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• effects of spatial dimensionality on individual 
microbial swimming   (2D vs. 3D) 

• intrinsic vortex scale selection in bacterial 
suspensions 

• confinement & collective dynamics of quasi-2D 
suspensions (edge currents, magnetic order, 
quasi-“superfluidity”, etc.) 

• defect dynamics and long-range order in 2D 
planar/curved active nematics
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Bacteria predate plants and animals by billions of years. Today, they are the world’s smallest

cells yet they represent the bulk of the world’s biomass, and the main reservoir of nutrients for

higher organisms. Most bacteria can move on their own, and the majority of motile bacteria

are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-

number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron

scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability

of cells to reorient and search their surroundings to their interactions within mechanically and

chemically-complex environments. Using hydrodynamics as an organizing framework, we review

the biomechanics of bacterial motility and look ahead to future challenges.

I. INTRODUCTION

Bacteria constitute the bulk of the biomass of our
planet. However, since we need a microscope to see
them, we often forget their presence. Observing life in the
ocean, we see fish and crustaceans, but miss the marine
bacteria that outnumber them many times over. On land,
we see animals and plants, but often forget that a hu-
man body contains many more bacteria than mammalian
cells. While they are responsible for many infectious
diseases, bacteria play a critical role in the life of soils
and higher organisms (including humans) by perform-
ing chemical reactions and providing nutrients (Madigan
et al., 2010).

Ever since microscopes were invented, scientists have
worked to decipher the rules dictating the behavior of
bacteria. In addition to quantifying the manner in which
bacteria shape our lives and teach us about our evolu-
tionary history, biologists have long recognized that the
behavior of bacteria is influenced by the physical con-
straints of their habitat, and by their evolution to maxi-
mize fitness under these constraints. The most prominent
of these constraints is the presence of a surrounding fluid
(Vogel, 1996). Not only are all bacteria found in fluids,
but being typically less than a hundredth of a millime-
ter in length, they experience much larger viscous forces
than inertial forces, and have adapted their behavior in
response to these forces.

Most bacteria are motile (Jarrell & McBride, 2008;
Kearns, 2010) and this motility is essential for the e↵ec-
tiveness of many pathogens (Ottemann & Miller, 1997).
The most common form of bacterial motility is swim-
ming. In order to swim, bacteria have evolved flag-
ella (originally from secretory systems), which are slen-
der helical appendages rotated by specialized motors,
and whose motions in viscous environments propel the

⇤
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cells forward (Bray, 2000). The surrounding fluid can
be seen both as a constraint and an advantage. It is
the presence of the fluid itself and its interactions with
three-dimensional bacterial flagellar filaments which al-
lows cells to move and sample their chemical environ-
ment – a crucial step for the cells to display robust and
adaptive chemotactic responses to both attractants and
repellents, for nutrients, but also temperature, pH, and
viscosity (Berg, 1993, 2004; Blair, 1995; Purcell, 1977).
But as they self-propel, bacteria are subject to the

external constraints set by the physical world, and in
particular by hydrodynamics. In this review, we high-
light the consequences of fluid dynamics relevant to the
swimming of bacteria in viscous environments. Natu-
rally, the biophysics of bacteria locomotion involves many
aspects of soft matter physics, including nonlinear elas-
ticity, screened electrostatics, and biochemical noise, and
hence fluid dynamics represents but one feature of the
complex balance of forces dictating the behavior of cells
as they search their environment. The choice made here
is to use hydrodynamics as an organizing framework to
overview various aspects of cellular locomotion.
We start by a biological overview of bacteria as cells,

their geometry, the way they swim, and the variations
among di↵erent species (§II). We then review the basic
hydrodynamics features of flagellar propulsion (§III) fol-
lowed by the flows induced by swimming bacteria (§IV).
We next address the flagellar polymorphs, their compar-
ative hydrodynamics, and the potential relevance to evo-
lution of the flagellum (§V). With individual flagella un-
derstood, we detail how fluid forces may play a role in
the actuation of multiple flagella and be used by cells to
reorient (§VI). The last three sections are devoted to lo-
comotion near surfaces (§VII), in external flows (§VIII)
and in complex fluids (§IX).
Throughout this review, the focus will be on single-

cell behavior. Our purpose is to understand the way a
single bacterium exploits, and is subject to, the physi-
cal constraints from the surrounding fluid. Other use-
ful reviews can be used as complementary reading, in
particular those highlighting the hydrodynamics of low-
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Swimming at low Reynolds number
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where � the first coe⌅cient of viscosity (related to bulk
viscosity), and µ is the second coe⌅cient of viscosity
(shear viscosity).

For an incompressible, Newtonian fluid the NSE (3)
simplify to

⇤ [⇧tu + (u ·⌥)u] = �⌥p + µ⌥2u + f , (8)

complemented by the condition (5).

C. Stokes equations

Consider an object of characteristic length L, moving
at absolute velocity U = |U | through (relative to) an in-
compressible, homogeneous Newtonian fluid of constant
viscosity µ and constant density ⇤. The object can be
imagined as a moving boundary (condition), which in-
duces a flow field u(t, x) in the fluid. The ratio of the in-
ertial (dynamic) pressure ⇤U2 and viscous shearing stress
µU/L can be characterized by the Reynolds number4

R ⌅ UL⇤/µ = UL/⇥. (9)

Example: Swimming in water with ⇥ = 10�6 m2/s

• fish/human: L ⌅ 1 m, U ⌅ 1 m/s ⇧ R ⌅ 106.

• bacteria: L ⌅ 1 µm, U ⌅ 10 µm/s ⇧ R ⌅ 10�5.

If the Reynolds number is very small, R ⇥ 1, the
NSE (8) can be approximated by the Stokes equations5

0 = µ⌥2u�⌥p + f , (10a)
0 = ⌥ · u. (10b)

These equations must still be endowed with appropriate
initial and boundary conditions, such as ,e.g.,6

�
u(t, x) = 0,

p(t, x) = p⇥,
as |x|⇤⌃ . (11)

4 Actually, the (local) Reynolds number is defined in terms of the
fluid velocity u relative to an ”appropriately” chosen reference
frame (e.g., the restframe of a confining body); Eq. (9) implicitly
assumes that u ⇤ U on the surface of the object. Moreover,
the value of the Reynolds number depends on the choice of a –
somewhat arbitrary – characteristic length scale L (sometimes
expressed through the notation RL). Specifically, one uses the
approximations |(u·⌅)u| ⇤| U·U/L| and, similarly, |⇤tu| ⇤ U/�
with a characteristic timescale � = L/|U|, yielding |(u ·⌅)u| ⇤
|⇤tu| ⇤ U2/L.

5 More precisely, by replacing Eq. (8) with Eq. (10), it is as-
sumed that for small Reynolds numbers R̃(t, x) := |⇥(u ·
⌅)u|/(µ⌅2u) ⇤ UL(⇥/µ)⇥ 1 one can approximate

⇥ [⇤tu + (u ·⌅)u]� µ⌅2u⇤ �µ⌅2u

The consistency of this approximation can be checked a posteri-
ori by inserting the solution for u into the lhs. of Eq. (8) .

6 The Stokes equations (10) may lead to unphysical results (para-
doxes) in d = 2 space dimensions (cf. discussion in Section 2-7
of (4)), e.g., in the case of a spatially unconfined system.

With the explicitly time-dependent inertial being ne-
glected, the time-dependence of the flow is instante-
neously determined by the motion of the boundaries
and/or time-dependent forces as generated by the swim-
ming objects.

Example: Assume that the local force density f can be
written as

f = �⌥⇥; (12)

e.g., gravitational e⇤ects in homogeneous fluid of con-
stant density ⇤ described by f = �⇤⌥⌅, where ⌅ is the
gravitational potential and ⇥ = ⇤⌅. In this case, we may
define a total stress tensor

�̂ = �(p + ⇥)1̂ + T̂ (13a)

with an e⇤ective total pressure

p̄ := p + ⇥, (13b)

so that the Stokes equations (10) simplify to

0 = µ⌥2u�⌥p̄, (14a)
0 = ⌥ · u. (14b)

The four equations (14) are to be used to determine
the four unknown functions (u, p), respectively. Equa-
tion (14a) is an elliptic PDE.

1. Dynamics of a single sphere

Consider the motion of a rigid body S in a quasi-infinite
fluid. The dynamics of the body (mass M) is character-
ized by its centre-of-mass position X(t), its centre-of-
mass velocity U(t) = Ẋ, and its angular velocity �(t),
defined with respect to some axis that goes through the
centre-of-mass.

a. Translation In the presence of an external force F ,
the translational centre-of-mass motion is governed by

MU̇ = F . (15a)

For example, given the stress tensor �̂ from (13a), the
force F contains a contribution

F [�̂] =
⇥

�S
dS� · �̂, (15b)

where the integral is taken over the surface ⇧S of the body
with an inward-directed surface normal element dS�.

+  time-dependent BCs

Edward PurcellGeoffrey I Taylor James Lighthill
R � UL⇥/� ⇥ 1



Superposition of singularities

3D stokeslet
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flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.

We thank K. C. Leptos for suggesting the use of auto-
fluorescence to track Chlamydomonas cells, S. B. Dalziel,
V. Kantsler, and T. J. Pedley for discussions, D. Page-Croft
and N. Price for technical assistance, and acknowledge
support from the EPSRC, the BBSRC, the Marie-Curie
Program (M. P.), and the Schlumberger Chair Fund.
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FIG. 4 (color online). Time- and azimuthally-averaged flow field of C. reinhardtii. (a) Streamlines (red [medium gray]) computed
from velocity vectors (blue [dark gray]). The spiraling near elliptic points is an artifact of the direct integration of a noisy experimental
velocity field. A color scheme indicates flow speed magnitudes. (b) Streamlines of the azimuthally-averaged flow of the three-Stokeslet
model: flagellar thrust is distributed among two Stokeslets placed (not fitted) at the approximate flagellar position (lateral green
arrows), whose sum balances drag on the cell body (central red arrow). (c) Decay of kuðrÞk for the three directions indicated by
separate colors in the inset, compared to results from the three-Stokeslet model (dashed lines).

PRL 105, 168101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

15 OCTOBER 2010

168101-4



2D       vs.       3D

Guasto et al (2010) PRL                                   Drescher et al (2010) PRL                 

from out-of-focus particles. This allows detailed observa-
tion of the cells (mean speed U0 ¼ 134 !m=s) for
up to about 8 s at 50 fps. Using high-speed imaging
(500 fps), oscillations of the cell body, UðtÞ, become
evident [Fig. 1 (inset)]. The peak forward velocity is
4 times the mean value and can be negative during the
recovery stroke. The probability density function (PDF) of
the beat frequency f for 170 cell tracks is shown in Fig. 1.
The oscillations have a fairly narrow distribution with a
mean frequency !f ¼ 53$ 5 Hz corresponding to a beat
cycle period T ¼ 1= !f ¼ 18:9 ms.

By simultaneously tracking swimming cells and passive
tracer particles (see video [15]), we measure the velocity
field induced by the cells by translating and rotating the
instantaneous tracer particle measurements to a common
coordinate system based on cellular orientation. Swimmer
trajectory segments with large curvature or irregular beat
frequencies are excluded [19]. The beat-cycle averaged
velocity field is measured by imaging the cells at a frame
rate comparable to the cell beat frequency (50 fps), thus
capturing the net motion over a cycle. The velocity field
resulting from 560 cell tracks is shown in Fig. 2(a), where
the swimmer motion is to the right and solid lines are
instantaneous streamlines [20].

While the general shape of the flow field has some
qualitative similarities to a force dipole (‘‘stresslet’’) ap-
proximation [1], several unexpected features are apparent
[6]. The location of the hyperbolic stagnation point far
away from the anterior of the cell is surprising, since it
typically is thought to be located between the centers of
drag (body) and thrust (flagella). Two strong vortices are
visible lateral to the organism (associated with the fla-
gella), while two weaker vortices appear far from the cell
body beyond the separatrix of the hyperbolic point.

The fluid-air interfaces of the liquid film are nearly
stress-free, which minimizes velocity gradients transverse

to the film. This effect along with comparability of the film
thickness and cell size (h=2R% 2) creates a quasi-2D
environment [21], where we expect longer-range hydro-
dynamic disturbances compared to 3D flows. Fluid veloc-
ity magnitude normalized by the mean swimmer speed,
u=U0, where u ¼ juj, is shown in Fig. 2(b) as a function of
radial distance from the organism, r=R, in various direc-
tions. Toward the posterior, fluid speed scales nearly as u%
r&1 up to 20 cell radii away, similar to a force dipole in 2D
[22], with slight deviations from u% r&1 likely due to
minor 3D effects. These results are consistent with similar
measurements in 3D that show the expected u% r&2 scal-
ing [6]. In the lateral direction, the velocity magnitude
passes through a local minimum when traversing the para-
bolic stagnation points (vortex), before recovering u% r&1

scaling in the far field. Similarly, in front of the cell, fluid

FIG. 1 (color online). Probability density function (PDF) of
flagellar beat frequencies, f, measured from unicellular alga
(C. reinhardtii) swimming in quasi-2D liquid films ( !f ¼ 53$
5 Hz). Inset: velocity oscillations of a single swimming cell
measured at 500 fps (red circle), where the maximum velocity
is 4 times the mean value (solid blue line, 134 !m=s).

FIG. 2 (color online). (a) The beat-cycle averaged velocity
field around a swimming C. reinhardtii (black disc) in the lab
frame, where the direction of travel is to the right toward the
hyperbolic stagnation point (green diamond). Solid (red) lines
are instantaneous streamlines and velocity vectors are shown on
a log scale [20]. (b) The fluid velocity magnitude in various
directions away from the cell demonstrates the predicted u%
r&1 scaling for a force dipole in 2D. Local minima correspond to
stagnation points encountered in some directions.
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flow may be important [30]. We are currently investigating
whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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whether similar conclusions hold for the flow field around
bacteria, the prototypical ‘‘pusher’’ microorganisms.
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E.coli  (non-tumbling HCB 437)

Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.
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dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by
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where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Assuming the characteristic scattering time τ is sufficiently
small, which is realistic for 3D scattering due to the relatively
large swimming speeds of bacteria, we can approximate

⟨|∆θ(τ, r)|2⟩H ≃ τ 2
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Assuming that r̂ is uniformly distributed on a sphere, and d̂
uniformly distributed on a circle in the tangential plane at
radius r, we obtain

⟨|∆θ(τ, r)|2⟩H =
3
5
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A2τ 2

r6
. [22]

Equating this expression with rotational diffusion (see
Eq. [17]) yields the effective hydrodynamic horizon

rH ≃
»

3
20

(Γ + 1)2
A2τ
Dr

–1/6

. [23]

Note that, due to the τ 1/6- dependence, the result is rather
insensitive to the particular value used for τ and, similarly,
to changes in the other parameters. Adopting τ = a/V0

and inserting experimentally measured values (a, ℓ, F, V, Dr)
as given in the main text, we obtain rH ≃ 3.3 µm for E. coli.
Equation [23] can be viewed as an upper bound, as the dipo-
lar flow model overestimates u for r < 6 µm (see Fig. 1D in
the main text).

We may thus conclude that (near-field) hydrodynamic in-
teraction will be of relevance only if one (or more) of the
following conditions are satisfied: (i) bacterial suspensions
are sufficiently dense; (ii) self-organization and/or external
stimuli lead orientational and positional correlations between
nearby bacteria; (iii) rotational diffusion is strongly sup-
pressed (e.g., through an increase of viscosity). However,
our results strongly suggest that under natural conditions hy-
drodynamic long-range interactions are washed out by noise
and that orientational order in dense bacterial suspensions is
primarily caused by an interplay of self-motility and short-
range interactions (steric repulsion, lubrication effects, flagel-
lar bundling, etc.).

Hydrodynamic interactions with a wall
The previous section focussed on the competition between
noise and hydrodynamics in bacterial pair-scattering. We
shall now perform a similar analysis regarding the hydrody-
namic interaction between the bacterium with a wall. Specif-
ically, we are interested in the following two questions [6, 7]:

• Is long-range hydrodynamics for relevant for bacterial cell-
surface collisions?

• Can hydrodynamics trap a bacterium near a wall – and, if
so, for how long?

Dipole model.We denote the position of the bacterium by
x, its normalized orientation vector (the swimming direction)
by d̂, and the unit normal vector of the solid boundary by
n̂ (pointing into the fluid). Using Blake’s solution [8] for a
Stokeslet near an infinite planar no-slip surface one can derive
explicit expressions for the advective flow u′

i(x), the vorticity
ω′

i(x), and the symmetric rate-of-strain tensor E′
ij(x), which

act on a force dipole near a wall due to the interaction with
its hydrodynamic image [8, 6]:

u′
j(x) =
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ȷ
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, [24a]
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where h := |(x̂.n̂)| denotes the orthogonal distance to the
wall, assuming that the coordinate origin lies on the sur-
face, and ϵijk is the Levi-Civita tensor. Following Pedley and
Kessler [5], the deterministic equations of motion for a dipole
swimmer, that moves at constant swimming speed V0 in the
presence of the wall, are given by

q̇j = V0d̂j + u′
j(x), [25a]

˙̂dj =
1
2

ϵjkl ω′
k d̂l + Γ d̂i E′

in (δnj − d̂nd̂j). [25b]

As before, Γ := [(a/b)2 − 1]/[(a/b)2 + 1] is a geometric factor
for ellipsoidal particles with major axis length a and minor
axis length b. The equation [25b] for the orientation change
can be explicitly written as

˙̂
dj =
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8h3

(n̂.d̂)

ȷ

1 − Γ
2

h

3(n̂.d̂)2 − 1
i

ff

[(n̂.d̂)d̂j − n̂j ]. [26]

To study whether or not long-range hydrodynamics affects
the dynamics of a bacterium when it swims towards a wall,
we numerically integrated Eqs. [25b] using the experimen-
tally determined parameters for the bacterial flow field. The
results, which are summarized as Fig. 2 in the main text,
show that, due to the high self-swimming speeds of E. colie,
hydrodynamic long-range interactions are not likely to play
an important role in wall collisions - and therefore are not
relevant for the very early stages of biofilm formation.

Escape from the wall. A ‘pusher’ bacterium aligned in parallel
to a non-slip surface experiences a hydrodynamic attraction
towards the surface [6]. Orientational noise and self-swimming
may counteract this attraction. We wish to estimate the typ-
ical time scale it takes for bacterium to escape from the wall,
using the dipole model defined by Eqs. [24]-[26].

Let us assume that an inelastic collision has led to align-
ment of the swimmer parallel to the wall. According to
Eq. [24a], the hydrodynamic attraction for a dipole swimmer
pointing parallel to the surface is given by

u′
i(x) = − 3A

8h2
n̂i. [27]

Let θ denote the angle between swimmer and surface (i.e.,
θ = 0 means parallel to surface). A bacterium can escape
from the wall by virtue of its self-motility if the self-swimming
velocity in the direction perpendicular to the wall exceeds the
advective attraction [27], yielding the ‘escape inequality’

V0 sin θ
!

≥ 3A
8h2

. [28]
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B. subtilis

mode. Such measurements are projections into the in-
plane dimensions xk ! "x; y# of three-dimensional pat-
terns, albeit confined to thin layers. Figure 4 shows a
typical velocity field v"xk#, with a meandering jet of
high collective velocities ( $ 50 !m=s) and surrounding
vortices. The vortices nearest the leftward-directed jet
flow clockwise above and counterclockwise below, as in a
Kelvin-Helmholtz instability, or, anomalously at such
low Reynolds numbers, a von Karman vortex street.

We have computed the velocity correlation I"rk# !
%hv"xk & rk; t# ' v"xk; t#ix ( hvi2x)="hv2ix ( hvi2x# as a func-
tion of in-plane distance, and averaged over orientations
of rk to find I"rk# as a function of the magnitude rk,
and the temporal correlation J"t# ! %hv"xk; s& t# '
v"xk; s#is ( hvi2s)="hv2is ( hvi2s#. Figure 5(a) shows the

first for a pendant drop, averaged over 500 images
(16:7 s), along with several of the correlations from pairs
of frames. The latter display quite pronounced oscillations
reflecting the particular positions of the vortices. The
average is of course much smoother but clearly shows
anticorrelation extending out to $100 !m, thus defining
the typical scale of a vortex. The associated decay of the
temporal correlation in Fig. 5(b) shows that the vortical
regions maintain coherence only for a few seconds, the
‘‘natural’’ time scale " ! hdomain sizei=hdomain speedi.
This scale may reflect the ‘‘run-and-tumble’’ behavior
sometimes prevalent in nutrient-depleted suspensions
[1]. The average correlation in Fig. 5(b) implies that a
collectively generated directional surge is followed by a
return flow, and the two particular cases demonstrate
vortex street generation. Clearly, these oscillations of
the fluid are not inertial, but driven and maintained by
its inhabitants. The surge and associated shear organizes
the gyres, and their shear field in turn recruits the local
organisms into rotating, internally driven transient do-
mains. While our focus here is on visualization of bacte-
rial swimming patterns, we have also found that micron-
size tracers display greatly enhanced diffusion and even
superdiffusive behavior over a range of time scales [21],
as seen also in bacteria confined to a soap film [22]. Our
demonstration of transient, large-scale vortices offers a
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FIG. 4. Flows at the bottom of a pendant drop. Instantaneous
bacterial swimming vector field. The arrow at right denotes a
speed of 35 !m=s.

FIG. 5. Correlation functions in a pendant drop: (a) average
spatial correlation I"r# (solid) along with several traces at
particular times; (b) Average temporal correlation J"t# (solid)
with two particular traces.

FIG. 3. Bacterial ‘‘turbulence’’ in a sessile drop, viewed from
below through the bottom of a petri dish. Gravity is perpen-
dicular to the plane of the picture, and the horizontal white line
near the top is the air-water-plastic contact line. The central
fuzziness is due to collective motion, not quite captured at the
frame rate of 1=30 s. The scale bar is 35 !m.
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bioconvective plumes down the slanted meniscus and concentrate cells at the drop edge, while in
pendant drops such self-concentration occurs at the bottom. On scales much larger than a cell,
concentrated regions in both geometries exhibit transient, reconstituting, high-speed jets straddled
by vortex streets. A mechanism for large-scale coherence is proposed based on hydrodynamic
interactions between swimming cells.
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Bacterial chemotaxis, oriented swimming along
chemical gradients, is generally viewed as locomotion
in an otherwise quiescent fluid [1]. Yet, the very flagella
which propel the cell inevitably stir up the fluid through
their high-speed rotation, bundling, and unbundling.
Conventional arguments [2] showing the irrelevance of
advection compared to diffusion are based on the small-
ness of the Peclet number Pe ! UL=D. For a swimmer of
micron scale L, moving at a speed U of several body
lengths per second, and D" 10#5 cm2 s#1 a solute dif-
fusion constant, we have Pe" 10#2, confirming this for
an isolated swimmer. Yet, the collective hydrodynamics
of concentrated assemblies of cells greatly changes this
situation, yielding Pe> 1. Such assemblies can arise due
to the joint action of chemotaxis, a symmetry breaking
source of metabolite(s), and gravity. Once concentrated,
the collectively driven hydrodynamics globally outcom-
petes diffusion.

