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Non-Euclidean Model
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The equilibrium configuration of a sheet of thickness t is a           map that 
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Experimental Observations
D is a strip geometry with metric:

g = (1 + f(y))dx2 + dy

2

⌦

Multiple scale buckling
Sharon, E., Roman, B., & Swinney, H. L. (2007). Geometrically driven wrinkling observed in free plastic 
sheets and leaves. Physical Review E, 75(4), 046211.

libria of narrow elastic strips as a model problem !13,14".
Numerical studies of wide sheets by Marder et al. !15" and
by Audoly and Boudaoud !16" obtained multiscale waves as
energy minima of sheets with elongated edges. In !16" the
authors studied the scaling of the shortest wavelengths in the
cascades and proposed a resonancelike mechanism for the
scaling of longer waves. They suggested that the observed
wavy shapes are very close to existing smooth stretch-free
configurations, perturbed by the bending energy of the sheet
#the “small perturbation scenario”$. This suggestion, how-
ever, has not been tested with experimental data.

In this paper we present and analyze measurements on
torn plastic sheets and leaves. The experimental system is
described in Sec. II, and the results are presented in Sec. III.
We show that the process of tearing a thin plastic sheet leads
to a hyperbolic equilibrium metric #i.e., a metric producing a
negative Gaussian curvature$ on the deformed part of the
sheet, with an increasingly negative Gaussian curvature close
to the edge. We present measurements of wavelengths and
amplitudes of the waves and show that although the metrics
are smooth and monotonic, a cascade is generated through a
set of sharp transitions in which new modes emerge. Further,
in Sec. III B we show that the scaling of wavelengths de-
pends explicitly on the sheet thickness, as well as on the
prescribed metric. This scaling leads to several predictions,
one of which is that at vanishing thickness, sheets should
form wrinkles with infinitesimal wavelengths within the en-
tire deformed region, including at large distance from the
edge. We argue that the observed scaling suggests, in con-
trast with !16", that the patterns are formed via a wrinkling
scenario, and we describe a possible geometrical origin of
the phenomenon. In Sec. III C we show how our ideas and
techniques can be applied to a quantitative study of wavy
leaves. The intrinsic metric of a leaf resembles that of the
wavy plastic sheets, i.e., it is hyperbolic and depends mainly
on the distance from the leaf’s edge. The conclusions are
presented in Sec. IV.

II. EXPERIMENTAL SYSTEM

Experiments are conducted on rectangular Teflon and
polyethylene sheets #thickness 12–500 !m, 10–20 cm in
x-y$ that are pulled at a uniform rate on opposite sides, as
illustrated in Fig. 1. The tearing generates a traveling spade-
shaped crack. A resultant free sheet is then placed under a
“Conoscan 3000” noncontact profilometer, and the sheet’s

profile z#x ,y$ is obtained with a resolution of 25 !m in the x
and y directions and 5 !m in the z direction. Next, y is
redefined to be the distance of a point from the edge, mea-
sured along the surface.

III. RESULTS

A. Torn plastic sheets

Since the in-plane plastic deformation resulted from a
steady propagation of the fracture tip, the deformation is in-
variant as a function of position x along the edge. This was
confirmed by analyzing movies of the propagating tips and
by the cutting experiment described in Sec. III B. Integration
of the profile z#x ,y$ at a fixed y provides the length of the
sheet in the x direction. We call f#y$ the ratio of length at a
given y to the length of the sheet prior to tearing. We show
three examples of f#y$ in Fig. 2. The length element on the
deformed surface is dl2= #fdx$2+dy2, i.e., f#y$ is the xx com-
ponent of the new equilibrium metric tensor produced by
tearing the sheet. Although the sheets are deformed plasti-
cally during the tearing #when the stresses near the tip are
dramatically enhanced$, there is no reason to expect any ad-
ditional plastic deformation after the tearing. Thus the relax-
ation of the deformed sheet is elastic.

The metric functions f#y$ approach unity far from the
edge #where no plastic deformation has occurred$ and in-
crease convexly close to the edge. For the conditions of our
experiments the amount of stretch at the edge f#0$ is less
than 2 #see the examples in Fig. 2$. Different experimental
conditions #different materials, crack velocities, sheet dimen-
sions$ lead to different metric functions, reflecting the differ-

y
x

FIG. 1. A spade-shaped crack traveling in a polyethylene sheet
that is pulled horizontally. The sheet edges created by the tearing
have stable waves. y is the distance of a point from the edge, mea-
sured along the surface. The lines on the scale in the upper left
corner are 1 mm apart.
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FIG. 2. Metric function describing the elongation in the x direc-
tion as a function of y, measured for 0.20-mm-thick polyethylene
sheets for different conditions: top curve—crack velocity v
=0.5 cm/s, steady state; middle—v=5 cm/s, steady state;
bottom—v=5 cm/s, initial crack propagation. The resultant struc-
tures along the edge #inset$ consists of three, two, and one genera-
tions, respectively.

