretwosites
sharealocalizedfloppymode.Figure1hshowsaninterfacebetween
�✓cand+✓cwithastateofself-stresslocalizedtothemiddlethree
bonds,inadditiontofloppymodeslocalizedateitherend.Aslongas
thereisabulkgap,thezeromodescannotdisappearwhen✓̄deviates
from±✓c.Thezeromodesremainexponentiallylocalized,witha
localizationlengththatdivergeswhen✓̄!0.

Indextheorem
Thereseemtobetwodistinctoriginsforzeromodes.In
equation(1)theyarisebecauseofamismatchbetweenthenumber
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Figure 1 | 1D SSH and isostatic lattice models. a,b, Schematic of the SSH
model of polyacetalene, with A and B sublattices indicated in blue and red.
a, The gapless state with all bonds identical. b, The gapped AB dimerized
state, with double (single) bonds on the AB (BA) bonds. The BA dimerized
state with single and double bonds interchanged is not shown. c,d, The 1D
isostatic lattice model in which masses, represented by the larger blue dots,
are connected by springs in red and are constrained to rotate about fixed
pivot points represented by small black dots. c, The gapless high-symmetry
state with ¯✓ = 0. d, The gapped lower-symmetry phase with ¯✓ > 0. c,d are
equivalent to a,b if we identify the masses (springs) with the A (B)
sublattice sites. e, A domain wall in polyacetalene connecting the AB and
BA dimerized states. There is a topologically protected zero-energy state
associated with the A sublattice at the defect. f, The equivalent state for
the isostatic model with a topologically protected zero-frequency floppy
mode (fm) at the domain wall. g, Domain wall connecting the BA and AB
dimerized states, which has a zero energy state associated with the B
sublattice. h, The equivalent isostatic state with a state of self-stress (ss) at
the domain wall.

electronic Hamiltonian has positive and negative eigenvalues for
the conduction and valence bands. To uncover the connection
between the two problemswe draw our inspiration fromDirac, who
famously took the ‘square root’ of the Klein–Gordon equation33. To
take the square root of the dynamicalmatrix, note thatD=QQT has
a supersymmetric partner D̃=QTQ with the same non-zero eigen-
values. CombiningD and D̃ gives amatrix that is a perfect square,

H =
✓

0 Q
QT 0

◆
; H2 =

✓
QQT 0
0 QTQ

◆
(2)

The spectrum of H is identical to that of D, except for the zero
modes. Unlike D, the zero modes of H include both the zero
modes of QT and Q, which are eigenstates of ⌧ z = diag(1dNs ,�1Nb )
distinguished by their eigenvalue, ±1. (Although the concept of
supersymmetry is not essential for deriving this result, there is an
interesting connection between the analysis leading to equation (2)
and the theory of supersymmetric quantummechanics34,35.)

Viewed as a Hamiltonian, H can be analysed in the framework
of topological band theory29. It has an intrinsic ‘particle–hole’
symmetry, {H,⌧ z} = 0, which guarantees eigenstates come in ±E
pairs. As Qim is real, H = H⇤ has ‘time-reversal’ symmetry. These
define symmetry class BDI (ref. 36). In one-dimension, gapped
Hamiltonians in this class, such as the SSHmodel, are characterized
by an integer topological invariant n 2 Z that is a property of the
Bloch Hamiltonian H(k) (or equivalently Q(k)) defined at each

wavenumber k in the Brillouin zone. A mapping of H(k) to the
complex plane is provided by detQ(k) = |detQ(k)|ei�(k). If bulk
modes are all gapped then |detQ(k)| is non-zero and Q(k) 2GLp,
where p is the dimension of Q(k). Q(k) is then classified by
the integer winding number of �(k) around the Brillouin zone:
�(k+G)��(k)= 2⇡n, where G is a reciprocal lattice vector, which
defines an element of the homotopy group ⇡1(GLp)= Z. A conse-
quence is that a domain wall across which n changes is associated
with topologically protected zero modes31,37,38. Below, we present
an index theorem that unifies this bulk-boundary correspondence
with equation (1) and shows how it can be applied to d-dimensional
lattices, which form the analogue ofweak topological insulators28.

Topological edge modes have been previously predicted in 2D
photonic39,40 and phononic41 systems. These differ from the present
theory because they occur in systems with bandgaps at finite
frequency and broken time-reversal symmetry (symmetry class A).
Localized end modes were found in a time-reversal invariant 1D
model (class AI; ref. 42). However, the presence of those finite
frequencymodes is not topologically guaranteed.