Here we report striking collective effects in bacterial
suspensions in which strong microscale mixing arises
from two related aspects of cellular swimming in fluid
drops: self-concentration and large-scale dynamic coher-
ence. The first arises from chemotactically generated
accumulations of cells that encounter, then slide down a
slanted meniscus, resulting in even higher concentrations
(Figs. 1 and 2). Dynamic coherence develops within
that nearly close packed population. It appears as jets
and surges, straddled by vortices, often moving
>100 !m=s, over scales >100 !m, yielding Pe * 1.
These speeds and lengths exceed greatly the swimming
speeds and size of the organisms. Ours are perhaps the
first flow visualizations to provide information on the
manner by which swimming bacteria may order.
Although these patterns are different from ordering sug-
gested by early theories [3–5] proposed to describe
‘‘flocking,’’ they may provide evidence of an instability
recently proposed [6,7]. Finally, we suggest links to quo-
rum sensing [8] and biofilm formation [9].

Experiments were conducted on suspensions of strains
1085 and YB886 of Bacillus subtilis, a peritrichously
flagellated rod-shaped bacterium 4$ 0:7 !m. Spores
stored on agar or sand were used to inoculate nutrient
medium [10]. Drops of suspension were studied on plastic
or glass-bottomed petri dishes. To minimize evaporative
flows that can advect suspended particles to the drop edge
[11], high humidity in the closed chamber was main-
tained by additional fluid reservoirs. Control experiments
with microspheres showed no evidence of such flows.
Dark-field videos of macroscopic patterns were obtained
with a digital camera (Hamamatsu C-7300) viewing light
scattered by the sample. Bright-field objectives on in-
verted microscopes were used for higher magnifications.
Particle tracking studies with commercial software
(Motion Analysis Corp.) were also performed.

The consumption of dissolved oxygen by cells and its
replenishment from the fluid-air interface sets the stage

FIG. 1. Bioconvection in a sessile drop of diameter 1 cm.
Top: images 5 min apart show the traveling-wave bio-Boycott
convection that appears first at the drop edge. Bottom: images
2 min apart show self-concentration seen from above, begin-
ning as vertical plumes which migrate outward.
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mode. Such measurements are projections into the in-
plane dimensions xk ! "x; y# of three-dimensional pat-
terns, albeit confined to thin layers. Figure 4 shows a
typical velocity field v"xk#, with a meandering jet of
high collective velocities ( $ 50 !m=s) and surrounding
vortices. The vortices nearest the leftward-directed jet
flow clockwise above and counterclockwise below, as in a
Kelvin-Helmholtz instability, or, anomalously at such
low Reynolds numbers, a von Karman vortex street.

We have computed the velocity correlation I"rk# !
%hv"xk & rk; t# ' v"xk; t#ix ( hvi2x)="hv2ix ( hvi2x# as a func-
tion of in-plane distance, and averaged over orientations
of rk to find I"rk# as a function of the magnitude rk,
and the temporal correlation J"t# ! %hv"xk; s& t# '
v"xk; s#is ( hvi2s)="hv2is ( hvi2s#. Figure 5(a) shows the

first for a pendant drop, averaged over 500 images
(16:7 s), along with several of the correlations from pairs
of frames. The latter display quite pronounced oscillations
reflecting the particular positions of the vortices. The
average is of course much smoother but clearly shows
anticorrelation extending out to $100 !m, thus defining
the typical scale of a vortex. The associated decay of the
temporal correlation in Fig. 5(b) shows that the vortical
regions maintain coherence only for a few seconds, the
‘‘natural’’ time scale " ! hdomain sizei=hdomain speedi.
This scale may reflect the ‘‘run-and-tumble’’ behavior
sometimes prevalent in nutrient-depleted suspensions
[1]. The average correlation in Fig. 5(b) implies that a
collectively generated directional surge is followed by a
return flow, and the two particular cases demonstrate
vortex street generation. Clearly, these oscillations of
the fluid are not inertial, but driven and maintained by
its inhabitants. The surge and associated shear organizes
the gyres, and their shear field in turn recruits the local
organisms into rotating, internally driven transient do-
mains. While our focus here is on visualization of bacte-
rial swimming patterns, we have also found that micron-
size tracers display greatly enhanced diffusion and even
superdiffusive behavior over a range of time scales [21],
as seen also in bacteria confined to a soap film [22]. Our
demonstration of transient, large-scale vortices offers a
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FIG. 4. Flows at the bottom of a pendant drop. Instantaneous
bacterial swimming vector field. The arrow at right denotes a
speed of 35 !m=s.

FIG. 5. Correlation functions in a pendant drop: (a) average
spatial correlation I"r# (solid) along with several traces at
particular times; (b) Average temporal correlation J"t# (solid)
with two particular traces.

FIG. 3. Bacterial ‘‘turbulence’’ in a sessile drop, viewed from
below through the bottom of a petri dish. Gravity is perpen-
dicular to the plane of the picture, and the horizontal white line
near the top is the air-water-plastic contact line. The central
fuzziness is due to collective motion, not quite captured at the
frame rate of 1=30 s. The scale bar is 35 !m.
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This scale may reflect the ‘‘run-and-tumble’’ behavior
sometimes prevalent in nutrient-depleted suspensions
[1]. The average correlation in Fig. 5(b) implies that a
collectively generated directional surge is followed by a
return flow, and the two particular cases demonstrate
vortex street generation. Clearly, these oscillations of
the fluid are not inertial, but driven and maintained by
its inhabitants. The surge and associated shear organizes
the gyres, and their shear field in turn recruits the local
organisms into rotating, internally driven transient do-
mains. While our focus here is on visualization of bacte-
rial swimming patterns, we have also found that micron-
size tracers display greatly enhanced diffusion and even
superdiffusive behavior over a range of time scales [21],
as seen also in bacteria confined to a soap film [22]. Our
demonstration of transient, large-scale vortices offers a
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spatial correlation I"r# (solid) along with several traces at
particular times; (b) Average temporal correlation J"t# (solid)
with two particular traces.
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below through the bottom of a petri dish. Gravity is perpen-
dicular to the plane of the picture, and the horizontal white line
near the top is the air-water-plastic contact line. The central
fuzziness is due to collective motion, not quite captured at the
frame rate of 1=30 s. The scale bar is 35 !m.
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FIG. 1: (color online) Flow fields from experiments and sim-
ulations [? ]. (a) Very dense homogeneous suspension of
B. subtilis overlaid with the PIV flow field showing collective
bacterial dynamics. Longest arrows correspond to velocity of
30 µm/s. (b) Streamlines and normalized vorticity field deter-
mined from PIV data in (a). (c) Turbulent ‘Lagrangian’ flow
of fluorescent tracer particles (false-color) in the same sus-
pension, obtained by integrating emission signals over 1.5 s.
(d) Partial snapshot of a 2D slice from a 3D simulation of
the continuum model (parameters in Table ??). Scale bars
70 µm.

sequent pairs. During the ⇤10 min imaging period for
each device, the motility of B. subtilis cells decreased
markedly due to oxygen depletion [? ]. The experimental
setup yields 2D projected velocities of 3D suspension mo-
tion (Fig. ??). Data were analyzed under the assumption
that the flow structures are isotropic, as verified by test
measurements at di⌅erent distances from the chamber
bottom. Commercial particle tracking velocimetry (PIV)
software (Dantec Flow Manager) was used to determine
the bacterial flow velocity (vx, vy) from bright-field im-
ages (Fig. ??a,b), corrected for systematic pixel-locking
errors [? ]. Data shown in Figs. ?? and ?? are based on
7 movie segments (40 fps, each 50 s long) corresponding
to 7 di⌅erent activity levels.

Global bacterial flows were quantified by the in-plane
kinetic energy Exy(t) = ⌃(v2

x + v2
y)/2⌥ and in-plane en-

strophy ⇤z(t) = ⌃⇥2
z/2⌥, where ⇥z = ⇤xvy � ⇤yvx is the

vertical component of vorticity and ⌃ · ⌥ is a spatial aver-
age. While Exy and ⇤z fluctuate, their time averages
(Exy,⇤z) are approximately constant during the 50 s
time interval used in the data analysis (Fig. ??b,c). Over
two orders of magnitude in energy (Fig. ??d) we observe
the linear scaling ⇤z = Exy/⇥2, with ⇥ ⌅ 24 µm being
roughly one half of the typical vortex radius.

Probability distribution functions (PDFs) of the in-
plane bacterial velocity are approximately Gaussian,
with a slight broadening due to collective swim-
ming (Fig. ??a). The negative values of the equal-time
spatial velocity correlation function (VCF; Fig. ??a) in-
dicate the existence of vortices [? ] (Fig. ??). The VCF
is remarkably robust with respect to changes in the bac-
terial activity; in particular, the typical vortex radius
Rv ⇤ 40 µm, estimated from the first zero of the VCF,
depends only weakly on the kinetic energy. This result is
consistent with recent findings by Sokolov and Aranson [?
] for free-standing films. The vortex size in 3D is roughly
five times larger than for quasi-2D turbulence in thin mi-
crofluidic chambers [? ], where bacterial swimming and
hydrodynamic interactions are suppressed by the nearby
no-slip boundaries [? ? ]. Unlike the spatial VCF,
the two-time velocity auto-correlation function (VACF)
varies systematically with energy or vorticity (Fig. ??b),
but they collapse when plotted as functions of the dimen-
sionless lag-parameter �⇤1/2

z (inset of Fig. ??b), implying
that the higher the activity the shorter the memory of the
bacterial fluid. Generally, the statistics of 3D bacterial
turbulence di⌅er strongly from conventional 3D Navier-
Stokes turbulence [? ? ], as bacteria inject energy on
the smallest scales, inducing an ‘upward’ energy cascade
towards larger length scales.

We infer the flow of the solvent medium from particle
tracking velocimetry (PTV) analysis of the fluorescence
images, which only show the tracer particles, assuming
that they are passively advected. Data shown in Figs. ??
and ?? are based on 7 movies (40 fps, length 100 s) at
di⌅erent activities. Trajectories of individual tracer par-
ticles were found with a custom algorithm which, depend-
ing on seeding density and tracer dynamics, was able to
identify up to 104 in-plane tracks, the longest typically
lasting 5� 8 s. The e⌅ective sample size was insu⇧cient
to determine reliably the tracer VACFs, but did yield
global flow properties, velocity histograms and equal-
time VCFs. The velocity PDFs, calculated directly from
individual tracer velocities, are approximately Gaussian
with a peak at small velocities from tracer accumulation
near the vortex centers (Fig. ??a).

Estimates from PTV for the medium VCF and enstro-
phy were obtained by interpolating tracer velocities on
a 450⇥ 450 pix subwindow in the center of the imaging
plane using MATLAB’s Delaunay triangulation with a
lattice spacing � = 90

�
pix/Nf , where Nf is the mean

number of tracers detected per frame. The accuracy of
this reconstruction procedure is controlled by the tracer
concentration, which was kept low to limit e⌅ects on the
bacteria motion and to avoid tracking ambiguities (typi-
cally Nf ⇧ [47, 144] for data shown in Figs. ?? and ??).
As a result, the uncertainties for the PTV data are con-
siderably larger than for PIV data (see Fig. ??d). The
interpolated tracer flow fields were used to estimate the
kinetic energy Exy, enstrophy ⇤z, and spatial correlation
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FIG. 1: (color online) Flow fields from experiments and sim-
ulations [? ]. (a) Very dense homogeneous suspension of
B. subtilis overlaid with the PIV flow field showing collective
bacterial dynamics. Longest arrows correspond to velocity of
30 µm/s. (b) Streamlines and normalized vorticity field deter-
mined from PIV data in (a). (c) Turbulent ‘Lagrangian’ flow
of fluorescent tracer particles (false-color) in the same sus-
pension, obtained by integrating emission signals over 1.5 s.
(d) Partial snapshot of a 2D slice from a 3D simulation of
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sequent pairs. During the ⇤10 min imaging period for
each device, the motility of B. subtilis cells decreased
markedly due to oxygen depletion [? ]. The experimental
setup yields 2D projected velocities of 3D suspension mo-
tion (Fig. ??). Data were analyzed under the assumption
that the flow structures are isotropic, as verified by test
measurements at di⌅erent distances from the chamber
bottom. Commercial particle tracking velocimetry (PIV)
software (Dantec Flow Manager) was used to determine
the bacterial flow velocity (vx, vy) from bright-field im-
ages (Fig. ??a,b), corrected for systematic pixel-locking
errors [? ]. Data shown in Figs. ?? and ?? are based on
7 movie segments (40 fps, each 50 s long) corresponding
to 7 di⌅erent activity levels.

Global bacterial flows were quantified by the in-plane
kinetic energy Exy(t) = ⌃(v2
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y)/2⌥ and in-plane en-

strophy ⇤z(t) = ⌃⇥2
z/2⌥, where ⇥z = ⇤xvy � ⇤yvx is the

vertical component of vorticity and ⌃ · ⌥ is a spatial aver-
age. While Exy and ⇤z fluctuate, their time averages
(Exy,⇤z) are approximately constant during the 50 s
time interval used in the data analysis (Fig. ??b,c). Over
two orders of magnitude in energy (Fig. ??d) we observe
the linear scaling ⇤z = Exy/⇥2, with ⇥ ⌅ 24 µm being
roughly one half of the typical vortex radius.

Probability distribution functions (PDFs) of the in-
plane bacterial velocity are approximately Gaussian,
with a slight broadening due to collective swim-
ming (Fig. ??a). The negative values of the equal-time
spatial velocity correlation function (VCF; Fig. ??a) in-
dicate the existence of vortices [? ] (Fig. ??). The VCF
is remarkably robust with respect to changes in the bac-
terial activity; in particular, the typical vortex radius
Rv ⇤ 40 µm, estimated from the first zero of the VCF,
depends only weakly on the kinetic energy. This result is
consistent with recent findings by Sokolov and Aranson [?
] for free-standing films. The vortex size in 3D is roughly
five times larger than for quasi-2D turbulence in thin mi-
crofluidic chambers [? ], where bacterial swimming and
hydrodynamic interactions are suppressed by the nearby
no-slip boundaries [? ? ]. Unlike the spatial VCF,
the two-time velocity auto-correlation function (VACF)
varies systematically with energy or vorticity (Fig. ??b),
but they collapse when plotted as functions of the dimen-
sionless lag-parameter �⇤1/2

z (inset of Fig. ??b), implying
that the higher the activity the shorter the memory of the
bacterial fluid. Generally, the statistics of 3D bacterial
turbulence di⌅er strongly from conventional 3D Navier-
Stokes turbulence [? ? ], as bacteria inject energy on
the smallest scales, inducing an ‘upward’ energy cascade
towards larger length scales.

We infer the flow of the solvent medium from particle
tracking velocimetry (PTV) analysis of the fluorescence
images, which only show the tracer particles, assuming
that they are passively advected. Data shown in Figs. ??
and ?? are based on 7 movies (40 fps, length 100 s) at
di⌅erent activities. Trajectories of individual tracer par-
ticles were found with a custom algorithm which, depend-
ing on seeding density and tracer dynamics, was able to
identify up to 104 in-plane tracks, the longest typically
lasting 5� 8 s. The e⌅ective sample size was insu⇧cient
to determine reliably the tracer VACFs, but did yield
global flow properties, velocity histograms and equal-
time VCFs. The velocity PDFs, calculated directly from
individual tracer velocities, are approximately Gaussian
with a peak at small velocities from tracer accumulation
near the vortex centers (Fig. ??a).

Estimates from PTV for the medium VCF and enstro-
phy were obtained by interpolating tracer velocities on
a 450⇥ 450 pix subwindow in the center of the imaging
plane using MATLAB’s Delaunay triangulation with a
lattice spacing � = 90
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pix/Nf , where Nf is the mean

number of tracers detected per frame. The accuracy of
this reconstruction procedure is controlled by the tracer
concentration, which was kept low to limit e⌅ects on the
bacteria motion and to avoid tracking ambiguities (typi-
cally Nf ⇧ [47, 144] for data shown in Figs. ?? and ??).
As a result, the uncertainties for the PTV data are con-
siderably larger than for PIV data (see Fig. ??d). The
interpolated tracer flow fields were used to estimate the
kinetic energy Exy, enstrophy ⇤z, and spatial correlation
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Can we stabilize vortices ?

Confinement Stabilizes a Bacterial Suspension into a Spiral Vortex
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Confining surfaces play crucial roles in dynamics, transport, and order in many physical systems, but

their effects on active matter, a broad class of dynamically self-organizing systems, are poorly understood.

We investigate here the influence of global confinement and surface curvature on collective motion

by studying the flow and orientational order within small droplets of a dense bacterial suspension.

The competition between radial confinement, self-propulsion, steric interactions, and hydrodynamics

robustly induces an intriguing steady single-vortex state, in which cells align in inward spiraling patterns

accompanied by a thin counterrotating boundary layer. A minimal continuum model is shown to be in

good agreement with these observations.
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Geometric boundaries and surface interactions are
known to have profound effects on transport and order in
condensed matter systems, with examples ranging from
nanoscale edge currents in quantum Hall devices [1,2] to
topological frustration in liquid crystals (LCs) tuned by
manipulating molecular alignment at confining surfaces
[3]. By contrast, in spite of considerable recent interest
[4–8], the effects of external geometric constraints and
confining interfaces on collective dynamics of active bio-
logical matter [9,10], such as polar gels [11,12] and bacte-
rial [13–18] or algal suspensions [19], are not yet well
understood, not least owing to a lack of well-controlled
experimental systems.

At high concentrations, motile rodlike cells exhibit self-
organization akin to nematic LC ordering [13,14,20], with
the added facet of polar alignment driven by collective
swimming [21,22]. Unlike passive LCs, cellular suspen-
sions are in a constant state of flux: at scales between
10 !m and 1 mm, coherent structures (swirls, jets, and
plumes) continually emerge and persist for seconds at a
time [14–17,23,24]. While some progress has been made in
understanding the dynamics of dense bacterial suspensions
in bulk [16,18,23–26], microorganisms often live in porous
habitats like soil, where encounters with interfaces or
three-phase contact lines are common [13,14,27]. Recent
work has clarified how single cells interact with surfaces
[28–31], but it remains unclear how global geometric con-
straints influence their collective motion.

Here, we combine experiment and theory to investigate
how confinement and boundary curvature affect stability

and topology of collective dynamics in active suspensions.
The physical system we study is an oil emulsion containing
droplets of a highly concentrated aqueous suspension of
Bacillus subtilis [Fig. 1(a)]. For drops of diameter d ¼
30–70 !m and height h#25!m, we find that the suspen-
sion self-organizes into a single stable vortex [Fig. 1(b)]
that persists as long as oxygen is available. This pattern is
reminiscent of structures seen in colonies on the surface of
agar [32], spontaneously circulating cytoplasmic extracts
of algal cells [6], and the rotating interior of fibroblasts
on micropatterned surfaces [33]. The vortex flow described
here is purely azimuthal and accompanied by a thin coun-
terrotating boundary layer, consisting of cells swimming
opposite to the bulk. Surprisingly, we observe that the cells
arrange in spirals with a maximum pitch angle of up to 35$

relative to the azimuthal bulk flow direction [Fig. 1(b)].
We suggest that this intriguing helical pattern results from
the interplay of boundary curvature and steric and hydro-
dynamic interactions. Building on this hypothesis, we for-
mulate a simple continuummodel and find good agreement
between its predictions and experimental results.

FIG. 1 (color online). Overview. (a) Experimental setup.
(b) Bright field image of a 40 !m drop, and definition of cell
orientation angle relative to main circulation direction.
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… but only for weak coupling (small gaps)
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is the state one might expect to predominate. In fact,
surprisingly, beyond a critical gap size the system tran-
sitioned to preferring positively-correlated ferromagnetic
states (fig 1B), an e↵ective switch in the sign of the Ising
interaction constant.

To quantify the transition between these two regimes,
we employed the vortex–vortex spin intercorrelation. The
vortex spin Vi,t was defined for each chamber i at frame t
of an experimental movie as the total angular momentum
within the chamber, computed using velocities rescaled
by the root-mean-square speed to account for slowing due
to oxygen depletion (methods). This is known to be a
universal scale factor in bacterial suspensions? , making
subsequently performed experiments directly comparable.
The overall mean spin–spin correlation � = hVi,tVj,t : i ⇠
ji/NORM was then computed for each movie, where the
notation implies an average taken over all times t and all
pairs of connected chambers i, j. On averaging within gap
width bins of diameter WIDTH, we obtain the correlation–
gap size curve in (fig 1C) which shows the transition from
preference for antiferromagnetism (� < 0) to ferromag-
netism (� > 0) at a critical gap width wcrit ⇡ V AL. The
absolute strength of the vortices only decayed at large
gap size as the spontaneous circulation behaviour was
gradually lost (fig 1D), demonstrating that the observed
behaviour was indeed the result of interactions between
neighbouring robust vortices.

The physical importance of edge currents has long been
recognized in classical condensed matter systems, specifi-
cally for the understanding of quantum Hall e↵ects? and
the transport properties of graphene? ? . Here, the be-
haviour of the suspension is driven by analogous bacterial
edge currents: thin regions of dense cell flow along the con-
fining boundaries. In isolated oil-emulsion droplets of bac-
terial suspensions, these edge currents have been observed
circulating in the opposite direction to the bulk flow?

and are known to dictate the circulation behaviour of the
entire droplet bulk through the flows induced by their flag-
ellar propulsion? . The existence of geometry-dependent
edge currents is crucial for the formation of both the anti-
ferromagnetic and ferromagnetic regimes. When the gap
width w < wcrit, in the antiferromagnetic regime, the
edge currents driving a particular vortex will ‘hop’ over
the small gap. Interaction with a neighbouring ‘hopping’
edge current through the gap favours parallel flow, induc-
ing counter-circulation of neighbouring vortices and there-
fore resulting in antiferromagnetic order (fig 2A). How-
ever, when w > wcrit, the edge currents can no longer ‘hop’
over the gaps and instead wind around the pillars. Defi-
nite circulation around a pillar induces matching rotation
senses in its adjacent vortices, resulting in ferromagnetic
order (fig 2B).