SHARON, ROMAN, AND SWINNEY PHYSICAL REVIEW E 75, 046211 #2007$
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Toy Problem

A natural question is what is the relationship between the existence of these 
singularities and the observed morphologies in thin elastic sheets. 

Summary of Known Results: Given a local smooth isometric immersion of a 
metric with negative Gaussian curvature, this immersion cannot be extended 
smoothly beyond a finite distance d. Moreover, the singularities form a 
“singular edge”, i.e. a one-dimensional submanifold on which the surface fails 
to be C2.

Toy Problem

I D is a disk or an annulus with outer radius R and in polar

coordinates (⇢, ✓),

g = d⇢2 +
1

|K | sinh
2

(

p
|K |⇢) d✓2.

I
Stretching free configurations correspond to (local) isometric

immersions of the hyperbolic plane H2

.

I
If the sheet is su�ciently thin the isometric immersion is selected

by minimizing the bending energy.
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Hyperbolic Plane: Assume the metric has constant negative Gaussian curvature.



Negative Curvature: Disk Geometry
Small slopes approximation: Introduce dimensionless curvature

det(D2⌘) = �1.

X = x+ ✏

2
u1(x, y), Y = y + ✏

2
u2(x, y), Z = ✏⌘(x, y)

✏ =
p
�KR.

Ansatz:

Solvability Condition:

One parameter family of solutions:

Pick: a = cot(⇡/n).

⌘a =
1

2

✓
ax

2 � 1

a

y

2

◆

Negatively curved sheets: Disk geometry

Small slopes approximation: det(⇥⇥w) = �1

Solutions: w = 1
2

⇣
ax

2 � y2

a

⌘
.

w = 0 for y = ±ax. Pick a = cot(�/n).

Theorem:(J. Gemmer, SV). D is the unit disk with a metric whose FvK

curvature is �1. For all n 2 N, we have a n-periodic local minimizer for the

elastic energy, whose energy satisfies the bounds

min(C1, C2nt
2
)  EFvK  min(c1, c2n

2t2).

Periodic Isometric Immersions

I
A one parameter family of isometric immersions exist and are of the

form

⌘a =
1

2

✓
ax2 � 1

a
y2

◆
.

I
By letting a = tan(⇡/2n) we can construct n-wave isometric

immersions through odd periodic extensions.

I
This gives us the upper bound

E⌧ [x]  ⇡⌧ 2
�
4 cot

2

(⇡/n) + 1

�
.



Multiple Branch Points

4

FIG. 4. (a-b) Small slope isometric immersions w0
4(x1, x2) and

w0
4(x1, x2) for constant Gaussian curvature K = �1. w0

4(x1, x2) is con-
structed by taking odd periodic reflections of the piece of w0

4(x1, x2)
bounded between the green lines. The mesh on both of these sur-
faces correspond to their asymptotic lines. (c-d) Projection of the
asymptotic lines of w0

4(x1, x2) and w0
4(x1, x2) onto the x1, x2 plane.

in in the limit n ! 1 is a fractal with an infinite number of
subwrinkles in the region x2

1 + x2
2 � 1. The full surface on the

circular domain is obtained by odd periodic reflections and to
to illustrate the wrinkling behavior near the edge we can map
to a strip geometry through a conformal map; see Figs. 5(c-d).

The existence of self-similar solutions to Eq. 12 also
has implications to the modeling of non-Euclidean elastic
sheets. Similar to the strip geometry with � = 1, the solu-
tion w0

2(x1, x2) is harmonic yet the extension of w0
2(x1, x2) to

an exact isometric immersion has divergent bending energy
for R ' 1.25 with the bending content concentrated near the
singular point x1 = x2 ⇡ 1.25/

p
2 [20]. Analogous to the

strip geometry, the extension of the surfaces w0
n(x1, x2) to ex-

act isometric immersions will have finite bending energy for
R ' 1.25. However these solutions have moderate bending
content away from the singular point and it may be more en-
ergetically favorable to introduce a branch point instead of a
global refinement of the wavelength. Indeed, in the strip ge-
ometry numerical experiments indicate for � = 1/3 that even
within the small slopes approximation localized self similar
wrinkling profiles may be energetically preferred over global
refinement of the wavelength [2, 22].