1D model
Before discussing the index theorem we introduce a simple 1D
elastic model, equivalent to the SSH model, that illustrates the
topological modes in their simplest setting. Consider a 1D system
of springs connecting masses constrained to rotate at a radius R
about fixed pivot points. In Fig. 1c the spring lengths are set so
that the equilibrium configuration is h✓ii = 0. Figure 1d shows a
configuration with shorter springs with h✓ii = ✓̄ . Expanding in
deviations �✓i about ✓̄ , the extension of spring m is �`m =QT

mi�✓i,
withQT

mi = q1(✓̄)�m,i+q2(✓̄)�m,i+1 and

q1(2) = r cos✓̄(r sin✓̄ ±1)/
p
4r2cos2 ✓̄ +1

The normal mode dispersion is !(k) = |Q(k)|, where
Q(k)= q1 +q2eik . When ✓̄ = 0, q1 =�q2, and there are gapless bulk
modes near k=0. For a finite systemwithN sites andN�1 springs,
there are no states of self-stress and only a single extended zero
mode, as required by equation (1). For ✓̄ 6= 0 the bulk spectrum
has a gap. In this case, the zero mode required by equation (1) is
localized at one end or the other, depending on the sign of ✓̄ . The
✓̄ >0 and ✓̄ <0 phases are topologically distinct in the sense that it is
impossible to tune between the two phases without passing through
a transition where the gap vanishes. The topological distinction is
captured by the winding number of the phase of Q(k), which is 1
(0) for |q1| < (>)|q2|.

Viewed as a quantum Hamiltonian, equation (2) for this model
is identical to the SSH model31, as indicated in Fig. 1a,b. The sites
and the bonds correspond, respectively, to the A and B sublattices of
the SSH model. For ✓̄ = 0 the bonds in the SSHmodel are the same
(Fig. 1a), whereas for ✓̄ 6= 0 they are dimerized (Fig. 1b). The two
topological phases correspond to the two dimerization patterns for
polyacetalene. As is well known for the SSHmodel31,37, an interface
between the two dimerizations binds a zero mode, as indicated in
Fig. 1e,g. This is most easily seen for ✓̄ = ±✓c where the springs
are colinear with the bars, so that q1 or q2 = 0. Figure 1f shows a
domain wall between +✓c and �✓c, in which the centre two sites
share a localized floppymode. Figure 1h shows an interface between
�✓c and +✓c with a state of self-stress localized to the middle three
bonds, in addition to floppymodes localized at either end. As long as
there is a bulk gap, the zeromodes cannot disappearwhen ✓̄ deviates
from ±✓c. The zero modes remain exponentially localized, with a
localization length that diverges when ✓̄ !0.

Index theorem
There seem to be two distinct origins for zero modes. In
equation (1) they arise because of a mismatch between the number
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The vibrations of an isostatic mechanical system may be mapped to 
the electronic states in a topological superconductor
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This chain has 8 rotors and 7 springs; 
8-7=1 unconstrained degree of freedom

The zero mode is exponentially localized at the end.
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Mechanical energy cannot be transmitted 
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OUR QUESTION: 
What happens when we excite the 

zero mode beyond the linear regime?
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An insulator at harmonic level has become a 
conductor in non-linear theory
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Aside:  “Jacob’s ladder” toy 
shares this mechanism
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u(x) = x-projection of rotor at x

discretization of φ4 theory kink
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“kink” = domain wall profile



static profile : discretization of 
φ4 theory kink
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+ (ū2 � u

2)2 +
a

2

2

du

dx
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What properties are robust? 
What can be tuned?
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The Spinner

continuum limit: 2 coupled copies of sine-Gordon kink!
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No “anti-kinks”!
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Beyond beads and springs

P
T = 0

zero modes at domain wall

kirigami pattern

P
T = 

Topologically polarized 
origami and kirigami

BGC, Liu, Evans, Paulose, Cohen, Vitelli, 
Santangelo. arXiv:1508.00795

Conjecture:
origami (without holes) always
has zero polarization*



Paulose, BGC, Vitelli, Nature Physics 11, 153-156 (2015)
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Topological modes at point-like defects called 
dislocations



What about modes localized in 
reciprocal space?
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A pair of winding numbers gives a “topological 
polarization” vector that points towards 
floppy edge
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zero modes...

Winding in the phase of det R 
around the bulk mode protects it!
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The winding around the bulk mode is the difference 
between contour I and contour II

III

III

IV

Where do the Weyl modes come from?



Rocklin, Chen, Falk, Vitelli, Lubensky. arXiv:1510.04970



Rocklin, Chen, Falk, Vitelli, Lubensky. arXiv:1510.04970



Rocklin, Chen, Falk, Vitelli, Lubensky. arXiv:1510.04970



Rocklin, Chen, Falk, Vitelli, Lubensky. arXiv:1510.04970



Rocklin, Chen, Falk, Vitelli, Lubensky. arXiv:1510.04970



Rocklin, Chen, Falk, Vitelli, Lubensky. arXiv:1510.04970

Weyl “phases” are generic in isostatic lattices



kx

ky

Rocklin, Chen, Falk, Vitelli, Lubensky. arXiv:1510.04970

Different parts of the BZ have 
differing winding numbers 
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So the localization of surface 
modes becomes k dependent!
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Tien-syh Chen
Jayson Paulose
Jeffrey Teo
Ari Turner
Yujie Zhou

In a topological mechanical insulator, 
energy may be transported by a soliton:

Chen, Upadhyaya, Vitelli, PNAS 111, 13004 (2014)

Rocklin, Chen, Falk, Vitelli, Lubensky, arXiv:1510.04970

There are topologically protected bulk
zero modes in generic isostatic lattices:

“Vitelli Lab” youtube