To verify these explanations quantitatively, we map the
experimental system onto a two-field spin model com-
prising both vortices Vi and pillar edge currents Ej ar-
ranged in a so-called Union Jack lattice? ? (fig 2C,D).
Upon imposing anti-cooperative interactions between all
lattice nodes, the model accounts for the experimentally
observed regimes: antiferromagnetism from indefinite cur-
rents Ej = 0 and alternating spins Vi = ±V (fig 2C), and

Figure 2: (a) Zoomed-in diagram of edge current mecha-
nism for antiferro (b) Zoomed-in diagram of edge current
mechanism for ferro (c) Union Jack lattice in antiferro con-
figuration (d) Union Jack lattice in ferro configuration (e)
RMS edge current strength hE2i1/2 as fn of gap size

ferromagnetism from definite currents Ej = E and definite
spins Vi = V (fig 2D). Using PIV (methods), we extracted
the edge currents Ej,t for the inner 5 ⇥ 5 lattice of pil-
lars j in each movie frame t of every experiment. From
these measurements, the r.m.s. current hE2

j,ti1/2 exhibits
our hypothesised increase in strength as the inter-cavity
gap widens (fig 2E).

To quantify the interactions, we use a set of continuous-
spin Langevin equations on a Union Jack lattice to model
the full dynamical system of vortices and edge currents at
any particular gap width. Let V be the set of vortex spins
and E the set of pillar edge currents, depending continu-
ously on time t (suppressed for brevity). These interact
through di↵usion in an energy potential
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The first two sums are the vortex–vortex and vortex–edge
interactions with strengths Jv, Jp < 0, where ⇠ denotes
lattice adjacency. The last two sums are individual vortex
and edge current potentials; there is no evidence the edge
currents obey more than a quadratic potential of strength
ap > 0 (si), but the vortices are subject to a quartic po-
tential with bv > 0, potentially double-welled if av < 0 to
permit symmetry breaking into spontaneous circulation
absent other interactions? ? . The dynamics of V and E
are then governed by the set of coupled stochastic di↵er-
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Geometry & frustration

Figure 3: (a) Inferred parameter �Jv as fn of gap size
with our two di↵erent methods (b) Inferred energy barrier
(�a2/b) of potential as fn of gap size (c) Inferred potential
minimum location (a/b) as fn of gap size (d) Example
of fitted double-well spin potential for small gap size (e)
Example of fitted double-well spin potential for medium
gap size (f) Example of fitted double-well spin potential
for large gap size

ential equations (SDEs)

dV = �(@H/@V)dt+ �V dWV ,

dE = �(@H/@E)dt+ �EdWE ,

where WV and WE are vectors of uncorrelated Wiener
processes representing intrinsic and thermal fluctuations.
The parameters �V ,�E give the strength of random per-
turbations from energy-minimising behaviour. In the limit
case �V = �E = �, the long-term distribution from
these SDEs becomes the standard Boltzmann distribution
/ e��H with � = �2/2. All seven parameters in the full
SDE model can be inferred for each experiment by linear
regression on a discretisation of the SDEs (si). By fitting
appropriate functions of gap width w to these estimates
and simulating the resulting model over a range of w (si),
we reproduced a smooth curve of vortex–vortex correlation
matching that of the experiments (fig 1C). Interestingly,
the variances �V and �E are not monotonically increas-
ing in w, but instead peak near wcrit likely as a result
of cell-scale competition between edge currents and bulk
flow (si).
To understand better the nature of the phase transi-

tion, we project the model Hamiltonian (1) onto an ef-
fective square lattice model by making a mean field as-
sumption for the edge currents. In the experiments, Ei

is linearly correlated with the average spin of its vor-
tex neighbours [Ei]V = 1

4

P
Vj⇠Ei

Vj (si). Replacing

Figure 4: (a) Triangular lattice of ferro vortices (b) Line
of antiferro vortices

Ei ! �↵[Ei]V as a mean field variable in the model elim-
inates all edge currents, yielding a square lattice gener-
alised (i.e. continuous-spin) Ising model for the vortices
V. Their mean-field dynamics are governed by the e↵ec-
tive SDE dV = �(@Ĥ/@V)dt+ �dW with energy

Ĥ(V) = �J
X

Vi⇠Vj

ViVj +
X

Vi

�
1
2aV

2
i + 1

4bV
4
i

�
,

which has steady-state probability density / e��Ĥ(V)

with � = �2/2. Note that in the limit a ! �1 and
b ! +1 with a/b fixed, the classic spin- 12 Ising model is

recovered with Vi = ±
p
a/b. The reduced coupling con-

stant J relates to the original two as J ⇡ Jv � 1
2↵Jp (si),

showing how the interplay between Jv and Jp can result
in both antiferromagnetic (Jv < 1

2↵Jp) and ferromagnetic
(Jv > 1

2↵Jp) behaviour. We estimated �J , �a and �b for
each experiment by directly fitting the Boltzmann distri-
bution to spin histograms (fig 3A–C) (si). These estimates
agree with those obtained independently from regression
methods (si). As the gap size increases, the depletion of
cavity circulation strength due to lessening confinement
manifests in shallower troughs of the double-well spin po-
tential (fig 3D–F) as the system moves further away from
a classic spin- 12 model.

Experiments on lattices of di↵erent symmetry groups
lend further insight into the competition between edge cur-
rents and bulk flow. A triangular lattice exclusively shows
ferromagnetism (fig 4A), reminiscent of quantum vortex
lattices induced in Bose–Einstein condensates? , without
evidence of a frustrated vortex-driven state as would be
seen were an antiferromagnetic interaction dominating.
Conversely, a 1D line lattice exclusively exhibits antiferro-
magnetism (fig 4B), with bulk hydrodynamic interactions
seemingly dominating any nascent formation of a unidirec-
tional edge current, implying that bulk dynamics cannot
always be neglected entirely.

Our results and others such as those on topological de-
fect dynamics in active nematic liquid crystals? strongly
suggest that even complex, non-equilibrium systems such
as these can be accurately represented and understood
using known physical paradigms once the correct macro-
scopic viewpoint is found.

3
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Measurements of the shear viscosity in suspensions of swimming Bacillus subtilis in free-standing

liquid films have revealed that the viscosity can decrease by up to a factor of 7 compared to the viscosity of

the same liquid without bacteria or with nonmotile bacteria. The reduction in viscosity is observed in two

complementary experiments: one studying the decay of a large vortex induced by a moving probe and

another measuring the viscous torque on a rotating magnetic particle immersed in the film. The viscosity

depends on the concentration and swimming speed of the bacteria.
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The dynamics of self-propelled biological objects, such
as bacteria, sperm cells, and locusts have attracted enor-
mous attention in both the physics and biology communi-
ties [1–9]. Theoretical studies have predicted a plethora of
dynamic instabilities, anomalous density fluctuations, and
nontrivial stress-strain relations in such active nonequilib-
rium systems [10–12]. A phenomenological model of ac-
tive particle suspensions [13] hinted that the viscosity
becomes a function of the particles’ activity. Recent ana-
lytical studies [14] indicate that the shear viscosity in a
dilute suspension of swimmers can be smaller than the
viscosity of the ambient liquid. Experiments with motile
E. coli have shown that suspensions of bacteria may pos-
sibly violate the dissipation-fluctuation theorem and ex-
hibit nonequilibrium rheology [15]. However, to date, there
have been no direct experimental measurements of the
shear viscosity of bacterial suspensions.

In this Letter we report on experimental studies of the
viscosity of suspensions of Bacillus subtilis, a swimming
aerobic bacterium, in freestanding liquid films. Depending
on the concentration of bacteria and their activity (typical
swimming speed), up to a sevenfold reduction in the vis-
cosity was observed compared to that of the same suspen-
sion of nonmotile bacteria. The effect is interpreted as a
transformation by the swimming bacteria of chemical en-
ergy from nutrients into mechanical energy of fluid motion,
thus counterbalancing the energy loss due to viscous
dissipation.

To measure the shear viscosity, we performed two com-
plementary experiments in a wide range of bacterial con-
centrations and swimming speeds. In the first experiment,
the viscosity was inferred from the decay time of a macro-
scopic vortex created in the film by a moving magnetically
actuated probe. In the second experiment, the viscosity was
extracted from measurements of the torque exerted on a
rotating magnetic particle immersed in the film. The flow
velocity was obtained from the trajectories of fluorescent
tracers. The freestanding film configuration of our experi-
mental cell allows control of the concentration of the

dissolved oxygen, and, thus, the swimming speed of the
aerobic bacteria, which is difficult for standard rheology
techniques.
Experiments were conducted on strain 1085 of Bacillus

subtilis, a rod-shaped bacterium "5 !m long and
"0:7 !m in diameter. The bacteria were grown in a TB
medium (Sigma T5574), concentrated by centrifugation,
and then placed in a fresh TB medium. In a typical experi-
ment, the average concentration of bacteria in the TB
medium was "2# 1010 cm!3, which is approximately
20 times higher than in the stationary phase of growing.
The computer-controlled experimental setups (see Figs. 1
and 4) were based on an earlier design [4] with a number of
important modifications, discussed below. A 10 !l drop of
bacterial suspension was placed between two supporting
crossed pairs of fibers, which formed a small square win-
dow. The drop was stretched to a thickness of $200 !m
by moving a supporting platform attached to one crossed
pair of the fibers. The size of the square window in most of
our experiments was 7 mm# 7 mm.
The speed of aerobic bacteria depends on the concen-

tration of dissolved oxygen: lack of oxygen suppresses the
motility of bacteria. To control the swimming speed, we
replaced the air in the experimental chamber with nitrogen
over a period of approximately 2 min. During this time, the

FIG. 1 (color online). Experimental setup 1: a thin liquid film
with bacteria spans between four movable fibers. A micromani-
pulator with a magnetic deflecting system is used to initiate a
large vortex through movement of the probe.
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cay technique offers a simple and intuitive way to estimate
the viscosity, it is indirect and based on a number of
assumptions about the flow structure, strain rate depen-
dence, etc. To probe the viscosity directly, we used a
technique based on measuring the viscous drag exerted
on a rotating magnetic particle in a rotating magnetic field
(see Fig. 4). We connected orthogonal pairs of magnetic
coils through current amplifiers to synchronized function
generators in order to create a magnetic field with a con-
stant amplitude of 0–10 Gs rotating horizontally in the
plane of the liquid film. A magnetized 100 !m Nickel
particle was placed in the center of the liquid film and
was held in place by gravity (through the gravitational
depression of the film). First, we determined the direction
of the particle’s internal magnetic moment by applying a
relatively strong constant magnetic field (10 Gs) of known
direction, forcing the particle to align its magnetic moment
with the direction of the applied field. Then, using custom-

made MATLAB software, we compared the image for an
arbitrary position and orientation of the particle with the
reference image and extracted the direction of the magnetic
moment of our particle ". This technique has much better
precision than the corresponding integration of angular
velocity of rotation. Second, we applied a rotating mag-
netic field H with an amplitude of 3 Gs and a rotational
frequency of ! ¼ 0:5 Hz.
The viscosity # can be extracted from the balance of

rotational viscous drag Tv / #@t" with the magnetic
torque Tm / !0H sin$, where $ is the angle between the
magnetic moment and the external field and !0 is the
particle’s magnetic moment. In the case of synchronous
rotation of the particle and field, @t" ¼ !, the viscosity
can be extracted from the angle $, since #" ðsin$Þ=!.
We measured the orientation of the particle’s internal
magnetic moment in each recorded frame while filling
the chamber with N2. Because of imperfection in the
particle’s shape and a noncircular depression of the film
by the particle, the angle$ fluctuates slightly near its mean
value (constant stray magnetic fields are excluded by pre-
cise calibration of our magnetic system). However, due to
the change in the viscosity, the mean value of $, and
correspondingly, magnetic torque Tm increases with time
(Fig. 5) as the N2=O2 ratio increases (hence the bacterial
motility decreases). The particle stops rotating when the
motility of the bacteria drops below some critical value: the
viscosity of the suspension becomes so high that the torque
required for rotation of the particle at constant rate ! is
larger than the maximum magnetic torque.
In the course of filling the chamber with N2, the torque

averaged over the period of rotation increased from 0.15 to
1 (measured in units of maximal possible torque) and then
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FIG. 3. Viscosity for 6 different concentrations of bacteria. #0

is the viscosity of the liquid without bacteria. Inset: instant
viscosity vs time during decay of the vortex for density n ¼
2:9% 1010. The dashed line is the average value of the viscosity
during the slow phase of decay. See movies 1 and 2 in [19].
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FIG. 5 (color online). Viscosity vs speed of the bacteria for
two concentrations: (a) n & 1:8% 1010 cm'3 (j) and
(b) n & 1010 cm'3 (d). Corresponding concentrations are in-
dicated in Fig. 3 [areas (a) and (b)]. #0 is the viscosity of the
solution of immobilized bacteria. Inset: Magnetic torque Tm (j)
calculated as sinð$Þ and typical velocity of tracers Vm ¼ 2hjVrji
(d) vs time. The dashed line shows the nonphysical values of Tm

and # calculated for a magnetic particle that is stuck.

Magnetic coils

Nickel
particle

Liquid film
with bacteria

FIG. 4 (color online). Left: a thin liquid film containing a
bacterial suspension and submersed Ni particle spanning be-
tween four movable fibers. Two pairs of magnetic coils create a
rotating magnetic field (four green arrows). Right: Field of view
of the microscope. The particle’s magnetic moment is shown by
a short yellow arrow and the external magnetic field by a long
green arrow. See movie 3 in [19].

PRL 103, 148101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

2 OCTOBER 2009

148101-3



changing the bacteria morphology as little as possible.
The bacteria are asphyxiated with Sodium Azide and
kept at T ¼ 4 "C overnight. Observation under a micro-
scope of the bacteria within a fluid at rest confirmed the
nonmotility. Note however that it is likely that the flagella
unbundle if the bacterium does not swim, changing the
morphology of nonmotile bacteria compared to their
motile counterparts.

To obtain the shear viscosity, we adapted a microfluidic
device [24] comparing the Newtonian viscosities of two
liquids. The device is a Y-shaped Hele-Shaw cell of height
h, such that each branch receives a different fluid, respec-
tively fluid 0 of viscosity !0 and fluid 1 of viscosity !1

(see Fig. 1). Both flows are driven at an identical flow rateQ.
In a Hele-Shaw approximation, the dominant shear rate
occurs in the direction of the cell height z. In addition, for
a viscosity ratio close to one, the velocities of the two fluids
in the main channel differ only slightly and the shear
occurring at the interface of the two fluids in the x direction
can be neglected compared to the shear in the z direction.
Under these conditions, at steady state the viscosity ratio
!1=!0 can be directly obtained from the position of the
interface between both fluids d1=d0 [24]. Guillot et al. [24]
have also used this approach for non-Newtonian fluids,
where it corresponds to the measurement of an apparent
viscosity. Here we will follow the same approach and will
verify our method subsequently. The suspension of bacteria
is flowed into one arm and the suspending Newtonian fluid
into the other arm. The interface position is then measured
at various flow rates Q. The experimental data is presented
as a function of themaximum shear rate obtained by assum-
ing a parabolic flow profile in the channel height _"M ¼
ð6QÞ=ðh2d1Þ, where d1 is the lateral width occupied by the
suspension. The relative viscosity !r ¼ is then

!r ¼
!1

!0
¼ d1

d0
: (1)

This microfluidic device has the advantage of measuring
a viscosity ratio and provides very good resolution of the
suspension viscosity independent of its absolute value or
the applied shear rate. We use a very high precision two-
syringe pump from nemeSYS and a precision syringe
(Hamilton Gastight 1805RN) of a very small volume
(50 #l) allowing us to impose identical and very small
flow rates (down to Q ¼ 0:5 nl= sec ) on both arms. Test
experiments with passive suspensions formed by PS beads
(micromod, diameter 2 #m) at small volume fractions
($ ¼ 1–10%) have been carried out and show that our
device can measure relative viscosities for these concen-
trations with high precision.
The Y-shaped channel was fabricated completely from

PDMS using a soft-lithography technique. The channel
thickness is h ¼ 100 #m. The main channel width is w ¼
600 #m and the two inlet branch widths are w=2. Inlets are
connected by 500 #m diameter tubes to the two-syringe
pump. The total length of the main channel is 40 mm.
Suspensions were prepared (see [9]) with a number of bac-
teria per unit volume n in the range 1:9% 1012 l&1 < n<
25:6% 1012 l&1. The concentration of bacteria is deter-
mined by measuring the optical density of the suspension
and using a calibration curve. The volume fraction is esti-
mated using the space occupied by the body of each bacteria
vb ¼ 1 #m3 such that$ ¼ nvb, yielding a range of 0:19<
$< 2:56%. The flowing suspension was observed using an
inverted microscope (Zeiss-Observer, Z1) connected to a
digital camera (PixeLINK PL-A741-E, 1280 % 1024 pix2)
capturing videos at a frame rate of 22 images/s using white
light. Low magnification 2:5% allowed an extended view of
the channel (see Fig. 1). The interface reaches its equilibrium
position at approximately 600 #m from the junction of the
two inlet channels and this position is then stable over the
whole length of the channel. Awidening of the interface is
observed further downstream from the inlet due to ‘‘active’’
diffusion of the swimming bacteria. We have chosen the
sample region (indicated by the red rectangle on Fig. 1) in
such away as to be in steady state conditionswhile avoiding
significant widening of the interface.
During an experiment we increase the flow rate step by

step from Q ¼ 0:5 nl= sec to Q ¼ 100 nl= sec . Note that
we have verified for all experiments that identical results
are obtained when subsequently decreasing the flow rate.
In Fig. 1, the shape of the interface obtained by averaging
over 120 successive images is displayed for the measure-
ment area. To quantitatively determine the interface posi-
tion, we measure the mean light intensity hIiðyÞ across
the channel width averaging in the x direction over a
distance of 600 #m (see red rectangle in Fig. 1). CðyÞ ¼
lnðhIiðyÞ=hIi0Þ, with hIi0 being the mean intensity in the
absence of bacteria, is then fitted with an error function
erfðyÞ to obtain the interface position yI. Once the interface
position is determined, we extract the relative viscosity
[Eq. (1)] and associate it with _"M.

FIG. 1 (color online). Experimental setup. (a) Time-averaged
image of the microchannel (W ¼ 600 #m) for Q ¼ 10 nl= sec
in each branch and volume fraction $ ¼ 0:35%. Bacteria are
visualized using a white light microscope. The red and blue
frames indicate the measurement areas. (b) Concentration profile
CðyÞ normalized by the maximum concentration CM (black line)
and error function fit used to determine the interface position
(red line).
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Experimental observations are presented in the inset of
Fig. 2(a) displaying averaged images for flow rates of
Q ¼ 0:5 nl= sec , Q ¼ 2 nl= sec , and Q ¼ 10 nl= sec for
a suspension at a volume fraction of ! ¼ 0:35%. When
increasing the flow rate the interface position changes from
a value above the midposition to a value below the midpos-
ition indicating a change in the suspension viscosity from
lower than the viscosity of the suspending fluid to greater.

Quantitative measurements are given in Fig. 2(a) showing
the relative viscosity "r of suspensions of motile and
nonmotile bacteria as a function of the maximum shear
rate for a concentration of ! ¼ 0:8%. For the motile
bacteria we observe a relative viscosity below one at small
shear rates, an increase of viscosity with increasing shear
rate (shear thickening) and then shear thinning occurs at
higher shear rates. The maximum viscosity is observed at a
value of approximately _#M ¼ 20 s"1. This nonmonotonic
behavior as a function of shear rate is in agreement with the
results of Saintillan [20] obtained for slender bacteria and
can be explained as follows. For shear rates smaller than
the inverse of a typical time of bacteria swimming, nor-
mally taken as the ratio between the swimming speed and
the length of the bacterium U=D, bacteria activity is domi-
nant and the viscosity is decreased. For shear rates larger
than this value the activity of the bacteria becomes negli-
gible compared to the effect of the shear flow and the
behavior of a passive suspension of rods is recovered.
In our case U=D# 10 s"1 is indeed comparable to _#M ¼
20 s"1. The viscosity of the nonmotile bacteria does not
show a decrease in viscosity below one or shear thickening
behavior. This nonmonotonic behavior is thus undoubtedly
due to bacteria activity. For shear rates larger than _#M ¼
20 s"1 the behavior of the two curves becomes similar and
is comparable to a passive suspension of rods. Results for
different concentrations are given in Fig. 2(b) showing the
relative viscosity "r as a function of the maximum shear
rate for various concentrations! ¼ 0:2%, 0.8%, 2.3%, and
2.5%. Note that for the lowest concentration the viscosity
of the Newtonian suspending fluid is recovered for all shear
rates validating again our rheological device. For all other
concentrations, the curves display the same qualitative
behavior as shown on Fig. 2(a) and the maximum in
viscosity occurs at the same shear rate for all concentra-
tions. For all of these cases, the shear thinning and shear
thickening character of the active suspensions are weak

and power law indices n (using " ¼ K _#ðn"1Þ) close to one
are found for both regimes for all concentrations.
Figure 2(c) shows the relative viscosity as a function of
the volume fraction ! at various shear rates _#M ¼ 1, 2, 4,
and 20 s"1. A decrease in viscosity below one is observed
for the small shear rates, confirming in this way the theo-
retical predictions [19,20]. With increasing concentration a
sharp increase of viscosity takes place for all shear rates,
corresponding to a semi-dilute regime. In our case this
regime is observed for concentrations above approximately
1%. Similar behavior was also observed by Sokolov et al.
[11] using vortex decay in a suspension of Bacilus subtilis
in a liquid film and has been predicted by Ryan et al. [25]
in their simulations.
One of the advantages of our microfluidic device is that

we can directly access the local velocity and bacteria
concentration profiles as a function of the channel height.
Bacteria moving in the flow were visualized with a high

FIG. 2 (color online). Rheology curves. (a) Relative viscosity
versus maximum shear rate for motile and nonmotile bacteria at
! ¼ 0:8%. Inset: Three averaged pictures of the bilaminar flow
for flow rates of Q ¼ 0:5 nl=s, Q ¼ 2 nl=s, and Q ¼ 10 nl=s,
respectively, for a ! ¼ 0:35% bacteria suspension. These im-
ages are averaged over 120 images at 22im/s and observed with a
2:5& magnification using phase contrast. The dotted line repre-
sents the center position in the channel width. The scale bar
corresponds to 200 $m. (b) "r versus _#M at several volume
fractions (c) "r versus ! at several shear rates. The errors bars
are estimated using the detection error of the interface position.
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The viscosity of an active suspension of E. coli bacteria is determined experimentally as a function of

the shear rate using a Y-shaped microfluidic channel. From the relative suspension viscosity, we identify

rheological thickening and thinning regimes as well as situations at low shear rate where the viscosity

of the bacteria suspension can be lower than the viscosity of the suspending fluid. In addition, bacteria

concentration and velocity profiles in the bulk are directly measured in the microchannel.
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The fluid mechanics of microscopic swimmers in sus-
pension have been widely studied in recent years. Bacteria
[1,2], algae [3,4], or artificial swimmers [5] dispersed in a
fluid display properties that differ strongly from those of
passive suspensions [6]. The physical relationships govern-
ing momentum and energy transfer as well as constitutive
equations vary drastically for these suspensions [7,8].
Unique physical phenomena caused by the activity of
swimmers were recently identified such as enhanced
Brownian diffusivity [1,8–10], uncommon viscosity
[4,11,12], active transport and mixing [13], or the extrac-
tion of work from chaotic motion of bacteria [12,14]. The
presence of living and cooperative species may also induce
collective motion and organization at the mesoscopic or
macroscopic level [15,16], impacting the constitutive
relationships in the semi-dilute or dense regimes.

The E. coli bacterium (typical length D ¼ 2 !m) pos-
sesses a quite sophisticated propulsion apparatus consist-
ing of a collection of flagella (7–10 !m length) organized
in a bundle attached at the rear of the bacterium and
rotating counterclockwise [17]. It has the ability to change
direction (a tumble) at a given frequency by unbundling
its flagella [18]. In spite of the inherent complexity of the
propulsion features, low Reynolds number hydrodynamics
impose a long range flow field which can be modeled as an
effective force dipole. Due to the thrust coming from the
rear, E. coli are described as ‘‘pushers,’’ hence defining a
sign for the force dipole which has a crucial importance on
the rheology of active suspensions [7]. For a dilute sus-
pension of force dipoles, Haines et al. [19] and Saintillan
[20] derived an explicit relation relating viscosity and shear
rate. They obtained an effective viscosity similar in form to
the classical Einstein relation for dilute suspensionsusing
the space occupied by the body: "¼"0ð1þK#Þ ("0 is the
suspending fluid viscosity and # the volume fraction).
These theories predict a negative value for the coefficient
K for pushers at low shear rates, meaning the suspension
can exhibit a lower viscosity than the suspending fluid.
The theoretical assessment of shear viscosity relies on an
assumed statistical representation of the orientations of the

bacteria, captured by a Fokker-Plank equation and a kine-
matic model for the swimming trajectories [21,22].
Despite the large number of theoretical studies, few

experiments have been conducted. With Bacillus subtilis
(pushers) trapped in a liquid film, Sokolov et al. [11] have
shown that a vorticity decay rate could be associated with a
strong decrease of shear viscosity in the presence of bac-
teria. For algae (pullers), Rafai et al. [4] have shown that
the effective viscosity measured in a classical rheometer
is larger than the viscosity of the corresponding dead
(passive) suspension. However, no measurements of the
viscosity of a dilute suspension of pushers under controlled
shear conditions exist to date. This is mainly due to the fact
that one has to assess low viscosities near the viscosity of
water at very low shear rates to probe the theoretical
predictions. These parameters are typically outside of the
resolution of a classical rotational rheometer and have
thus made these measurements inaccessible. In this letter,
we present the first measurements of the shear viscosity of
a suspension of pushers using a microfluidic device to
overcome these difficulties and obtain the relative viscosity
of an active suspension for a large range of shear rates
and bacteria concentrations. Our setup also allows direct
visualization of the flow as well as the spatial distributions
of bacteria in the flow.
The wild type E. coli W used here are prepared follow-

ing the experimental procedures described in Refs. [9,23].
The strain is grown overnight in rich medium (LB). After
washing, it is transferred into MMA, a motility medium
supplemented with K-acetate (0.34 mM) and polyvinyl
pyrolidone (PVP: 0.005%). The sample is then incubated
for at least one hour. To avoid bacteria sedimentation,
Percoll is mixed with MMAP 1 vol=1 vol (isodense
conditions). The suspending fluid is Newtonian with vis-
cosity " ¼ 1:28& 10!3 Pa s at 22 'C. All experiments
are performed at a fixed temperature T ¼ 25 'C. In a fluid
at rest our bacteria swim at an average speed of U ¼
20 !m=s and tumble at a typical frequency of 1 Hz. To
gain unambiguous information on the role of bacteria
activity we have also worked with nonmotile bacteria,
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Turning Bacteria Suspensions into Superfluids
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The rheological response under simple shear of an active suspension of Escherichia coli is determined in
a large range of shear rates and concentrations. The effective viscosity and the time scales characterizing the
bacterial organization under shear are obtained. In the dilute regime, we bring evidence for a low-shear
Newtonian plateau characterized by a shear viscosity decreasing with concentration. In the semidilute
regime, for particularly active bacteria, the suspension displays a “superfluidlike” transition where the
viscous resistance to shear vanishes, thus showing that, macroscopically, the activity of pusher swimmers
organized by shear is able to fully overcome the dissipative effects due to viscous loss.
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Owing to its relevance in medicine and ecology and its
importance for technological applications, the hydrody-
namics of active suspensions is at the center of many recent
fundamental studies [1,2]. In nature, wide classes of living
microorganisms move autonomously in fluids at very low
Reynolds numbers [3]. Their motility stems from a variety
of propulsive flagellar systems powered by nanomotors.
For bacteria such as Bacillus subtilis or E. coli, the
propulsion comes from the rotation of helix-shaped flagella
creating a propulsive force at the rear of the cell body [4].
Consequently, many original fluid properties stem from
the swimming activity [5–11]. Because of hydrodynamic
interactions, bacteria may produce mesoscopic patterns
of collective motion sometimes called “bioturbulence”
[12–17]. In a flow, these bacteria may organize spatially
[18], and under shear, for pusher swimmers, the swimming
activity yields the possibility to decrease the macroscopic
viscosity to values below the suspending fluid viscosity [5].
In the dilute regime, kinetic theories via a simple account of
the dominant long range hydrodynamic field [19–22]
provide closed forms for shear viscosity as a function of
shear rate. Remarkably, at a low shear rate, these theories
predict a Newtonian plateau with a viscosity decreasing
linearly with concentration [19–21]. On the other hand,
phenomenological theories were also proposed to describe
macroscopically active suspensions via a coupling of
hydrodynamic equations with polar and/or nematic order
parameters [2,5,6,23–25]. A striking outcome of these
theories is that, for a set of coupling parameters rendering
essentially a high swimming activity, a self-organized
motive macroscopic flow may show up in response to
shear [23–25]. This onset of a dissipationless current is
described in analogy with the superfluidity transition
[23,24] of liquids. Experimental evidence for viscosity
reduction to values below the suspending fluid viscosity

was brought for B. subtilis [8] and E. coli [26] suspensions.
However, no viscosity vs shear rate and vs time under
steady and uniform shear exists. Moreover, these pioneer-
ing experiments did not provide evidence for the low-shear
viscous plateau which is at the core of all theoretical
predictions in the dilute regime. Finally, the phenomeno-
logical predictions for the nonlinear regime have remained
so far unobserved. Noticeably, for unicellular algae, viewed
as “puller” swimmers, the predicted low-shear rate increase
of viscosity was measured experimentally [9]. In this
Letter, in addition to a viscosity vs shear rate and vs time
characterization of an E. coli suspension, we provide, in the
dilute regime and at a low shear rate, experimental evidence
for a linear decrease of the apparent viscosity with bacteria
concentration. We also explore regimes of higher concen-
tration and describe the conditions where we observe a
transition to a dissipation-free macroscopic flow.
The active fluids considered here are prepared out of

two strains of wild type E. coli (ATCC9637 and RP437)
suspended into a minimal medium where the bacteria
are still motile but do not divide. ATCC9637 is cultured
overnight at 25 °C in LB medium shaken at 240 rpm.
RP437 is cultured overnight at 30 °C and shaken at 240 rpm
in M9 minimal medium supplemented with 1 mg=ml
casamino acids and 4 mg=ml glucose. Next, the culture
is washed twice by centrifugation (2300 g for 10 min),
and the cells are resuspended into a motility medium
containing 10 mM potassium phosphate pH 7.0,
0.1 mM K-EDTA, 34 mM K-acetate, 20 mM sodium
lactate, and 0.005% polyvinylpyrrolidone (PVP-40). To
avoid bacterial sedimentation, the suspension is mixed
with Percoll (1 vol=1 vol). The bacteria concentration n
is represented by its volume fraction ϕ ¼ n=Vb, where Vb
is the bacteria body volume chosen as the classical
value Vb ¼ 1 μm3.
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Shear stress is measured in a low-shear Couette rhe-
ometer (Contraves 30) designed especially for probing low-
viscosity fluids. The inner bob (radius Ri ¼ 5.5 mm, length
8 mm, and underside cone angle 20°) is suspended by a
torsion wire into a cup (inner radius Ri ¼ 6 mm). The cup
rotates at an angular rate Ω controlled by a computer. The
corresponding shear rate is _γ ¼ ðΩR0=R0 − RiÞ and is
given with a precision of 0.5%. The central feature, making
this instrument very precise for low stress measurements, is
that the central bob is kept fixed by a feedback counter-
rotation of the suspending wire. The instrument measures
the compensating torque required to keep the torsion wire
at its null position. The torque is then converted into shear
stress every 0.7 s with a sensitivity of 10−3 mPa.
Importantly, due to the small surface area between the

fluid and the air, the flux of O2 is insufficient to compensate
the amount of O2 consumed by the bacterial activity. To
avoid bacteria suffocation and, consequently, a severe drop

of activity, we supplement the suspension with L-serine,
an amino acid allowing the bacteria to keep a significant
swimming activity in the absence of oxygen [27,28].
Therefore, in the early instants of the measurements, the
bacteria are still in oxygenated conditions, but, since they
consume the oxygen, their mean velocity and diffusion
coefficient decrease and stabilize within about 10 min.
Consequently, we observe a continuous increase in the
suspension viscosity until a constant value is reached.
Then, by metabolizing L-serine, bacteria sustain a constant
activity lasting for a few hours (see Supplemental Material
[29]). To obtain a full rheogram as displayed in Fig. 1(b),
the following protocol is used. A volume (1.25 ml) of the
suspension is poured into the rheometer’s cup, and then the
bob is set into place. After 30 s of rest, the cup is rotated for
30 s at a steady state shear rate. The rotation is then stopped
for 30 s. These steps are repeated with increasing shear rate
values. Once the highest _γ is reached, the procedure is

(a)

(b) (c)

FIG. 1 (color online). ShearstressresponseforanE.colisuspension(ATCC9637strain,T ¼ 25 °C). (a)ShearstressΣ rescaledbytheapplied
shear rate _γ during the rotation to display an effectiveviscosityΣ=_γ in the sheared regime.Gray and black lines: Fluidwithout bacteria (ϕ ¼ 0).
Colored solid lines: Fluidwith bacteria (ϕ ¼ 0.67%). Various _γ are applied ranging from 64 (dark blue line) down to 0.022 s−1 (dark red line).
(b) Relative viscosity η=η0 averaged over three realizations as a function of _γ (empty square, ϕ ¼ 0.11%; empty circle, ϕ ¼ 0.21%; empty
triangle,ϕ ¼ 0.44%; empty diamond,ϕ ¼ 0.67%). The solid line is an adjustment by theCarreau law: η=η0 ¼ 1.08 − 0.795=½1þ ð_γ=0.6Þ2&.
Theverticaldashed lineshows _γc; below this shear rateηð_γÞ=η0 is less than1. (c)Valuesof theplateauviscosityηp=η0 as functionsof thebacteria
volume fraction ϕ for very low shear rates (empty circle, _γ ¼ 0.022 s−1; empty square, _γ ¼ 0.04 s−1; empty triangle, _γ ¼ 0.075 s−1).

PRL 115, 028301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JULY 2015

028301-2

repeated in decreasing order to verify the reversibility of the
viscous response.
Rheology measurements were first performed to obtain

viscosity at volume fractions between ϕ ¼ 0.1% and
0.67%. In Fig. 1(a), we display the stress responses
obtained for a suspension at a given ϕ, for various shear
rates. For the suspending fluid alone (a Newtonian fluid,
η0 ¼ 1.4 mPa · s), stress-time responses, at the start or at
the stop of the applied shear, are fast and correspond to the
device compliance (gray and black lines). A similar
behavior is observed for the suspensions probed at high
shear rates which moreover display a viscosity higher
than η0 as observed classically for suspensions of passive
particles. However, at low shear rates, a strikingly different
behavior is observed. When shear starts, the stress jumps to
the value measured in the absence of bacteria, and then,

after an exponential decrease, lasting for a few seconds, a
steady effective viscosity—η—is reached. When shear
stops, the stress decreases abruptly and eventually changes
sign. Finally, the stress relaxes exponentially to 0 with a
characteristic time τ−r not very different from the time scale
τþr , needed to reach a steady viscous response under shear
[data in Fig. 2(c)]. In this last stage, the bacterial motion
induces a motive stress on the inner bob.
Figure 1(b) shows the suspension viscosity η as a

function of _γ for different volume fractions ranging
from ϕ ¼ 0.11% (1.1 × 109 bact=mL) up to ϕ ¼ 0.67%
(6.7 × 109 bact=mL). We observe the three regimes pre-
dicted by the theories [19,20], (i) at high shear rates
(_γ > 1 s−1), the active contribution to viscosity is negli-
gible and a Newtonian plateau appears akin to suspensions
of passive particles of the same shape; (ii) below a critical

(a) (b)

(c)

FIG. 2 (color online). (a) Shear stress response Σ rescaled by the shear rate _γ for the ATCC9637 strain (blue lines) and RP437 strain
(red lines). All experiments are performed with _γ ¼ 0.04 s−1. In some cases, the stress response can reach negative values. (b) Variation
of the viscosity ηp=η0 as a function of the volume fraction of bacteria ϕ in oxygenated conditions (filled symbols) and deoxygenated
conditions (empty symbols). Dashed lines are meant as guides only. (c) Relaxation time τr obtained by adjusting exponentially the stress
relaxation at the start of the shear (rotation) and at the end of the shear (relaxation) as a function of the mean distance (ξ ¼ ϕ−ð1=3Þ)
between bacteria (empty symbols, deoxygenated conditions; filled symbols, oxygenated conditions; blue symbols, ATCC9637 strain;
red symbols, RP437 strain).
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repeated in decreasing order to verify the reversibility of the
viscous response.
Rheology measurements were first performed to obtain

viscosity at volume fractions between ϕ ¼ 0.1% and
0.67%. In Fig. 1(a), we display the stress responses
obtained for a suspension at a given ϕ, for various shear
rates. For the suspending fluid alone (a Newtonian fluid,
η0 ¼ 1.4 mPa · s), stress-time responses, at the start or at
the stop of the applied shear, are fast and correspond to the
device compliance (gray and black lines). A similar
behavior is observed for the suspensions probed at high
shear rates which moreover display a viscosity higher
than η0 as observed classically for suspensions of passive
particles. However, at low shear rates, a strikingly different
behavior is observed. When shear starts, the stress jumps to
the value measured in the absence of bacteria, and then,

after an exponential decrease, lasting for a few seconds, a
steady effective viscosity—η—is reached. When shear
stops, the stress decreases abruptly and eventually changes
sign. Finally, the stress relaxes exponentially to 0 with a
characteristic time τ−r not very different from the time scale
τþr , needed to reach a steady viscous response under shear
[data in Fig. 2(c)]. In this last stage, the bacterial motion
induces a motive stress on the inner bob.
Figure 1(b) shows the suspension viscosity η as a

function of _γ for different volume fractions ranging
from ϕ ¼ 0.11% (1.1 × 109 bact=mL) up to ϕ ¼ 0.67%
(6.7 × 109 bact=mL). We observe the three regimes pre-
dicted by the theories [19,20], (i) at high shear rates
(_γ > 1 s−1), the active contribution to viscosity is negli-
gible and a Newtonian plateau appears akin to suspensions
of passive particles of the same shape; (ii) below a critical
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FIG. 2 (color online). (a) Shear stress response Σ rescaled by the shear rate _γ for the ATCC9637 strain (blue lines) and RP437 strain
(red lines). All experiments are performed with _γ ¼ 0.04 s−1. In some cases, the stress response can reach negative values. (b) Variation
of the viscosity ηp=η0 as a function of the volume fraction of bacteria ϕ in oxygenated conditions (filled symbols) and deoxygenated
conditions (empty symbols). Dashed lines are meant as guides only. (c) Relaxation time τr obtained by adjusting exponentially the stress
relaxation at the start of the shear (rotation) and at the end of the shear (relaxation) as a function of the mean distance (ξ ¼ ϕ−ð1=3Þ)
between bacteria (empty symbols, deoxygenated conditions; filled symbols, oxygenated conditions; blue symbols, ATCC9637 strain;
red symbols, RP437 strain).
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Shear stress is measured in a low-shear Couette rhe-
ometer (Contraves 30) designed especially for probing low-
viscosity fluids. The inner bob (radius Ri ¼ 5.5 mm, length
8 mm, and underside cone angle 20°) is suspended by a
torsion wire into a cup (inner radius Ri ¼ 6 mm). The cup
rotates at an angular rate Ω controlled by a computer. The
corresponding shear rate is _γ ¼ ðΩR0=R0 − RiÞ and is
given with a precision of 0.5%. The central feature, making
this instrument very precise for low stress measurements, is
that the central bob is kept fixed by a feedback counter-
rotation of the suspending wire. The instrument measures
the compensating torque required to keep the torsion wire
at its null position. The torque is then converted into shear
stress every 0.7 s with a sensitivity of 10−3 mPa.
Importantly, due to the small surface area between the

fluid and the air, the flux of O2 is insufficient to compensate
the amount of O2 consumed by the bacterial activity. To
avoid bacteria suffocation and, consequently, a severe drop

of activity, we supplement the suspension with L-serine,
an amino acid allowing the bacteria to keep a significant
swimming activity in the absence of oxygen [27,28].
Therefore, in the early instants of the measurements, the
bacteria are still in oxygenated conditions, but, since they
consume the oxygen, their mean velocity and diffusion
coefficient decrease and stabilize within about 10 min.
Consequently, we observe a continuous increase in the
suspension viscosity until a constant value is reached.
Then, by metabolizing L-serine, bacteria sustain a constant
activity lasting for a few hours (see Supplemental Material
[29]). To obtain a full rheogram as displayed in Fig. 1(b),
the following protocol is used. A volume (1.25 ml) of the
suspension is poured into the rheometer’s cup, and then the
bob is set into place. After 30 s of rest, the cup is rotated for
30 s at a steady state shear rate. The rotation is then stopped
for 30 s. These steps are repeated with increasing shear rate
values. Once the highest _γ is reached, the procedure is

(a)

(b) (c)

FIG. 1 (color online). ShearstressresponseforanE.colisuspension(ATCC9637strain,T ¼ 25 °C). (a)ShearstressΣ rescaledbytheapplied
shear rate _γ during the rotation to display an effectiveviscosityΣ=_γ in the sheared regime.Gray and black lines: Fluidwithout bacteria (ϕ ¼ 0).
Colored solid lines: Fluidwith bacteria (ϕ ¼ 0.67%). Various _γ are applied ranging from 64 (dark blue line) down to 0.022 s−1 (dark red line).
(b) Relative viscosity η=η0 averaged over three realizations as a function of _γ (empty square, ϕ ¼ 0.11%; empty circle, ϕ ¼ 0.21%; empty
triangle,ϕ ¼ 0.44%; empty diamond,ϕ ¼ 0.67%). The solid line is an adjustment by theCarreau law: η=η0 ¼ 1.08 − 0.795=½1þ ð_γ=0.6Þ2&.
Theverticaldashed lineshows _γc; below this shear rateηð_γÞ=η0 is less than1. (c)Valuesof theplateauviscosityηp=η0 as functionsof thebacteria
volume fraction ϕ for very low shear rates (empty circle, _γ ¼ 0.022 s−1; empty square, _γ ¼ 0.04 s−1; empty triangle, _γ ¼ 0.075 s−1).
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Abstract. We study the dynamics of active polar fluids in a Taylor–Couette
geometry where the fluid is confined between two rotating coaxial cylinders. This
system can spontaneously generate flow fields and thereby set the two cylinders
into relative rotation either by spontaneous symmetry breaking or via asymmetric
boundary conditions on the polarization field at the cylinder surfaces. In the
presence of an externally applied torque, the system can act as a rotatory motor
and perform mechanical work. The relation between the relative angular velocity
of the cylinders and the externally applied torque exhibits rich behaviors such
as dynamic instabilities and the coexistence of multiple stable steady states for
certain ranges of parameter values and boundary conditions.
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We analyze the behavior of a suspension of active polar particles under shear. In the absence of external
forces, orientationally ordered active particles are known to exhibit a transition to a state of nonuniform
polarization and spontaneous flow. Such a transition results from the interplay between elastic stresses, due to
the liquid crystallinity of the suspension, and internal active stresses. In the presence of an external shear, we
find an extremely rich variety of phenomena, including an effective reduction !increase" in the apparent
viscosity depending on the nature of the active stresses and the flow-alignment property of the particles, as well
as more exotic behaviors such as a nonmonotonic stress–strain-rate relation and yield stress for large activities.
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I. INTRODUCTION

Colonies of swimming bacteria, in vitro mixtures of cy-
toskeletal filaments and motor proteins, and vibrated granu-
lar rods are examples of active systems composed of inter-
acting units that consume energy and collectively generate
motion and mechanical stresses. Due to their elongated
shape, active particles can exhibit orientational order at high
concentration and have been likened to “living liquid crys-
tals” #1$. Their rich collective behavior includes nonequilib-
rium phase transition and pattern formation on mesoscopic
scales #2–10$. It has been modeled by continuum equations
built by modifying the hydrodynamics of liquid crystals to
include nonequilibrium terms that account for the activity of
the system #2–4$ or derived from specific microscopic mod-
els #11,12$.

A striking property of confined active liquid crystals is the
instability of the uniform aligned homogeneous state and the
onset of spontaneously flowing states, both stationary and
oscillatory #13,14$. This occurs because local orientational
order generates active stresses that are in turn balanced by
flow, yielding a state that can support local inhomogeneities
in the flow velocity and the local alignment, while maintain-
ing a net zero force. Loosely speaking, a confined active
liquid crystal “shears itself” even in the absence of externally
applied forces. It is then not surprising that the rheology of
such active liquid crystals in response to an external shear
will be very rich.

Phenomenological work by Hatwalne et al. #15$ first
pointed out that activity lowers the linear bulk viscosity of
tensile suspensions, such as most swimming bacteria, while
it enhances the viscosity of contractile systems, and that this
enhancement may become very large near the isotropic-
nematic transition. A semimicroscopic model of contractile
suspensions of motor-filaments mixtures confirmed these re-
sults and predicted an actual divergence of the viscosity of
contractile suspensions at the transition #16$. Recent numeri-
cal studies of active nematic films by Cates et al. #17$ con-
firmed that this result survives when the effect of boundaries
is included. In addition, it was found that tensile nematic
suspensions can enter a regime of vanishing apparent viscos-

ity in proximity of the isotropic-nematic phase transition.
Such a “superfluid” window was interpreted by the authors
of Ref. #17$ as the appearance of bulk shear bands accom-
modating a range of macroscopic shear rates at zero stress.
Finally, the predicted activity-induced thinning of bacterial
suspensions has been demonstrated in recent experiments in
Bacillus subtilis #18–20$.

Active particles exert forces on the surrounding fluid, re-
sulting in local tensile or contractile stresses proportional to
the amount of orientational order, !ij

" %"ninj, where " is
proportional to the force exerted by the active particles on
the fluid and n a unit vector denoting the direction of broken
orientational symmetry. The sign of " determines whether
the flow generated by the active particles is tensile !"#0" or
contractile !"$0". In the case of swimming organisms, the
former situation describes “pushers,” i.e., most bacteria !e.g.,
E. coli", while the latter corresponds to “pullers” !e.g.,
Chlamydomonas" !see Fig. 1" #26$. An important distinction
between uniaxial active particles concerns the possibility of
forming phases with or without a nonzero macroscopic po-
larization. Apolar particles are fore-aft symmetric and can
form nematic phases in which macroscopic quantities are
invariant for n→−n. Polar particles can also form phases
characterized by a nonzero macroscopic polarization in the
direction of a polar director p in which they undergo collec-
tive motion with mean velocity v%%p, with % is the typical
self-propulsion velocity. This directed motion occurring in

FIG. 1. !Color online" Schematic example of the flow field sur-
rounding tensile !left" and contractile !right" swimming
microorganisms.
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We study numerically the rheological properties of a slab of active gel close to the isotropic-nematic
transition. The flow behavior shows a strong dependence on the sample size, boundary conditions, and on
the bulk constitutive curve, which, on entering the nematic phase, acquires an activity-induced disconti-
nuity at the origin. The precursor of this within the metastable isotropic phase for contractile systems (e.g.,
actomyosin gels) gives a viscosity divergence; its counterpart for extensile suspensions admits instead a
shear-banded flow with zero apparent viscosity.
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Active gels, including cell extracts and bacterial suspen-
sions, are important and fascinating complex fluids [1–7].
These systems contain self-propelled subunits which, on
symmetry grounds, have generic ordering tendencies that
favor an isotropic-nematic (I-N) transition. Unlike conven-
tional nematogens, they are driven by a continuous energy
flux and remain out of thermodynamic equilibrium even in
steady state. Active elements contribute to the stress as
force dipoles, characterized as ‘‘extensile’’ or ‘‘contrac-
tile.’’ Rodlike extensile particles induce a dipolar flow
away from their ends round to their long sides, whereas
for contractile rods, the flow direction is reversed. This
means that an extensile, flow-aligning nematogen placed in
a shear flow enhances the applied shear; its contractile
counterpart opposes it.

In both cases, the quiescent bulk ordered phase (N) is
unstable, but restabilizes at high shear rates [1]. Confining
walls can also restore stability [2,7], creating a finite
threshold of activity for onset of spontaneous flow. A
recent analysis [3] predicts moreover that the zero-shear
viscosity of a contractile solution should diverge at the I-N
transition. Thereafter, within the N phase, one expects a
positive yield stress whose counterpart for an extensile
nematic is, however, formally negative [1].

In this Letter, we study numerically the steady states of
sheared active gels near the I-N transition. We find shear
banding in the extensile case, which replaces a negative-
viscosity zone by a window of ‘‘superfluidity,’’ accommo-
dating a range of macroscopic shear rates at zero stress. We
also find for contractile systems a viscosity divergence [3],
at the (spinodal) threshold of the quiescent I-N transition,
and discontinuous shear thickening at the shear-induced I-
N transition [8]. The slab’s dimensions and boundary con-
ditions can strongly influence this strikingly rich range of
phenomena.

We hope that, as well as offering insights into the highly
nonlinear physics of active gels, our numerics will prompt

new rheological experiments on soft active matter such as
bacterial suspensions and actomyosin gels.

To gain our results, we used a hybrid lattice Boltzmann
(HLB) algorithm [7], whose approximations are shared by
the hydrodynamic equations of motion (detailed below) of
active fluids [1–3], and also a finite difference (FD) algo-
rithm that additionally neglects inertia [8,9]. We assume
translational invariance along flow and vorticity directions,
reducing the 3D problem to 1D.

Governing Equations.—In a coarse grained approach,
the local properties of an (apolar) active fluid can be
described by a tensor order-parameter, Q!", whose largest
eigenvalue, 2q=3, and its associated eigenvector give the
magnitude and direction of the local orientational order.
The equilibrium physics of the passive system is repro-
duced by a Landau–de Gennes free energy F with density
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where ’ controls the magnitude of the ordering. There is a
first order transition between the N phase, stable for ’>
2:7 and the I phase, stable for ’< 2:7. At ’ % 3:0 lies the
spinodal point, the limit of the metastability of the I phase.
In the last term of (1) K is an elastic constant [10]. The
equation of motion for Q!" is [11] DtQ!" % !H!" with
Dt a material derivative describing advection by the fluid
velocity u!, and rotation/stretch by flow gradients (see
[7,11]). The molecular field is H!" % ! $F

$Q!"
$

"$!"=3#Tr $F
$Q!"

, and ! is a collective rotational diffusivity.

Flow is governed by the continuity and Navier Stokes
equations for a Newtonian fluid of density % and viscosity
&, forced by an order-parameter stress
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The last term of (2) stems from activity, with ( > 0 (ex-
tensile) or ( < 0 (contractile) [1–3,7]. The parameter #
depends on the geometry of active elements; it determines
whether the material is flow-aligning or flow-tumbling. We
restrict ourselves to the former by taking # ! 0:7 (repre-
sentative of a gel in the aligning regime). Our equations
describe for simplicity apolar active gels, whereas many
such gels (e.g., actomysin) are polar [12].

Constitutive Curves.—We first compute [13] curves
)$ _%% for the shear stress ) at uniform imposed shear rate
_% & @yux. Figure 1 shows this curve (and its stress con-

tributions) for an extensile nematic. With our parameters,
the passive terms in !xy are much smaller than the viscous
stress * _%, so ) ’ * _%# (Qxy$ _%%. In flow-aligning nem-
atics, Qxy has an upward discontinuity at the origin (see
Fig. 1); for contractile materials (( < 0), this creates an
upward step in )$ _%%, or yield stress [1]. The constitutive
curve for the extensile case (( > 0, Fig. 1) instead has a
downward step, or ‘‘negative yield stress,’’ causing a zone
of negative viscosity ()= _%< 0) for j _%j< _%', which can be
circumvented by splitting into shear bands of _% ! ( _%'.
The resulting composite flow curve )$ _%%, with _% now the
applied (mean) shear rate, connects _% ! ( _%' with a hori-
zontal ‘‘tie line’’ at zero stress. The stability of such bands
is far from certain; however, our FD work (data not shown)
confirms the existence of such states in the 1D bulk (large
L) limit. Figures 5–7 of [7] on confined slabs also offer
evidence for this N/N banding scenario which, we argue

below, should also control flow of extensile systems ini-
tialized in the I phase close the I-N spinodal.

Slab Geometry.—We next consider a slab of active gel
between parallel plates at y-separation L, with x-velocities
( _%L=2. Our main HLB runs have L ! 100, " ! 0:33775,
K ! 0:04, * ! 5=3, + ! 2, and ( ! (0:005. These val-
ues, and our results, are reported in LB units; such units
map, e.g., to #x ! 0:05 ,m and #t ! 0:67 ,s with " !
1 Poise, * ! 1:1 Poise, K ! 10 pN [10], and ( ! 500 Pa.
The only length scale in Eqs. (1) and (2) is then ‘ & K1=2 ’
5 nm. These represent molecular nematogens in a
microfluidic-device-scale slab (L) 5 ,m) [7]; very dif-
ferent values might arise in some biological contexts.

Below we compare ‘‘fixed’’ (anchored) boundary con-
ditions, in which Q!" is specified on the walls, and ‘‘free’’
ones which effectively set @yQ!" ! 0, at y ! 0, L. For
shear-banding problems, the latter choice promotes con-
vergence to bulk behavior [14]; our FD work uses this, and
to the same end, chooses small ‘=L ! 5* 10#4. The
boundary condition on u! is taken as no-slip.

Linear Contractile Rheology.—We now report apparent
viscosities *app$ _%; L; . . .% ! $!xy " *@yux%= _%. For homo-
geneous flows, these give the bulk flow curve *app !
)$ _%%= _% and reduce to the zero-shear viscosity as _%! 0.

We start with the zero-shear viscosity of a contractile gel
in the metastable I phase, 2:7<’ + 3:0. We observe a
viscosity divergence at the latter (spinodal) point, as pre-
dicted in [3] (this addressed 2D nematogens for which
binodal and spinodal coincide). This is shown in
Fig. 2(a), where the divergence is seen with free-boundary
conditions, for which the flow remains homogeneous, but
is suppressed if Q!" is anchored at the walls with director
along the flow (creating nonuniform shear there). In the
latter case, *app increases linearly with L (we have simu-
lated up to L ! 400) until it saturates, for ’< 3, at the
free-boundary value. To understand this, note that surface
anchoring lifts the rotational degeneracy of the N phase, so
that deviations of the director n away from x feel a finite
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FIG. 2 (color online). (a) Apparent zero shear viscosity for an
isotropic contractile gel in a slab under shear. Solid curve(s):
free-boundary conditions; HLB data are indistinguishable from
those derived from the bulk flow curve [13]. Dashed curve: fixed
boundaries (director along flow). (b) Apparent viscosity in a
linear regime for an active extensile gel in a slab under shear.
Solid and dashed curves correspond to systems with free and
fixed boundaries, respectively. The insets show plots of Qxy and
ux (solid and dashed lines) in the *app ! 0 phase.
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locity. We assume that the film is sheared at a constant !mac-
roscopic" rate !̇ by keeping the lower plate at y=0 fixed,
while the upper plate at y=L is moved at constant velocity
v0. The macroscopic shear rate is defined then as !̇=v0 /L
=#0

L!dy /L"u, where the rate-of-strain tensor uij = !!iv j
+! jvi" /2 has only nonzero components uxy =uyx=!yvx /2
$u /2. Theoretical stress-strain curves are obtained by fixing
the macroscopic strain rate !̇ and calculating the resulting
stress ".

We consider a polarized active suspension and focus only
on spatial variations in the direction of the polarization P.
The hydrodynamic equations for an active polar suspension
have been formulated by incorporating the active contribu-
tions !proportional to the rate of energy consumed by the
active units" into the hydrodynamic equations of a passive
polar liquid crystalline film. Some of the active contribu-
tions, discussed above, are not allowed by the conditions
which define liquid crystal systems at equilibrium and hence
are intrinsic to active systems. Other terms have the same
form as those of passive polar liquid crystals and can simply
be included by modifying the prefactors of the terms ob-
tained from a passive system. As such, the modified “pas-
sive” contributions to the equations of motion can be de-
scribed starting from the nonequilibrium analog of the Frank
free energy of a suspension of polar particles in a solvent
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with C the compressional modulus and K1 and K3 the splay
and bend elastic constants. The parameters ai ,Bi ,Ki ,C are
understood to have both passive and active contributions. In
the following, we will take K1=K3=K. The last three terms
in the expression of the free-energy couple concentration and
splay and are also present in equilibrium polar suspensions.

The dynamics of the concentration and the polarization
are described by
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with 'ij = !!iv j −! jvi" /2 the vorticity tensor, h=−#F /#P the
molecular field, and f=−"!#F /#c". The flow velocity satis-
fies the Navier-Stokes equation +27,
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where , is the pressure, * the shear viscosity, and we have
assumed an isotropic viscosity tensor. We now consider a
solution deep in the polarized state and neglect fluctuations
in the magnitude of the polarization, i.e., assume )P)
=-−a2 /a4. For simplicity, we also redefine units so that )P)
=1. The condition P=const determines the longitudinal part
h. =p ·h of the molecular field that can then be eliminated
from the hydrodynamic equations. The details associated
with imposing the constancy of the magnitude of the polar-
ization and deriving the hydrodynamic equations solely in
terms of the polar director p=P / )P) are given in the Appen-
dix. With this choice, the hydrodynamic equations for p and
c can be written in the form
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tensor given by
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The equations for an active suspension have been written
down phenomenologically and also derived from various
semimicroscopic models. The structure of the equations is
generic and applies to a broad class of “living liquid crys-
tals.” The parameters in the equations are of course system
and model specific. In motor-filament mixtures, activity
arises from clusters of motor proteins crosslinking pairs of
filaments. The active couplings are therefore of order c2 in
this case +11,12,. In suspensions of swimming microorgan-
isms, activity can be described in terms of the active force f
that each swimmer exerts on the surrounding fluid. In this
case, the active couplings arise even at the single-swimmer
level and are of order c +22,. Estimates for the active param-
eters obtained from semimicroscopic models are summarized
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and model specific. In motor-filament mixtures, activity
arises from clusters of motor proteins crosslinking pairs of
filaments. The active couplings are therefore of order c2 in
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have been formulated by incorporating the active contribu-
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active units" into the hydrodynamic equations of a passive
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with C the compressional modulus and K1 and K3 the splay
and bend elastic constants. The parameters ai ,Bi ,Ki ,C are
understood to have both passive and active contributions. In
the following, we will take K1=K3=K. The last three terms
in the expression of the free-energy couple concentration and
splay and are also present in equilibrium polar suspensions.
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where , is the pressure, * the shear viscosity, and we have
assumed an isotropic viscosity tensor. We now consider a
solution deep in the polarized state and neglect fluctuations
in the magnitude of the polarization, i.e., assume )P)
=-−a2 /a4. For simplicity, we also redefine units so that )P)
=1. The condition P=const determines the longitudinal part
h. =p ·h of the molecular field that can then be eliminated
from the hydrodynamic equations. The details associated
with imposing the constancy of the magnitude of the polar-
ization and deriving the hydrodynamic equations solely in
terms of the polar director p=P / )P) are given in the Appen-
dix. With this choice, the hydrodynamic equations for p and
c can be written in the form
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The equations for an active suspension have been written
down phenomenologically and also derived from various
semimicroscopic models. The structure of the equations is
generic and applies to a broad class of “living liquid crys-
tals.” The parameters in the equations are of course system
and model specific. In motor-filament mixtures, activity
arises from clusters of motor proteins crosslinking pairs of
filaments. The active couplings are therefore of order c2 in
this case +11,12,. In suspensions of swimming microorgan-
isms, activity can be described in terms of the active force f
that each swimmer exerts on the surrounding fluid. In this
case, the active couplings arise even at the single-swimmer
level and are of order c +22,. Estimates for the active param-
eters obtained from semimicroscopic models are summarized
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have been formulated by incorporating the active contribu-
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active units" into the hydrodynamic equations of a passive
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tions, discussed above, are not allowed by the conditions
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are intrinsic to active systems. Other terms have the same
form as those of passive polar liquid crystals and can simply
be included by modifying the prefactors of the terms ob-
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understood to have both passive and active contributions. In
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in the expression of the free-energy couple concentration and
splay and are also present in equilibrium polar suspensions.
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The equations for an active suspension have been written
down phenomenologically and also derived from various
semimicroscopic models. The structure of the equations is
generic and applies to a broad class of “living liquid crys-
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given by dissipative, reversible, and active contributions,
"ij =2*uij +"ij

r +"ij
+ +"ij

%, with

"ij
+ =

+c2

&
!PiPj + #ij" , !3a"

"ij
% =

%3c2

&
+!iPj + ! jPi + #ij " · P, , !3b"

"ij
r = − ,#ij −

(

2
!Pihj + Pjhi" +

1
2

!Pihj − Pjhi" , !3c"

where , is the pressure, * the shear viscosity, and we have
assumed an isotropic viscosity tensor. We now consider a
solution deep in the polarized state and neglect fluctuations
in the magnitude of the polarization, i.e., assume )P)
=-−a2 /a4. For simplicity, we also redefine units so that )P)
=1. The condition P=const determines the longitudinal part
h. =p ·h of the molecular field that can then be eliminated
from the hydrodynamic equations. The details associated
with imposing the constancy of the magnitude of the polar-
ization and deriving the hydrodynamic equations solely in
terms of the polar director p=P / )P) are given in the Appen-
dix. With this choice, the hydrodynamic equations for p and
c can be written in the form

!tc + ! · c!v + %1cp" = !i+Dij! jc + (!!uklpkplpi, , !4a"

+!t + !v + %2cp" · !,pi + 'ijpj

= #ij
T/(ujkpk +

w

c0
!ic −

!!w

c0
! j " · p + -"2pj0 , !4b"

with !!=&! /&, -=&K, w=&!B1−B3", and #ij
T =#ij − pipj the

transverse projection operator. Dij is an effective diffusion
tensor given by

Dij = D1#ij + D2pipj , !5"

where D1=D−!!w /c0 and D2=!!w /c0−D.. Finally, the re-
versible part of the stress tensor "ij

r becomes

"ij
r = − #ij, + (pipjpk/ w

c0&
!kc + K"2pk0

−
(

2
/ w

c0&
!pi! jc + pj!ic" + K!pi"

2pj + pj"
2pi"0

+
1
2
/ w

c0&
!pi! jc − pj!ic" + K!pi"

2pj − pj"
2pi"0

− (&!.pipj!Dpk!kc + wpk!k!lpl" +
(2

&
pipjuklpkpl.

The equations for an active suspension have been written
down phenomenologically and also derived from various
semimicroscopic models. The structure of the equations is
generic and applies to a broad class of “living liquid crys-
tals.” The parameters in the equations are of course system
and model specific. In motor-filament mixtures, activity
arises from clusters of motor proteins crosslinking pairs of
filaments. The active couplings are therefore of order c2 in
this case +11,12,. In suspensions of swimming microorgan-
isms, activity can be described in terms of the active force f
that each swimmer exerts on the surrounding fluid. In this
case, the active couplings arise even at the single-swimmer
level and are of order c +22,. Estimates for the active param-
eters obtained from semimicroscopic models are summarized

SHEARED ACTIVE FLUIDS: THICKENING, THINNING, … PHYSICAL REVIEW E 81, 051908 !2010"
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I. GOALS

We obtain analytical results for the e↵ective shear vis-
cosity (or, more precisely, the shear force) in the mean
field regime for the model defined in Eq. (1) below. For
some parameter range, the shear force diverges as a func-
tion of the distance between the wires. Such singular be-
haviour may indicate a phase transition corresponding to
the creation of a vortex state.

II. HYDRODYNAMIC EQUATIONS

Flow equations

0 = r · v (1a)

@tv + (v · r)v = �rp+ r · � (1b)

with stress tensor

� = [�0 � �2(r2) + �4(r2)2](r>
v + rv

>) (1c)

In component notation

0 = @ivi (2a)

@tvj + vk@kvj = �@jp+ @k�kj (2b)

with

�kj = [�0 � �2@nn + �4@nn@mm](@kvj + @jvk) (2c)

where @kk = @k@k. Take divergence of (2b) to obtain
Poisson equation

(@jvk)(@kvj) = �@jjp (3)

Force on some surface region S

Fi =

Z

S

�ijdSj (4)

Goal: look for statistical properties of solutions, and de-
termine mean force.

III. 2D CASE

A. Boundary conditions

Let x = (x1, x2) = (x, y). Three fields (p,v) =
(p, v1, v2), three equations. First-order in time t requires

3 initial conditions. These will not be relevant since we
are interested in stationary flow properties. Equation (3)
is of 2nd order in the two spatial coordinates (x, y), thus
requiring 2⇥2 BCs for p. Below, we shall always consider
periodic boundary conditions in x-direction and constant
pressure P at the solid boundaries y = ±H/2,

p(t, x, y) ⌘ p(t, x+ L, y), (5a)

p(t, x,±H/2) ⌘ P. (5b)

Equation (2b) for the velocity field v = (vx, vy) is of
6th order in two spatial coordinates (x, y) and therefore
requires 2⇥ 2⇥ 6 BCs in total. Consistent with (5a), we
adopt periodic BCs in x-direction (which leaves us with
2⇥6 BCs) and no-slip boundary conditions at y = ±H/2
(fixes 2 BCs per field component),

v(t, x, y) ⌘ v(t, x+ L, y), (6a)

v(t, x,±H/2) = (±V, 0). (6b)

That is, we still need to specify 2 ⇥ 4 more BCs for v =
(vx, vy) at y = ±H/2. We will consider two classes.
S-type: First and second-order derivatives of vanish.
W-type: Second and fourth-order derivatives vanish.
Here, S and W stand for ‘strong’ and ‘weak’, respec-

tively.

B. Force

In 2D, the boundary could be realized with two wires [?
]. Force along upper surface at y = +H/2 with inwards-
pointing surface element (dSj) = (dSx, dSy) = (0,�dx)

F+
x (t) =

Z

�xjdSj

=

Z L

0
dx�xy(t, x,H/2) (7)

Inserting the explicit expression for �xy

F+
x (t) = �0

Z L

0
dx (@xvy + @yvx)y=H/2 �

�2

Z L

0
dx @nn(@xvy + @yvx)y=H/2 +

�4

Z L

0
dx @nn@mm(@xvy + @yvx)y=H/2. (8)

6th order PDE + no-slip + 	
different types of higher order BC

Minimal momentum-conserving model	
for solvent flow

Jonasz Slomka
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• effects of spatial dimensionality on individual 
microbial swimming   (2D vs. 3D) 

• intrinsic vortex scale selection in bacterial 
suspensions 

• confinement & collective dynamics of quasi-2D 
suspensions (edge currents, magnetic order, 
quasi-“superfluidity”, etc.) 

• defect dynamics and long-range order in 2D 
planar/curved active nematics
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Spontaneous motion in hierarchically assembled
active matter
Tim Sanchez1*, Daniel T. N. Chen1*, Stephen J. DeCamp1*, Michael Heymann1,2 & Zvonimir Dogic1

With remarkable precision and reproducibility, cells orchestrate
the cooperative action of thousands of nanometre-sized molecular
motors to carry out mechanical tasks at much larger length scales,
such as cell motility, division and replication1. Besides their bio-
logical importance, such inherently non-equilibrium processes
suggest approaches for developing biomimetic active materials
from microscopic components that consume energy to generate
continuous motion2–4. Being actively driven, these materials are
not constrained by the laws of equilibrium statistical mechanics
and can thus exhibit sought-after properties such as autonomous
motility, internally generated flows and self-organized beating5–7.
Here, starting from extensile microtubule bundles, we hierarchically
assemble far-from-equilibrium analogues of conventional polymer
gels, liquid crystals and emulsions. At high enough concentration,
the microtubules form a percolating active network characterized
by internally driven chaotic flows, hydrodynamic instabilities,
enhanced transport and fluid mixing. When confined to emulsion
droplets, three-dimensional networks spontaneously adsorb onto
the droplet surfaces to produce highly active two-dimensional
nematic liquid crystals whose streaming flows are controlled by
internally generated fractures and self-healing, as well as unbinding
and annihilation of oppositely charged disclination defects. The
resulting active emulsions exhibit unexpected properties, such as
autonomous motility, which are not observed in their passive ana-
logues. Taken together, these observations exemplify how assem-
blages of animate microscopic objects exhibit collective biomimetic

properties that are very different from those found in materials
assembled from inanimate building blocks, challenging us to
develop a theoretical framework that would allow for a systematic
engineering of their far-from-equilibrium material properties.

We assembled active materials from microtubule filaments, which are
stabilized with the non-hydrolysable nucleotide analogue GMPCPP,
leading to an average length of 1.5mm. Bundles were formed by adding
a non-adsorbing polymer—poly(ethylene glycol) or PEG—which
induces attractive interactions through the well-studied depletion
mechanism. To drive the system far from equilibrium, we added bio-
tin-labelled fragments of kinesin-1, a molecular motor that converts
chemical energy from ATP hydrolysis into mechanical movement
along a microtubule8. Kinesins were assembled into multi-motor clus-
ters by tetrameric streptavidin, which can simultaneously bind and
move along multiple microtubules, inducing inter-filament sliding
(Fig. 1a). In this respect, our experiments build upon important earlier
work that demonstrated the formation of asters and vortices in net-
works of unbundled microtubules and kinesin9,10. However, compared
to these dispersed networks, the proximity and alignment of depletion-
bundled microtubules greatly increases the probability of kinesin clus-
ters simultaneously binding and walking along neighbouring filaments,
thus enhancing the overall activity.

Motor-induced sliding of aligned microtubules depends on their
relative polarity. Kinesin clusters generate sliding forces between
microtubules of opposite polarity, whereas no sliding force is induced
between microtubules of the same polarity11–13. To study the dynamics

*These authors contributed equally to this work.

1Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA. 2Graduate Program in Biophysics and Structural Biology, Brandeis University, 415 South
Street, Waltham, Massachusetts 02454, USA.
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Figure 1 | Active microtubule
networks exhibit internally
generated flows. a, Schematic
illustration of an extensile
microtubule–kinesin bundle, the basic
building block used for the assembly
of active matter. Kinesin clusters exert
inter-filament sliding forces, whereas
depleting PEG polymers induce
microtubule bundling. b, Two
microtubule bundles merge and the
resultant bundle immediately extends,
eventually falling apart. Time interval,
5 s; scale bar, 15mm. c, In a
percolating microtubule network,
bundles constantly merge (red
arrows), extend, buckle (green dashed
lines), fracture, and self-heal to
produce a robust and highly dynamic
steady state. Time interval, 11.5 s; scale
bar, 15mm. d, An active microtubule
network viewed on a large scale.
Arrows indicate local bundle velocity
direction. Scale bar, 80mm.
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With remarkable precision and reproducibility, cells orchestrate
the cooperative action of thousands of nanometre-sized molecular
motors to carry out mechanical tasks at much larger length scales,
such as cell motility, division and replication1. Besides their bio-
logical importance, such inherently non-equilibrium processes
suggest approaches for developing biomimetic active materials
from microscopic components that consume energy to generate
continuous motion2–4. Being actively driven, these materials are
not constrained by the laws of equilibrium statistical mechanics
and can thus exhibit sought-after properties such as autonomous
motility, internally generated flows and self-organized beating5–7.
Here, starting from extensile microtubule bundles, we hierarchically
assemble far-from-equilibrium analogues of conventional polymer
gels, liquid crystals and emulsions. At high enough concentration,
the microtubules form a percolating active network characterized
by internally driven chaotic flows, hydrodynamic instabilities,
enhanced transport and fluid mixing. When confined to emulsion
droplets, three-dimensional networks spontaneously adsorb onto
the droplet surfaces to produce highly active two-dimensional
nematic liquid crystals whose streaming flows are controlled by
internally generated fractures and self-healing, as well as unbinding
and annihilation of oppositely charged disclination defects. The
resulting active emulsions exhibit unexpected properties, such as
autonomous motility, which are not observed in their passive ana-
logues. Taken together, these observations exemplify how assem-
blages of animate microscopic objects exhibit collective biomimetic

properties that are very different from those found in materials
assembled from inanimate building blocks, challenging us to
develop a theoretical framework that would allow for a systematic
engineering of their far-from-equilibrium material properties.

We assembled active materials from microtubule filaments, which are
stabilized with the non-hydrolysable nucleotide analogue GMPCPP,
leading to an average length of 1.5mm. Bundles were formed by adding
a non-adsorbing polymer—poly(ethylene glycol) or PEG—which
induces attractive interactions through the well-studied depletion
mechanism. To drive the system far from equilibrium, we added bio-
tin-labelled fragments of kinesin-1, a molecular motor that converts
chemical energy from ATP hydrolysis into mechanical movement
along a microtubule8. Kinesins were assembled into multi-motor clus-
ters by tetrameric streptavidin, which can simultaneously bind and
move along multiple microtubules, inducing inter-filament sliding
(Fig. 1a). In this respect, our experiments build upon important earlier
work that demonstrated the formation of asters and vortices in net-
works of unbundled microtubules and kinesin9,10. However, compared
to these dispersed networks, the proximity and alignment of depletion-
bundled microtubules greatly increases the probability of kinesin clus-
ters simultaneously binding and walking along neighbouring filaments,
thus enhancing the overall activity.

Motor-induced sliding of aligned microtubules depends on their
relative polarity. Kinesin clusters generate sliding forces between
microtubules of opposite polarity, whereas no sliding force is induced
between microtubules of the same polarity11–13. To study the dynamics
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Figure 1 | Active microtubule
networks exhibit internally
generated flows. a, Schematic
illustration of an extensile
microtubule–kinesin bundle, the basic
building block used for the assembly
of active matter. Kinesin clusters exert
inter-filament sliding forces, whereas
depleting PEG polymers induce
microtubule bundling. b, Two
microtubule bundles merge and the
resultant bundle immediately extends,
eventually falling apart. Time interval,
5 s; scale bar, 15mm. c, In a
percolating microtubule network,
bundles constantly merge (red
arrows), extend, buckle (green dashed
lines), fracture, and self-heal to
produce a robust and highly dynamic
steady state. Time interval, 11.5 s; scale
bar, 15mm. d, An active microtubule
network viewed on a large scale.
Arrows indicate local bundle velocity
direction. Scale bar, 80mm.
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In 2d, the symmetric order-parameter tensor Q(t, x, y)
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S > 0, we must identify n = n+ and S = ⇤+ = 2�,
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Note that the potential cannot contain odd-power terms
since TrQ2k+1 = 0 in 2D. Consider the corresponding
field equation
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Note that the potential cannot contain odd-power terms
since TrQ2k+1 = 0 in 2D. Consider the corresponding
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Ramaswamy, and Menon in a systems of vibrated granular
rods [7]. Such active curvature currents control dynamics
in systems with no momentum conservation but are very
small here, where the concentration variations remain
small, as seen from Figs. 1(c) and 1(d), and flow controls
the dynamics.

In contractile systems active backflow yields a net
speedup of the þ1=2 defects towards its antidefect for
the annihilation shown in Fig. 1(b). In extensile systems,
with !< 0, backflow drives the þ1=2 defect to move
towards its head, away from its "1=2 partner in the con-
figuration of Fig. 1(b), acting like an effectively repulsive
interaction. This somewhat counterintuitive effect has been
observed in experiments with extensile microtubules and
kinesin assemblies [16] and can be understood on the basis
of the hydrodynamic approach embodied in Eqs. (1). In
Fig. 2, we have reproduced from Ref. [16] a sequence of
snapshots showing a pair of #1=2 disclinations moving

apart from each other together with the same behavior
observed in our simulations.
To quantify the dynamics we have reconstructed the

trajectories of the defects by tracking the drop in the
magnitude of the order parameter. The trajectories are
shown in Figs. 3(a) and 3(b), where red lines in the upper
portion of the plots represent the trajectory of the þ1=2
disclination, while the blue lines in the lower portion of the
plot are the trajectories of the"1=2 defect. The tracks end
when the cores of the two defects merge. For small activity
and small values of the rotational friction ", the trajectories

FIG. 1 (color online). Snapshots of a disclination pair shortly
after the beginning of relaxation. (Top) Director field (black
lines) superimposed on a heat map of the nematic order parame-
ter and (bottom) flow field (arrows) superimposed on a heat map
of the concentration for an extensile system with ! ¼ "0:2 (a),
(c) and a contractile system with ! ¼ 0:2 (b), (d). In the top
images, the color denotes the magnitude of the nematic order

parameter S relative to its equilibrium value S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" c?=c0

p
.

In the bottom images, the color denotes the magnitude of the
concentration c relative to the average value c0. Depending on
the sign of !, the backflow tends to speed up (!> 0) or slow
down (!< 0) the annihilation process by increasing or decreas-
ing the velocity of the þ1=2 disclination. For ! negative and
sufficiently large in magnitude, the þ1=2 defect reverses its
direction of motion (c) and escapes annihilation.

FIG. 2 (color online). Defect pair production in an active
suspension of microtubules and kinesin (top) and the same
phenomenon observed in our numerical simulation of an exten-
sile nematic fluid with " ¼ 100 and ! ¼ "0:5. The experimen-
tal picture is reprinted with permission from T. Sanchez et al.,
Nature (London) 491, 431 (2012). Copyright 2012, Macmillan.

0

(a) (b)

(c) (d)

FIG. 3 (color online). Defect trajectories and annihilation
times obtained from a numerical integration of Eqs. (1) for
various " and ! values. (a) Defect trajectories for " ¼ 5 and
various ! values (indicated in the plot). The upper (red online)
and lower (blue online) curves correspond to the positive
and negative disclination, respectively. The defects annihilate
where the two curves merge. (b) The same plot for " ¼ 10.
Slowing down the relaxational dynamics of the nematic phase
increases the annihilation time and for ! ¼ "0:2 reverses the
direction of motion of the þ1=2 disclination. (c) Defect separa-
tion as a function of time for ! ¼ 0:2 and various " values.
(d) Annihilation time normalized by the corresponding annihi-
lation time obtained at ! ¼ 0 (i.e., t0a). The line is a fit to the
model described in the text.
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Theory. Traditional multi-field models [61, 62] aim to
describe the 2D nematic phase of a dense ALC suspension
by coupling the filament concentration c(t, r) and the ne-
matic order tensor Q(t, r) to an incompressible 2D flow
field v(t, r) that satisfies r · v = 0 in the interface plane
r = (x, y). The nematic order parameter S(t, r) is pro-
portional to the larger eigenvalue of Q, and the filaments
are oriented along the corresponding eigenvector, or di-
rector d(t, r). To construct an alternative closed-form
theory for the symmetric traceless 2 ⇥ 2-tensor field Q,
we start from the generic transport law

@

t

Q+r · (vQ)� [Q,!] = ��F
�Q

(4)

where ! = [rv � (rv)>]/2 is the vorticity tensor,
[A,B] = AB � BA the commutator of two matri-
ces and F [Q] =

R
d

2
r F an e↵ective free energy. Fo-

cussing on dense suspensions as realized in the experi-
ments [5, 46], we neglect fluctuations in the microtubule
concentration, rc ⌘ 0. It is important, however, that
r · (vQ) 6= v ·rQ when r · v 6= 0, which is typically
the case when fluid can enter and leave the interface.
Combining Landau-de Gennes theory [41] with Swift-
Hohenberg theory [50], we postulate the free-energy den-
sity (Supplementary Information)
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⇢
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Q

2 +
b

4
Q
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2
(rQ)2 +

�4

4
(rrQ)2

�
(5)

with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
�
[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1

2 (@x � i@

y

), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
Eqs. (4) and (5) may be equivalently expressed as

@

t

 +A
 

 = � �G
� ̄

(8)

where the self-advection operator is given by

A
 

= �4D<{(@2 ) + (@ )@}+ 4D i={@2 } (9)

and the free energy G[ ,  ̄] = R
dz G has the density

G = �a| |2 + b

2
| |4 + �2 ̄(4@̄@) + �4 ̄(4@̄@)

2
 . (10)

For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
tion (Supplementary Information)
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Fourier modes grow most rapidly. The universality hy-
pothesis assumes that expansions of the above type gov-
ern the dynamics of a wide range of many-particle sys-
tems, with microscopic properties entering through the
coe�cients (a, b, . . . ,↵,�, . . .). Despite their success in
describing conventional physical systems [33, 40, 41], the
general applicability of these ideas to active matter sys-
tems has yet to be examined through detailed comparison
between theory and experiment.

Recently discovered 2D active liquid crystal (ALC)
analogs [5, 42–45] comprise an important class of non-
equilibrium systems that allows further tests of universal-
ity concepts [33] and specific theories. ALCs are assem-
blies of rod-like particles that exhibit non-thermal collec-
tive excitations due to steady external [42, 43] or inter-
nal [5, 45] energy input. At high concentrations, ALCs
form an active nematic phase characterized by dynamic
creation and annihilation of topological defects [5, 42, 45],
reminiscent of spontaneous particle-pair production in
quantum systems. This phenomenon was demonstrated
recently [5, 45, 46] for ATP-driven microtubule-kinesin
bundles trapped in flat and curved interfaces. Moreover,
these experiments [46] revealed an unexpected nematic
ordering of topological defects which is unaccounted for
in current theoretical models. Understanding the emer-
gence of such topological super-structures is crucial for
the development and control of new materials, as recently
demonstrated for colloidal liquid crystals [47–49].

We here develop and validate a closed continuum the-
ory for dense ALCs by generalizing the higher-order
scalar and vector theories of soft elastic materials [38] and
bacterial fluids [34, 35] to matrix-valued fields. Concep-
tually, our approach unifies the classic Landau-de Gennes
description of passive LCs [41] with the Swift-Hohenberg
theory [50] of pattern formation. A systematic compari-
son with recently published data confirms agreement be-
tween our theory and experiments [5, 46]. In addition,
we present an equivalent complex scalar field represen-
tation [14, 51] that reveals an otherwise hidden anal-
ogy with a generalized Gross-Pitaevskii theory [52, 53] of
strongly coupled many-body quantum systems [54–57].
In the case of normal dispersion (corresponding to ↵ < 0
in Eq. (2)), the celebrated LC-superconductor correspon-
dence [51, 58] has helped elucidate profound parallels be-
tween the smectic phase in passive LCs and the Abrikosov
vortex lattices in type-II superconductors [59, 60]. The
results below indicate that a similar analogy may ex-
ist between ALCs and Bose-Einstein/Fermi condensates
with anomalous dispersion [55–57] (corresponding to ↵ >

0 in Eq. (2)), suggesting that ALCs can o↵er insights into
the dynamics of these quantum systems and vice versa.

RESULTS

Experimental conditions. To place a stringent test
on the applicability of universality concepts [33] to ac-
tive matter systems, the theory developed below aims

FIG. 1: (A) Schematic of the experimental setup reported
in Ref. [5, 46], not drawn to scale. A thin oil film (thick-
ness ⇠ 3µm) separates a 2D ALC layer (⇠ 0.2 � 1.0µm)
at the oil-water interface from a solid glass cover. Liquid
can be exchanged between the ALC layer and bulk fluid, re-
sulting in compressible 2D interfacial flow that is strongly
damped by the nearby no-slip glass boundary and the viscous
oil layer. (B) Extensile 2D dipole flow in the interface as pre-
dicted by the overdamped closure condition (7) for D > 0 and
Q = (�, 0; 0,��) with � = exp(�r2). The central horizontal
bar indicates the unit director axis, and background colors
the nematic order parameter S ⇠ �.

to rationalize simultaneously the results from two recent
experimental studies [5, 46]. In these experiments, ATP-
driven microtubule-kinesin bundles were found to self-
assemble into a dense quasi-2D ALC layer at an oil-water
interface parallel to a planar solid boundary (Fig. 1a).
This ‘wet’ ALC was found to exhibit clear local nematic
alignment of bundles, persistent annihilation and cre-
ation dynamics of topological defects [5], and remarkable
nematic order of the defect orientations in thin layers [46].
Although a large number of unknown parameters has pre-
vented detailed quantitative comparisons between theory
and experiment, several recently proposed multi-order-
parameter models of 2D ALC systems [14, 18, 61, 62]
were able to reproduce qualitatively selected aspects of
these observations. However, they generally fail to ex-
plain the observed topological defect order, primarily
for two reasons. First, these models typically assume
divergence-free 2D fluid flow within the ALC layer, which
is a valid approximation for isolated free-standing film ex-
periments [63] but does not account for fluid exchange be-
tween the 2D interface and bulk in the ALC experiments
(Fig. 1a). As is known for classical turbulence [64, 65],
small-scale energy input can trigger turbulent upward
cascades in incompressible 2D flow. Thus, topological
defect dynamics in the current standard models is domi-
nated by artificially enhanced hydrodynamic mixing due
to an unjustified 2D incompressibility assumption. Sec-
ond, a relevant yet previously ignored e↵ect is damping
from the nearby boundaries, which may promote topo-
logical defect ordering. To overcome such limitations
and establish a quantitative description of the experi-
ments [5, 46], we next construct a closed continuum the-
ory for the nematic order-parameter tensor-field Q(t, r)
of dense ALCs, by combining universality ideas with a
self-consistent hydrodynamic closure condition.

Active LCs 
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Theory. Traditional multi-field models [61, 62] aim to
describe the 2D nematic phase of a dense ALC suspension
by coupling the filament concentration c(t, r) and the ne-
matic order tensor Q(t, r) to an incompressible 2D flow
field v(t, r) that satisfies r · v = 0 in the interface plane
r = (x, y). The nematic order parameter S(t, r) is pro-
portional to the larger eigenvalue of Q, and the filaments
are oriented along the corresponding eigenvector, or di-
rector d(t, r). To construct an alternative closed-form
theory for the symmetric traceless 2 ⇥ 2-tensor field Q,
we start from the generic transport law
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Q+r · (vQ)� [Q,!] = ��F
�Q

(4)

where ! = [rv � (rv)>]/2 is the vorticity tensor,
[A,B] = AB � BA the commutator of two matri-
ces and F [Q] =

R
d

2
r F an e↵ective free energy. Fo-

cussing on dense suspensions as realized in the experi-
ments [5, 46], we neglect fluctuations in the microtubule
concentration, rc ⌘ 0. It is important, however, that
r · (vQ) 6= v ·rQ when r · v 6= 0, which is typically
the case when fluid can enter and leave the interface.
Combining Landau-de Gennes theory [41] with Swift-
Hohenberg theory [50], we postulate the free-energy den-
sity (Supplementary Information)
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with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
�
[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1

2 (@x � i@

y

), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
Eqs. (4) and (5) may be equivalently expressed as
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where the self-advection operator is given by
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and the free energy G[ ,  ̄] = R
dz G has the density
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For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
tion (Supplementary Information)
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with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
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�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S
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[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]
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where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2
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ditions proposed previously for active polar films
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rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
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scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
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density of the Gross-Pitaevskii mean-field model [52, 53]
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case has been crucial [51, 58] for elucidating the anal-
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Fourier modes grow most rapidly. The universality hy-
pothesis assumes that expansions of the above type gov-
ern the dynamics of a wide range of many-particle sys-
tems, with microscopic properties entering through the
coe�cients (a, b, . . . ,↵,�, . . .). Despite their success in
describing conventional physical systems [33, 40, 41], the
general applicability of these ideas to active matter sys-
tems has yet to be examined through detailed comparison
between theory and experiment.

Recently discovered 2D active liquid crystal (ALC)
analogs [5, 42–45] comprise an important class of non-
equilibrium systems that allows further tests of universal-
ity concepts [33] and specific theories. ALCs are assem-
blies of rod-like particles that exhibit non-thermal collec-
tive excitations due to steady external [42, 43] or inter-
nal [5, 45] energy input. At high concentrations, ALCs
form an active nematic phase characterized by dynamic
creation and annihilation of topological defects [5, 42, 45],
reminiscent of spontaneous particle-pair production in
quantum systems. This phenomenon was demonstrated
recently [5, 45, 46] for ATP-driven microtubule-kinesin
bundles trapped in flat and curved interfaces. Moreover,
these experiments [46] revealed an unexpected nematic
ordering of topological defects which is unaccounted for
in current theoretical models. Understanding the emer-
gence of such topological super-structures is crucial for
the development and control of new materials, as recently
demonstrated for colloidal liquid crystals [47–49].

We here develop and validate a closed continuum the-
ory for dense ALCs by generalizing the higher-order
scalar and vector theories of soft elastic materials [38] and
bacterial fluids [34, 35] to matrix-valued fields. Concep-
tually, our approach unifies the classic Landau-de Gennes
description of passive LCs [41] with the Swift-Hohenberg
theory [50] of pattern formation. A systematic compari-
son with recently published data confirms agreement be-
tween our theory and experiments [5, 46]. In addition,
we present an equivalent complex scalar field represen-
tation [14, 51] that reveals an otherwise hidden anal-
ogy with a generalized Gross-Pitaevskii theory [52, 53] of
strongly coupled many-body quantum systems [54–57].
In the case of normal dispersion (corresponding to ↵ < 0
in Eq. (2)), the celebrated LC-superconductor correspon-
dence [51, 58] has helped elucidate profound parallels be-
tween the smectic phase in passive LCs and the Abrikosov
vortex lattices in type-II superconductors [59, 60]. The
results below indicate that a similar analogy may ex-
ist between ALCs and Bose-Einstein/Fermi condensates
with anomalous dispersion [55–57] (corresponding to ↵ >

0 in Eq. (2)), suggesting that ALCs can o↵er insights into
the dynamics of these quantum systems and vice versa.

RESULTS

Experimental conditions. To place a stringent test
on the applicability of universality concepts [33] to ac-
tive matter systems, the theory developed below aims

FIG. 1: (A) Schematic of the experimental setup reported
in Ref. [5, 46], not drawn to scale. A thin oil film (thick-
ness ⇠ 3µm) separates a 2D ALC layer (⇠ 0.2 � 1.0µm)
at the oil-water interface from a solid glass cover. Liquid
can be exchanged between the ALC layer and bulk fluid, re-
sulting in compressible 2D interfacial flow that is strongly
damped by the nearby no-slip glass boundary and the viscous
oil layer. (B) Extensile 2D dipole flow in the interface as pre-
dicted by the overdamped closure condition (7) for D > 0 and
Q = (�, 0; 0,��) with � = exp(�r2). The central horizontal
bar indicates the unit director axis, and background colors
the nematic order parameter S ⇠ �.

to rationalize simultaneously the results from two recent
experimental studies [5, 46]. In these experiments, ATP-
driven microtubule-kinesin bundles were found to self-
assemble into a dense quasi-2D ALC layer at an oil-water
interface parallel to a planar solid boundary (Fig. 1a).
This ‘wet’ ALC was found to exhibit clear local nematic
alignment of bundles, persistent annihilation and cre-
ation dynamics of topological defects [5], and remarkable
nematic order of the defect orientations in thin layers [46].
Although a large number of unknown parameters has pre-
vented detailed quantitative comparisons between theory
and experiment, several recently proposed multi-order-
parameter models of 2D ALC systems [14, 18, 61, 62]
were able to reproduce qualitatively selected aspects of
these observations. However, they generally fail to ex-
plain the observed topological defect order, primarily
for two reasons. First, these models typically assume
divergence-free 2D fluid flow within the ALC layer, which
is a valid approximation for isolated free-standing film ex-
periments [63] but does not account for fluid exchange be-
tween the 2D interface and bulk in the ALC experiments
(Fig. 1a). As is known for classical turbulence [64, 65],
small-scale energy input can trigger turbulent upward
cascades in incompressible 2D flow. Thus, topological
defect dynamics in the current standard models is domi-
nated by artificially enhanced hydrodynamic mixing due
to an unjustified 2D incompressibility assumption. Sec-
ond, a relevant yet previously ignored e↵ect is damping
from the nearby boundaries, which may promote topo-
logical defect ordering. To overcome such limitations
and establish a quantitative description of the experi-
ments [5, 46], we next construct a closed continuum the-
ory for the nematic order-parameter tensor-field Q(t, r)
of dense ALCs, by combining universality ideas with a
self-consistent hydrodynamic closure condition.
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Theory. Traditional multi-field models [61, 62] aim to
describe the 2D nematic phase of a dense ALC suspension
by coupling the filament concentration c(t, r) and the ne-
matic order tensor Q(t, r) to an incompressible 2D flow
field v(t, r) that satisfies r · v = 0 in the interface plane
r = (x, y). The nematic order parameter S(t, r) is pro-
portional to the larger eigenvalue of Q, and the filaments
are oriented along the corresponding eigenvector, or di-
rector d(t, r). To construct an alternative closed-form
theory for the symmetric traceless 2 ⇥ 2-tensor field Q,
we start from the generic transport law

@

t

Q+r · (vQ)� [Q,!] = ��F
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(4)

where ! = [rv � (rv)>]/2 is the vorticity tensor,
[A,B] = AB � BA the commutator of two matri-
ces and F [Q] =

R
d

2
r F an e↵ective free energy. Fo-

cussing on dense suspensions as realized in the experi-
ments [5, 46], we neglect fluctuations in the microtubule
concentration, rc ⌘ 0. It is important, however, that
r · (vQ) 6= v ·rQ when r · v 6= 0, which is typically
the case when fluid can enter and leave the interface.
Combining Landau-de Gennes theory [41] with Swift-
Hohenberg theory [50], we postulate the free-energy den-
sity (Supplementary Information)

F = Tr

⇢
�a

2
Q

2 +
b

4
Q

4 � �2

2
(rQ)2 +

�4

4
(rrQ)2

�
(5)

with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
�
[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1
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), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
Eqs. (4) and (5) may be equivalently expressed as
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For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
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with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
�
[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1

2 (@x � i@

y

), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
Eqs. (4) and (5) may be equivalently expressed as
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For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
tion (Supplementary Information)
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Theory. Traditional multi-field models [61, 62] aim to
describe the 2D nematic phase of a dense ALC suspension
by coupling the filament concentration c(t, r) and the ne-
matic order tensor Q(t, r) to an incompressible 2D flow
field v(t, r) that satisfies r · v = 0 in the interface plane
r = (x, y). The nematic order parameter S(t, r) is pro-
portional to the larger eigenvalue of Q, and the filaments
are oriented along the corresponding eigenvector, or di-
rector d(t, r). To construct an alternative closed-form
theory for the symmetric traceless 2 ⇥ 2-tensor field Q,
we start from the generic transport law
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ces and F [Q] =

R
d

2
r F an e↵ective free energy. Fo-

cussing on dense suspensions as realized in the experi-
ments [5, 46], we neglect fluctuations in the microtubule
concentration, rc ⌘ 0. It is important, however, that
r · (vQ) 6= v ·rQ when r · v 6= 0, which is typically
the case when fluid can enter and leave the interface.
Combining Landau-de Gennes theory [41] with Swift-
Hohenberg theory [50], we postulate the free-energy den-
sity (Supplementary Information)
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with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
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[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1

2 (@x � i@
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), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
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For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
tion (Supplementary Information)
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describe the 2D nematic phase of a dense ALC suspension
by coupling the filament concentration c(t, r) and the ne-
matic order tensor Q(t, r) to an incompressible 2D flow
field v(t, r) that satisfies r · v = 0 in the interface plane
r = (x, y). The nematic order parameter S(t, r) is pro-
portional to the larger eigenvalue of Q, and the filaments
are oriented along the corresponding eigenvector, or di-
rector d(t, r). To construct an alternative closed-form
theory for the symmetric traceless 2 ⇥ 2-tensor field Q,
we start from the generic transport law
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cussing on dense suspensions as realized in the experi-
ments [5, 46], we neglect fluctuations in the microtubule
concentration, rc ⌘ 0. It is important, however, that
r · (vQ) 6= v ·rQ when r · v 6= 0, which is typically
the case when fluid can enter and leave the interface.
Combining Landau-de Gennes theory [41] with Swift-
Hohenberg theory [50], we postulate the free-energy den-
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with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
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[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1
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), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
Eqs. (4) and (5) may be equivalently expressed as
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For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
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Figure 2: Simulation results for the vector model defined by Eqs. (7). (a) Phase diagram, perhaps ↵ = 1 only. (b-e)

Still images from representative simulations (using LIC):
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phase. Assuming �2 can have either sign, short-wavelength (ultraviolet) stability requires �4 > 0.

For �2 < 0, F possesses a homogeneous nematic ground-state manifold, whereas for �2 > 0

a pattern of characteristic wavelength ⇤ ⇠
p

�4/�2 becomes energetically favorable (Fig. 2).160

Equation (11) is the formal generalization of Eq. (6) to matrix fields. However, a subtle yet

important di↵erence is given by the fact the 2D velocity field (10) is incompressible, r · u 6= 0,

reflecting the fact that in the experiments [12, 11] microtubule assemble at an interface layer that

can permanently exchange fluid with the environment.

Inserting the hydrodynamic closure condition (10) and the free-energy ansatz (11) into Eq. (8),

we obtain (synchronize sign convention)
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Equation (12) can be rewritten in a dimensionless form that is equivalent to setting a = b = �4 = 1,165

thus leaving (D, �2) as the only two relevant parameters. To solve the resulting dimensionless

equation, we implemented a pseudospectrally algorithm with periodic boundary conditions us-

ing a modified exponential time-di↵erencing fourth-order Runge-Kutta time-steppin scheme [56].

Simulations where performed with time step �t = 2�10 using � 256 lattice points in each spa-

tial direction. A numerically obtained phase diagram of Eq. (12) for random initial conditions170

{�(0, r), µ(0, r)} is shown in Fig. 2. ADD discussion of phase diagram.

As demonstrated in Ref. [10], the two-parameter model (12) correctly reproduces the sponta-

neous creation and subsequent dynamics of (+ 1
2 ,�
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2 ) defect pairs, while also accounting quanti-

tatively for the speed and lifetime distributions of the defects. Furthermore, Eq. (12) predicts a

regime characterized by nematic long-range ordering of + 1
2 -defect orientations. Such long-range175
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Theory. Traditional multi-field models [61, 62] aim to
describe the 2D nematic phase of a dense ALC suspension
by coupling the filament concentration c(t, r) and the ne-
matic order tensor Q(t, r) to an incompressible 2D flow
field v(t, r) that satisfies r · v = 0 in the interface plane
r = (x, y). The nematic order parameter S(t, r) is pro-
portional to the larger eigenvalue of Q, and the filaments
are oriented along the corresponding eigenvector, or di-
rector d(t, r). To construct an alternative closed-form
theory for the symmetric traceless 2 ⇥ 2-tensor field Q,
we start from the generic transport law
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Q+r · (vQ)� [Q,!] = ��F
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(4)

where ! = [rv � (rv)>]/2 is the vorticity tensor,
[A,B] = AB � BA the commutator of two matri-
ces and F [Q] =

R
d
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r F an e↵ective free energy. Fo-

cussing on dense suspensions as realized in the experi-
ments [5, 46], we neglect fluctuations in the microtubule
concentration, rc ⌘ 0. It is important, however, that
r · (vQ) 6= v ·rQ when r · v 6= 0, which is typically
the case when fluid can enter and leave the interface.
Combining Landau-de Gennes theory [41] with Swift-
Hohenberg theory [50], we postulate the free-energy den-
sity (Supplementary Information)
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with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
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[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1

2 (@x � i@

y

), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
Eqs. (4) and (5) may be equivalently expressed as
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For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
tion (Supplementary Information)
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Theory. Traditional multi-field models [61, 62] aim to
describe the 2D nematic phase of a dense ALC suspension
by coupling the filament concentration c(t, r) and the ne-
matic order tensor Q(t, r) to an incompressible 2D flow
field v(t, r) that satisfies r · v = 0 in the interface plane
r = (x, y). The nematic order parameter S(t, r) is pro-
portional to the larger eigenvalue of Q, and the filaments
are oriented along the corresponding eigenvector, or di-
rector d(t, r). To construct an alternative closed-form
theory for the symmetric traceless 2 ⇥ 2-tensor field Q,
we start from the generic transport law
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where ! = [rv � (rv)>]/2 is the vorticity tensor,
[A,B] = AB � BA the commutator of two matri-
ces and F [Q] =

R
d
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r F an e↵ective free energy. Fo-

cussing on dense suspensions as realized in the experi-
ments [5, 46], we neglect fluctuations in the microtubule
concentration, rc ⌘ 0. It is important, however, that
r · (vQ) 6= v ·rQ when r · v 6= 0, which is typically
the case when fluid can enter and leave the interface.
Combining Landau-de Gennes theory [41] with Swift-
Hohenberg theory [50], we postulate the free-energy den-
sity (Supplementary Information)
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with a, b > 0 for the nematic phase. Assuming �2 can
have either sign, ultraviolet stability requires �4 > 0.
For �2 < 0, F possesses a homogeneous nematic ground-
state manifold, whereas for �2 > 0 a pattern of char-
acteristic wavelength ⇤ ⇠ p

�4/�2 becomes energetically
favorable, as shown below. We note that extra terms cou-
pling the nematic field to the induced flow may be added
to Eq. (4), an example being S

�rv + (rv)T
�
[62], but

we neglect such e↵ects in the interest of constructing a
minimal mathematical theory capable of capturing key
experimental observations.

To obtain a closed Q-model, we relate the 2D flow field
v to Q through the linearly damped Stokes equation [66]

�⌘r2v + ⌫v = �⇣r ·Q (6)

where ⌘ is the viscosity and the rhs. represents active
stresses [10, 61] with ⇣ > 0 for extensile ALCs (Fig. 1b).
A pressure term does not appear in Eq. (6) because the
interfacial flow is not assumed to be incompressible and
concentration fluctuations are neglected. The ⌫-term in
the force balance (6) accounts for friction from the nearby
no-slip boundary in the Hele-Shaw [66] approximation
(Fig. 1a). In the overdamped regime ⌫⇤2

/⌘ � 1, we
deduce from Eq. (6) the closure condition

v = �Dr ·Q , D = ⇣/⌫. (7)

Equation (7) is conceptually similar to closure con-
ditions proposed previously for active polar films

[67]. Importantly, Eq. (7) predicts divergent interfacial
flow, r · v 6= 0, and hence fluid transport perpendicular
to the interface wherever rr : Q 6= 0. Inserting (7)
into (4) yields a closed Q-theory in which periodic di-
rector patterns corresponding to local minima of the free
energy F can become mixed by self-generated interfacial
flow.
Complex representation & ALC-quantum anal-

ogy. The traditional characterization of 2D nematic
order in terms of the symmetric traceless 2⇥2 matrix
field Q = (�, µ;µ,��) is redundant, for only two real
scalar fields �(t, r) and µ(t, r) are needed to specify
the nematic state at each position r = (x, y). To
obtain an irreducible representation [14, 51] we de-
fine the complex position coordinate z = x+ iy, veloc-
ity field v(t, z) = u+ iw and complex order parameter
 (t, z) = �+ iµ, such that S = 2| |. In terms of the
Wirtinger gradient operator @ = 1

2 (@x � i@

y

), the 2D
Laplacian takes the form r2 = 4@̄@ and the closure con-
dition (7) reduces to v = �2D@ . Denoting the real and
imaginary parts of an operator O by <{O} and ={O},
Eqs. (4) and (5) may be equivalently expressed as
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For �2 < 0 and �4 ! 0, Eq. (10) reduces to the energy
density of the Gross-Pitaevskii mean-field model [52, 53]
for weakly interacting boson gases. Historically, this limit
case has been crucial [51, 58] for elucidating the anal-
ogy between the smectic phase of passive LCs and the
Abrikosov flux lattice in type-II superconductors [59, 60].
For �2, �4 > 0, Eq. (10) e↵ectively describes double-well
dispersion [54], as recently realized for quasi-momenta in
spin-orbit-coupled Bose-Einstein condensates [55, 57] and
Fermi gases [56]. This fact establishes an interesting con-
nection between dense ALCs and strongly coupled quan-
tum systems: when self-advection is negligible (D ! 0),
the fixed point configurations of Eq. (8) coincide with the
‘eigenstates’ of generalized Gross-Pitaevskii models that
incorporate wavelength selection.
Stability analysis. The qualitative model dynam-

ics is not significantly altered for moderate values of ↵
(Movies S1 and S2), so we neglect the commutator term
by setting  = 0 from now on (see Supplementary In-
formation for  > 0). To understand the properties of
Eqs. (8)–(9) when self-advection is relevant, we perform
a fixed point analysis of the rescaled dimensionless equa-
tion (Supplementary Information)
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FIG. 6: Quantitative comparison of defect statistics between
predictions of Eq. (11) and experimental data [46], using
the parameter estimation procedure described in the text.
For � 1

2 -defects, both (a) speed distribution and (b) life-
time distribution agree well. (c) For + 1

2 -defects, experi-
mentally measured speed values are slightly larger, as our
model assumes a strongly overdamped limit. (d) Simula-
tions with periodic boundary conditions (Movie S7) predict
a low-probability tail of large lifetimes which is not visible
in the experiment, likely due to its restricted field of view
or additional noise. Dimensionless simulation parameters
D = 1.75 and �2 = 1 translate into the following dimen-
sional values: a = 0.08 s�1, b = 0.32 s�1, D = 1791µm2/s,
�2 = 1024µm2/s, �4 = 3.28 ⇥ 106µm4/s. The numbers n±
reflect the number of ± 1

2 -defects tracked, and the simulation
domain contained ⇠ 130 defects at any given time.

vided by DeCamp et al. (private communication). Since
our simulations are performed in dimensionless units,
there is freedom to choose a characteristic lengthscale
l0 and timescale t0. To relate theory and experiments,
we determine (l0, t0) such that the joint mean speed and
mean lifetime of ± 1

2 -defects match the experimental val-
ues v̄ = 6.6µm/s and ⌧̄ = 52.8 s. After fixing these global
scales, we can compare details of the speed and lifetime
distributions (Fig. 6). To this end, we first locate the
‘best-fit’ simulation parameters in the (�2, D)-parameter
space explored in the phase diagram (Fig. 2a). This pro-
cedure identifies �2 = 1, D = 1.75 as the best-match
parameters, although nearby parameter values and sim-
ulations with  = 1 produce fits of similar quality, cor-
roborating the robustness of the model (Fig. S4). For
� 1

2 -defects, we find adequate agreement between exper-
iment and theory for speed and lifetime probability den-
sity functions (PDFs), as evident from Fig. 6a,b. For
+ 1

2 -defects, simulation results also agree well with the
experimental measurements (Fig. 6c,d), but one notices
two systematic di↵erences. First, while the peak heights

of the PDFs agree within a few percent, experimen-
tally measured speed values for + 1

2 -defects are on av-
erage slightly larger than theoretically predicted values
(Fig. 6c). Second, simulation data predict a miniscule
tail-fraction of long-living + 1

2 -defects not detected in the
experiment (Fig. 6d). In addition, based on the experi-
mental density estimate of 30 defects/mm2 [46], we find
that the defect density at any given time in the ‘best-fit’
simulation is ⇠ 2.3⇥ lower than in the experiments. As
discussed below, such deviations can be explained plau-
sibly by specific model assumptions. Taken together, the
above results confirm that the minimal model defined by
Eq. (11) provides a satisfactory qualitative and quantita-
tive description of the main experimental results [5, 46].

DISCUSSION

Universality. Equations (5) and (10) epitomize the
idea of ‘universality’ in spatio-temporal pattern forma-
tion [50, 70], as outlined in the introduction. The free-
energy expressions contain the leading-order terms of
generic series expansions in both order-parameter space
and Fourier space, consistent with spatial and nematic
symmetries. When considering passive systems with a
preference for homogenization (�2 < 0), it usually suf-
fices to keep only the quadratic gradient terms. By
contrast, for pattern forming systems, the coe�cient in
front of the lowest-order gradient contribution can change
sign [38, 50], and one must include higher-order deriva-
tives to ensure stability. In a few select cases, expres-
sions of the form (5) and (10) can be systematically de-
rived [38, 50, 71]. Generally, one can regard the free-
energy expansion (10) as an e↵ective field theory whose
phenomenological parameters can be determined from
experiments. This approach has proved successful for
dense bacterial suspensions [34, 35] and now also for
ALCs, indeed suggesting some universality in the for-
mation and dynamics of topological defects in active sys-
tems.
Nematic defect order. Although (�2, D) are varied

as independent e↵ective parameters in the simulations,
they are likely coupled through underlying physical and
chemical parameters. For example, it is plausible that a
change in ATP-concentration or film-thickness would af-
fect both �2 and D. The parameter D can also be inter-
preted as an e↵ective Reynolds number. In our numer-
ical exploration of the (�2, D)-parameter space, we ob-
serve for subcritical advection D either long-lived lattice-
like states exhibiting nematically aligned + 1

2 -defects or
defect-free ground-states (Fig. 2; Movies S3, S4, S5 and
S6). Ordered defect configurations correspond to lo-
cal minima or saddles in the free-energy landscape and
have only slightly higher energy than defect-free states
(Fig. 2c). When the activity ⇣ is su�ciently large that
advection is marginally supercritical, D & D

c

, chaotic
system trajectories spend a considerable time in the
vicinity of these metastable lattice states, which provides

Experiment vs. theory

Experimental data kindly provided by Zvonimir Dogic and Steve DeCamp
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Figure 2 | Defect-ordered phase in experiments. a, Retardance map of a thick MT film in the regime of weak defect alignment. Red and blue markers
indicate locations and orientations of +1/2 and �1/2 defects. Scale bar, 200 µm. b, Thin MT film showing strong alignment of +1/2 defects. Scale bar,
200 µm. c, Orientational order in a large active-nematic sample. Each red bar’s orientation and length indicates the mean direction and strength of the
defect alignment in one field of view. Scale bar, 2 mm. d, Defect alignment spans the largest samples studied (6 cm ⇥ 2 cm), containing ⇠20,000 defects.
Scale bar, 10 mm. e, Normalized histogram of +1/2 (red) and �1/2 (blue) defect orientations, P( ), for the sample shown in b–d. f, MT orientation, P(✓),
for the sample shown in b–d. Measurements of P(✓) from 0 to ⇡ are replicated in the range from ⇡ to 2⇡. Both P( ) and P(✓) show strong nematic ordering.
g, The preferred defect orientation (green) and magnitude of the order parameter (red) averaged over a field of view persists over the entire sample lifetime.

axis (Fig. 2b). Furthermore, the orientational distribution function
of�1/2 defects exhibits six-fold symmetry, although the strength of
this order is significantly less than the nematic order of+1/2 defects.
In addition, radial distribution functions of both±1/2 defects reveal
the absence of long-range positional order (Supplementary Fig. 9).

Next, we investigated how the orientational order of+1/2 defects
persists in time and space. We find that within a single field
of view (2.3⇥ 1.7mm) the axis of defect order does not change
appreciably over the entire sample lifetime (Fig. 2g). Therefore,
we used a motorized x–y stage to repeatedly scan centimetre-
sized samples every ten minutes, allowing us to measure long-range
variations in defect ordering. In such samples we measure a nearly
uniform system-spanning orientational order (Fig. 2c,d). The largest
active-nematic sample analysed (6 cm ⇥ 2 cm) contained ⇠20,000
defects, demonstrating that orientational order persists at scales
larger than 100 average defect spacings (Supplementary Movie 3).
The defect orientational order is a result of spontaneously broken
symmetry, and is not strongly influenced by the sample boundaries.
To demonstrate this, we have confined active nematics in a circular
geometry, finding that defects form a single uniformly aligned
domain, rather than aligning with the boundaries (Supplementary
Fig. 1). Consistent with these observations, we also note that active
nematics in rectangular channels do not strongly favour either the
long or the short axis of the channel.

In simulations, +1/2 defects also attain system-spanning
orientational order (Fig. 3b,d). However, in contrast to the nematic
defect ordering observed in experiments, in the computational
system defects align with polar symmetry, which leads to their net
transport along the preferred direction. Possible reasons for this
di�erence are discussed below.

Tuning filament density controls the strength of the emergent
defect order and can even transform the system into an isotropic
state. To quantify the degree of defect ordering, we measure the
2D polar and nematic order parameters, P = hcos( �  ̄)i and
S= hcos(2[ �  ̄])i, respectively, where  is the orientation of
a +1/2 defect and  ̄ is the mean orientation of all defects in a
given system configuration. We find that thin nematic films (low
MT concentration, hence low retardance) have high defect nematic
order, S; increasing the film thickness (high MT concentration,
high retardance) decreases the magnitude of S to the point where
defects become e�ectively isotropic (Figs 2a,b and 4a). A similar
e�ect is observed in simulations when varying the particle density
(area fraction); at the lowest densities studied, defects have relatively
strong alignment, P . Increasing density induces a transition to
an isotropic state (Figs 3a,b and 4b). Spatial correlation functions
of these order parameters demonstrate that, in all experimental
and computational systems with measurable defect ordering, defect
correlations are system-spanning (Fig. 4c,d). Although the density
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Orientational order of motile defects in
active nematics
Stephen J. DeCamp†, Gabriel S. Redner†, Aparna Baskaran, Michael F. Hagan* and Zvonimir Dogic*
The study of liquid crystals at equilibrium has led to funda-
mental insights into the nature of orderedmaterials, as well as
to practical applications such as display technologies. Active
nematics are a fundamentally di�erent class of liquid crystals,
driven away from equilibrium by the autonomous motion of
their constituent rod-like particles1–4. This internally generated
activity powers the continuous creation and annihilation of
topological defects, which leads to complex streaming flows
whose chaotic dynamics seem to destroy long-range order5–11.
Here, we study these dynamics in experimental and computa-
tional realizations of active nematics. By tracking thousands
of defects over centimetre-scale distances in microtubule-
based active nematics, we identify a non-equilibrium phase
characterized by a system-spanning orientational order of
defects. This emergent order persists over hours despite
defect lifetimes of only seconds. Similar dynamical structures
are observed in coarse-grained simulations, suggesting that
defect-ordered phases are a generic feature of active nematics.

Topological defects play important roles in diverse phenomena
ranging from high-energy physics and cosmology to traditional
condensed-matter systems12. For instance, the spontaneous unbind-
ing of dislocation pairsmediates themelting of 2D crystals13. Despite
their usual role as centres of disorder, defects can also organize
into higher-order equilibrium structures with emergent properties,
such as liquid-crystalline twist-grain-boundary phases and flux-
line lattices in superconductors14,15. Far less is understood about
the role of defects in active-matter systems, which are driven away
from equilibrium by the motion of their constituent particles16–24.
Previous work on active nematics has demonstrated an instability
at large wavelengths5 which leads to spontaneous defect nucleation
and unbinding6–10. In contrast to the well-studied passive defects
found in equilibriummatter, defects in active nematics are motile25,
and are continuously generated and annihilated, producing a dy-
namical defect-riddled phase that is inherently out of equilibrium.
The observed dynamics are complex and chaotic, and seem to
destroy the long-range ordering of the underlying nematic. Here,
by tracking thousands of defects over long times, we demonstrate
that defects self-organize into a higher-order phase with broken
rotational symmetry. The orientational ordering of defects spans
macroscopic samples and persists for the sample lifetime of many
hours, despite the lifetimes of the constituent defects being orders of
magnitude shorter.

Our experimental system is comprised ofmicrometre-long stabi-
lized microtubules (MTs), streptavidin clusters of biotin-labelled ki-
nesin motors26 and the non-adsorbing polymer polyethylene glycol
(PEG) (Fig. 1a). In a bulk suspension, PEG induces the formation of
MT bundles by the depletion mechanism27,28. The same interaction

also depletes MTs onto a surfactant-stabilized oil/water interface.
Centrifugation makes it possible to spin down all the MT bundles
onto the interface, leading to the formation of a dense quasi-2D
MT film that exhibits local orientational order. Each kinesin cluster
binds to multiple MTs. As each motor within the cluster hydrolyses
adenosine triphosphate (ATP), it moves towards the plus end of a
MT and induces interfilament sliding29. This generates extensileme-
chanical stresses that drive the nematic film away from equilibrium
(Fig. 1b). A biochemical regeneration system maintains a constant
ATP concentration and powers the system for over 24 h (see Supple-
mentary Methods). We image these active nematics with both fluo-
rescencemicroscopy and LC-PolScope30. LC-PolScopemeasures the
orientation of the nematic director field ✓(r) with pixel resolution.
It also measures the magnitude of the birefringence, which reveals
the e�ective thickness of the nematic film, or retardance field 1(r)
(see Supplementary Fig. 4 for an extended discussion). Using a ⇥4
objective, we observe the dynamics of the MT film over the entire
field of view, corresponding to an area of 2.3⇥1.7mm.

In parallel, we have developed a tractable coarse-grained
computational model. Our approach employs Brownian dynamics
simulations of rigid spherocylinders which, in equilibrium, form
a nematic phase31. Long-ranged hydrodynamic interactions are
omitted, producing an essentially dry system. The length of each
constituent rod increases at a constant rate, producing an extensile
stress similar to themotor-driven extension ofMTbundles (Fig. 1d).
On reaching a preset maximum length, a spherocylinder is split in
half and two other rods are simultaneouslymerged, thus keeping the
total particle number fixed (see SupplementaryMethods). Although
inspired by the dynamics ofMT bundles, this approach is not meant
to quantitatively reproduce specific features of the experimental
system, but simply to capture its microscopic symmetries (nematic
interparticle alignment and extensile nematic activity).

In equilibrium, nematic defects anneal to minimize the free
energy, eventually producing a uniformly aligned state. It is not
possible to prepare an analogous state in extensile active nematics,
as uniform alignment is inherently unstable to bend deformations5.
These distortions grow in amplitude and produce a fracture line,
terminated at one end by a defect of charge +1/2, and by a �1/2
defect at the other (Fig. 1c). The asymmetry of +1/2 defects causes
motor-generated stresses to produce a net propulsive force, leading
to extension of the fracture line. Above a critical length, the fracture
line self-heals, leaving behind a pair of isolated, oppositely charged
defects9. For experimental ATP concentration, +1/2 defects move
at speeds of ⇠8 µms�1. Defects are transient objects; on average, a
+1/2 defect exists for 40 s before colliding with a �1/2 defect and
annihilating, leaving behind a uniformly aligned nematic region32

(Fig. 1c). The system reaches a steady state inwhich the rate of defect
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Topology and dynamics of active
nematic vesicles
Felix C. Keber,1,2* Etienne Loiseau,1* Tim Sanchez,3* Stephen J. DeCamp,3 Luca Giomi,4,5

Mark J. Bowick,6 M. Cristina Marchetti,6 Zvonimir Dogic,2,3 Andreas R. Bausch1†

Engineering synthetic materials that mimic the remarkable complexity of living organisms
is a fundamental challenge in science and technology. We studied the spatiotemporal
patterns that emerge when an active nematic film of microtubules and molecular motors is
encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where
defects are largely static structures, in active nematics defects move spontaneously and can
be described as self-propelled particles. The combination of activity, topological constraints,
and vesicle deformability produces a myriad of dynamical states. We highlight two
dynamical modes: a tunable periodic state that oscillates between two defect configurations,
and shape-changing vesicles with streaming filopodia-like protrusions. These results
demonstrate how biomimetic materials can be obtained when topological constraints are
used to control the non-equilibrium dynamics of active matter.

F
undamental topological laws prove that it
is not possible to wrap a curved surface with
lines without encountering at least one sin-
gular point where the line is ill defined.
This mathematical result is familiar from

everyday experience. Common examples are dec-
orating Earth’s surface with lines of longitude
or latitude or covering a human hand with par-
allel papillary ridges (fingerprints). Both require
the formation of singular points known as topo-
logical defects (1). The same mathematical con-
siderations apply when assembling materials on
microscopic length scales. Nematic liquid crys-
tals are materials whose constituent rod-like mol-
ecules align spontaneously along a preferred
orientation that is locally described by the di-
rector (line) field. Covering a sphere with a nematic
leads to the formation of topological defects called
disclinations. Mathematics dictates that the net
topological charge of all defects on a spherical
nematic must add up to +2, where a charge of s
denotes a defect that rotates the director field
by 2ps. The basic nematic defects have charge
+½ or –½, corresponding to a p rotation of the
director field in the same sense or the opposite
sense, respectively, as that of any closed path
encircling the defect (2–6). Defects on topolog-
ically constrained geometries can acquire highly
complex and tunable spatial arrangements, which

can drive assembly of intriguing higher-order
hierarchical materials (7, 8). For this reason,
combining conventional soft materials with topo-
logical constraints has emerged as a promising
platform for organizing matter on micrometer
length scales. So far, most studies in this area
have focused on investigating equilibrium mate-
rials confined on rigid nondeformable surfaces
of varying topology (9–17). Equilibrium statistical
mechanics imposes tight constraints on the prop-
erties of such topological soft materials, which
can acquire remarkable spatial complexity but can-
not sustain persistent temporal dynamics.
Recent advances have enabled the assembly of

active nematic liquid crystals in which the con-
stituent rod-like building blocks continuously
convert chemical energy into mechanical motion
(18–20). Such materials are no longer constrained
by the laws of equilibrium statistical mechanics.
Consequently, unconfined active nematics exhibit
highly sought-after properties such as spontane-
ous chaotic flows that are tightly coupled to
continuously generating and annihilating motile
defects (21–23). We have merged active nematics
with soft topological constraints to create topolog-
ical active matter. Microtubule-based active nemat-
ics were confined onto a deformable spherical
surface provided by a lipid vesicle. Similar to
well-studied equilibrium nematics confined on a
sphere, topology requires the formation of de-
fects with a net topological charge of +2. In stark
contrast to the equilibrium case, however, ac-
tivity generated by energy-consuming kinesin
motors endows the active nematic defects with
motility. As a result, the complex spatial defect
structure becomes dynamic and the active nematic
vesicles are turned into robust colloidal clocks
with tunable frequency. By controlling the vesicle
tension, we coupled the oscillatory dynamics of
the active nematic cortex to vesicle deformations,

creating biomimetic shape-changing materials.
Our experiments suggest a route for designing
soft materials with controlled oscillatory dynam-
ics. They further raise intriguing questions about
how the dynamics of topological activematter can
be enriched by increasing the complexity of the
constraining surface, by controlling the nature of
the synchronization transitions that occur in
arrays of colloidal oscillators, and through the use
of active crystals and other far-from-equilibrium
materials (24).

Assembly of active nematic vesicles

We built on recent work by encapsulating active
nematics into deformable vesicles. Active nematic
vesicles encapsulating microtubules, kinesin mo-
tor clusters, and the nonadsorbing polymer poly-
ethylene glycol (PEG) within a lipid vesicle were
produced using an emulsion transfer technique
(25). PEG induces adsorption of microtubule fila-
ments onto the inner leaflet of the vesicle by the
depletion mechanism (26). At high microtubule
concentration, the entire vesicle surface is coated
with a dense monolayer of extensile microtubule
bundles, effectively creating a two-dimensional
(2D) nematic cortex. Individual kinesin motors,
fueled by energy from adenosine triphosphate
(ATP) hydrolysis, processively move along a mi-
crotubule backbone at velocities up to 0.8 mm/s
(27). When bound into multimotor clusters through
a biotin-streptavidin linkage, kinesin clusters form
cross-links with adjacent microtubules, induc-
ing them to slide relative to each other and gen-
erating active extensile stresses (19, 28, 29). We
image active nematic vesicles by confocal micros-
copy (30).
In equilibrium there are multiple defect arrange-

ments that minimize the free energy of a 2D
spherical nematic, with the exact configuration
depending on the strength of the elastic con-
stants. Under the assumption that the bend and
splay elastic moduli are equal, the free energy is
minimized when four +½ defects are located at
the corners of a tetrahedron inscribed within the
sphere (2, 3, 5). This configuration is favored be-
cause defects of the same charge repel each other.
Placing them at the corners of a tetrahedron max-
imizes their separation, thus minimizing liquid
crystal distortions. The 3D reconstruction of the
surface-bound active nematic reveals the presence
of four +½ disclination defects (Fig. 1), in agree-
ment with theoretical predictions for equilibrium
systems and previous experimental observations of
spherical nematic shells of finite thickness (4).

Oscillating defect dynamics in active
nematic vesicles

At finite ATP concentrations, active energy in-
put provided by kinesin clusters drives the micro-
tubule nematic far from equilibrium, yielding
surprising dynamics. In planar nematics active
stresses destabilize the homogeneous state (31–33)
and generate self-sustained streaming flows, with
the continuous creation and annihilation of mo-
tile defects that interact through elastic and hy-
drodynamic forces (19, 21–23). When the nematic
film is confined to the surface of a sphere, active

RESEARCH

SCIENCE sciencemag.org 5 SEPTEMBER 2014 • VOL 345 ISSUE 6201 1135

1Department of Physics, Technische Universität München,
85748 Garching, Germany. 2Institute for Advanced Study,
Technische Universität München, 85748 Garching, Germany.
3Department of Physics, Brandeis University, Waltham, MA
02474, USA. 4SISSA International School for Advanced
Studies, Via Bonomea 265, 34136 Trieste, Italy. 5Instituut-
Lorentz for Theoretical Physics, Leiden University, 2333 CA
Leiden, Netherlands. 6Physics Department and Syracuse
Biomaterials Institute, Syracuse University, Syracuse, NY
13244, USA.
*These authors contributed equally to this work. †Corresponding
author. E-mail: abausch@mytum.de

 o
n 

D
ec

em
be

r 4
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

D
ec

em
be

r 4
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

D
ec

em
be

r 4
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

D
ec

em
be

r 4
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

D
ec

em
be

r 4
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

RESEARCH ARTICLES
◥

DYNAMIC ORDERING

Topology and dynamics of active
nematic vesicles
Felix C. Keber,1,2* Etienne Loiseau,1* Tim Sanchez,3* Stephen J. DeCamp,3 Luca Giomi,4,5

Mark J. Bowick,6 M. Cristina Marchetti,6 Zvonimir Dogic,2,3 Andreas R. Bausch1†

Engineering synthetic materials that mimic the remarkable complexity of living organisms
is a fundamental challenge in science and technology. We studied the spatiotemporal
patterns that emerge when an active nematic film of microtubules and molecular motors is
encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where
defects are largely static structures, in active nematics defects move spontaneously and can
be described as self-propelled particles. The combination of activity, topological constraints,
and vesicle deformability produces a myriad of dynamical states. We highlight two
dynamical modes: a tunable periodic state that oscillates between two defect configurations,
and shape-changing vesicles with streaming filopodia-like protrusions. These results
demonstrate how biomimetic materials can be obtained when topological constraints are
used to control the non-equilibrium dynamics of active matter.

F
undamental topological laws prove that it
is not possible to wrap a curved surface with
lines without encountering at least one sin-
gular point where the line is ill defined.
This mathematical result is familiar from

everyday experience. Common examples are dec-
orating Earth’s surface with lines of longitude
or latitude or covering a human hand with par-
allel papillary ridges (fingerprints). Both require
the formation of singular points known as topo-
logical defects (1). The same mathematical con-
siderations apply when assembling materials on
microscopic length scales. Nematic liquid crys-
tals are materials whose constituent rod-like mol-
ecules align spontaneously along a preferred
orientation that is locally described by the di-
rector (line) field. Covering a sphere with a nematic
leads to the formation of topological defects called
disclinations. Mathematics dictates that the net
topological charge of all defects on a spherical
nematic must add up to +2, where a charge of s
denotes a defect that rotates the director field
by 2ps. The basic nematic defects have charge
+½ or –½, corresponding to a p rotation of the
director field in the same sense or the opposite
sense, respectively, as that of any closed path
encircling the defect (2–6). Defects on topolog-
ically constrained geometries can acquire highly
complex and tunable spatial arrangements, which

can drive assembly of intriguing higher-order
hierarchical materials (7, 8). For this reason,
combining conventional soft materials with topo-
logical constraints has emerged as a promising
platform for organizing matter on micrometer
length scales. So far, most studies in this area
have focused on investigating equilibrium mate-
rials confined on rigid nondeformable surfaces
of varying topology (9–17). Equilibrium statistical
mechanics imposes tight constraints on the prop-
erties of such topological soft materials, which
can acquire remarkable spatial complexity but can-
not sustain persistent temporal dynamics.
Recent advances have enabled the assembly of

active nematic liquid crystals in which the con-
stituent rod-like building blocks continuously
convert chemical energy into mechanical motion
(18–20). Such materials are no longer constrained
by the laws of equilibrium statistical mechanics.
Consequently, unconfined active nematics exhibit
highly sought-after properties such as spontane-
ous chaotic flows that are tightly coupled to
continuously generating and annihilating motile
defects (21–23). We have merged active nematics
with soft topological constraints to create topolog-
ical active matter. Microtubule-based active nemat-
ics were confined onto a deformable spherical
surface provided by a lipid vesicle. Similar to
well-studied equilibrium nematics confined on a
sphere, topology requires the formation of de-
fects with a net topological charge of +2. In stark
contrast to the equilibrium case, however, ac-
tivity generated by energy-consuming kinesin
motors endows the active nematic defects with
motility. As a result, the complex spatial defect
structure becomes dynamic and the active nematic
vesicles are turned into robust colloidal clocks
with tunable frequency. By controlling the vesicle
tension, we coupled the oscillatory dynamics of
the active nematic cortex to vesicle deformations,

creating biomimetic shape-changing materials.
Our experiments suggest a route for designing
soft materials with controlled oscillatory dynam-
ics. They further raise intriguing questions about
how the dynamics of topological activematter can
be enriched by increasing the complexity of the
constraining surface, by controlling the nature of
the synchronization transitions that occur in
arrays of colloidal oscillators, and through the use
of active crystals and other far-from-equilibrium
materials (24).

Assembly of active nematic vesicles

We built on recent work by encapsulating active
nematics into deformable vesicles. Active nematic
vesicles encapsulating microtubules, kinesin mo-
tor clusters, and the nonadsorbing polymer poly-
ethylene glycol (PEG) within a lipid vesicle were
produced using an emulsion transfer technique
(25). PEG induces adsorption of microtubule fila-
ments onto the inner leaflet of the vesicle by the
depletion mechanism (26). At high microtubule
concentration, the entire vesicle surface is coated
with a dense monolayer of extensile microtubule
bundles, effectively creating a two-dimensional
(2D) nematic cortex. Individual kinesin motors,
fueled by energy from adenosine triphosphate
(ATP) hydrolysis, processively move along a mi-
crotubule backbone at velocities up to 0.8 mm/s
(27). When bound into multimotor clusters through
a biotin-streptavidin linkage, kinesin clusters form
cross-links with adjacent microtubules, induc-
ing them to slide relative to each other and gen-
erating active extensile stresses (19, 28, 29). We
image active nematic vesicles by confocal micros-
copy (30).
In equilibrium there are multiple defect arrange-

ments that minimize the free energy of a 2D
spherical nematic, with the exact configuration
depending on the strength of the elastic con-
stants. Under the assumption that the bend and
splay elastic moduli are equal, the free energy is
minimized when four +½ defects are located at
the corners of a tetrahedron inscribed within the
sphere (2, 3, 5). This configuration is favored be-
cause defects of the same charge repel each other.
Placing them at the corners of a tetrahedron max-
imizes their separation, thus minimizing liquid
crystal distortions. The 3D reconstruction of the
surface-bound active nematic reveals the presence
of four +½ disclination defects (Fig. 1), in agree-
ment with theoretical predictions for equilibrium
systems and previous experimental observations of
spherical nematic shells of finite thickness (4).

Oscillating defect dynamics in active
nematic vesicles

At finite ATP concentrations, active energy in-
put provided by kinesin clusters drives the micro-
tubule nematic far from equilibrium, yielding
surprising dynamics. In planar nematics active
stresses destabilize the homogeneous state (31–33)
and generate self-sustained streaming flows, with
the continuous creation and annihilation of mo-
tile defects that interact through elastic and hy-
drodynamic forces (19, 21–23). When the nematic
film is confined to the surface of a sphere, active
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Surface interactions

Minimal continuum models of active fluids 8

2.4. Symmetry breaking

With regard to microbial suspensions, the minimal model (1) is useful for illustrating

how microscopic symmetry-breaking mechanisms that a�ect the motion of individual

organisms or cells [40, 48, 49, 50] can be implemented into macroscopic field equations.

To demonstrate this, we interpret ⇥ as a 2D pseudo-scalar vorticity field⌃

⇥ ⇥ ⇤ = ⌥⇧ v = �ij⌅ivj, (7)

which is assumed to describe the flow dynamics v of a dense microbial suspension

confined to a thin quasi-2D layer of fluid. If the confinement mechanism is top-bottom

symmetric, as for example in a thin free-standing bacterial film [10], then one would

expect that vortices of either handedness are equally likely. In this case, Equation (1)

must be invariant under ⇤ ⇤ �⇤, implying that U(⇤) = U(�⇤) and, therefore, b = 0

in Equation (2). Intuitively, the transformation ⇤ ⇤ �⇤ corresponds to a reflection of

the observer position at the midplane of the film (watching the 2D layer from above vs.

watching it from below).

The situation can be rather di�erent, however, if we consider the dynamics of

microorganisms close to a liquid-solid interface, such as the motion of bacteria or sperms

cells in the vicinity of a glass slide (Figure 2). In this case, it is known that the

trajectory of a swimming cell can exhibit a preferred handedness [40, 48, 49, 50]. For

example, the bacteria Escherichia coli [40] and Caulobacter [48] have been observed

⌃ �ij denotes the Cartesian components of the Levi-Civita tensor, ⌅i = ⌅/⌅xi for i = 1, 2, and we use
a summation convention for equal indices throughout.

Figure 2. E�ect of symmetry breaking. (a) Stationary hexagonal lattice of the pseudo-
scalar vorticity order-parameter ⇥ = ⇤, scaled by the maximum value ⇥m = ⇤m,
as obtained in simulations of Equations (1) and (2) with b > 0, corresponding to a
broken reflection symmetry ⇤ ⌅⇤ �⇤. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus
droebachiensis) near a glass surface; from [28] adapted and reprinted with permission
from AAAS. At high densities, the spermatozoa assemble into vortices that rotate in
clockwise direction (inset) when viewed from the bulk fluid.

Sea urchin sperm

Riedel et al (2005) Science

S. purpuratus

S. droebachiensis