We conclude with two future avenues of research that nat-
urally follow from this work. A first step would be to analyze
how the optimal elastic energy of the two types of singularities
– lines of inflection and branch points – scale with the various
length scales in the problem: k�1, l and t. While the exis-
tence of isometric immersions ensures that the optimal energy
scales like t2, the space of isometric immersions is “floppy”
in the sense that isometries can be constructed by appropri-
ately gluing together low energy building blocks using lines

FIG. 5. Finite bending energy solutions to the Monge-Ampere equa-
tion [w0,w0] = �1. (a) Three subwrinkle solution created by insert-
ing three rotated and translated copies of the solution w0

6(x1, x2) =
x2(x1 �

p
3x2) onto the solution w0

2(x1, x2) = x1 x2 at a branch point.
(b) Nine subwrinkle solution created by inserting nine copies of
w0

12(x1, x2) = x2(x1 � (2 +
p

3)x2) at three branch points added onto
the three subwrinkle solution. (c) Extension of the nine subwrinkle
solution to the full circular domain. (d) The nine subwrinkle solution
mapped to the strip geometry by a conformal map.

of inflection and branch points. In particular, the introduc-
tion of these finite bending energy singularities allow us to
extend smooth isometries past singular edges and a scaling
law that captures the full geometric complexities of this prob-
lem is necessary.

A second question is how to “lift” solutions to hyperbolic
Monge-Ampere equations to exact isometric immersions. In
[20] it was shown that the quadratic solutions w0

n(x1, x2) to
Eq. 12 and their periodic counterparts w0

n(x1, x2) can be lifted
to exact isometric immersions. A natural question is how to
lift the self-similar solutions to exact isometric immersions
and to generalize these techniques to other hyperbolic metrics.
This situation is in contrast with solutions to elliptic Monge-
Ampere equation in which the existence, regularity, and the
possibility of lifting to exact isometric immersions is better
understood [28, 29].
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The origin is not special and multiple branch points can be introduced

4

see Fig. 4(e-f). Note that, if a hyperbolic surface is C2, every
point is locally a (regular) saddle (as in Fig. 4(a)) and there-
fore cannot contain branch points. Non-C2 immersions are
therefore qualitatively di↵erent from C2 immersions in that
they admit 3-saddles (“monkey saddles”) and higher order
saddles, which can mediate a local refinement of the buckling
wavelength (See Fig. 5).

FIG. 4. (a-b) Small slope isometric immersions w0
4(x1, x2) and

w0
4(x1, x2) for constant Gaussian curvature K = �1. w0

4(x1, x2) is con-
structed by taking odd periodic reflections of the piece of w0

4(x1, x2)
bounded between the green lines. The mesh on both of these sur-
faces correspond to their asymptotic lines. (c-d) Projection of the
asymptotic lines of w0

4(x1, x2) and w0
4(x1, x2) onto the x1, x2 plane.

(e-f) Direction of the gradient rw along circles centered at the ori-
gin. The regular saddle in (a) corresponds to a gradient field with
winding number -1, so the gradient map is 1 to 1. The 4-saddle in (b)
has winding number -3, so the gradient map is a 3 sheeted covering
near the origin.

Multiple branch points can be introduced on the surface by
replicating the above process at any point, not just the origin.
For example, consider the surface w0

2(x1, x2) = x1x2 which is
ruled by the asymptotic lines x1, x2 = const. A branch point
can be added at (x1, x2) = (1/

p
2, 1/

p
2) by removing the sec-

tor x1, x2 � 1/
p

2 and in this region fitting three rotated and
translated copies of w0

6(x1, x2) = x2(x1 �
p

3x2) so that the
resulting surface has continuous partial derivatives across the
cut; see Fig 5(a). Three more branch points b2,1, b2,2, b2,3
at a radial distance of 1/4 from b1,1 can be added along rays
emanating from b1,1 that bisect the lines of inflection; see Fig

5(b). This construction can be continued so that at the n-th it-
eration 3n new branch points are added at a radial distance of
(1/2)n from the previous branch points. The surface w(x1, x2)
formed in the limit n! 1 is a fractal with an infinite number
of subwrinkles in the region x1 � 0, x2 � 0, x2

1 + x2
2 � 1, and

it satisfies [w,w] = �1. The solution can be extended by odd
periodic reflections to give a small-slopes isometric immer-
sion of the unit disk with K = �1. To illustrate the wrinkling
behavior near the edge we map w to a strip geometry through
a conformal map h[x + iy] = w[ex+iy]; see Figs. 5(c-d).

FIG. 5. Finite bending energy solutions to the Monge-Ampere equa-
tion [w0,w0] = �1. (a) Three subwrinkle solution created by insert-
ing three rotated and translated copies of the solution w0

6(x1, x2) =
x2(x1 �

p
3x2) onto the solution w0

2(x1, x2) = x1 x2 at a branch point.
(b) Nine subwrinkle solution created by inserting nine copies of
w0

12(x1, x2) = x2(x1 � (2 +
p

3)x2) at three branch points added onto
the three subwrinkle solution. (c) Extension of the nine subwrinkle
solution to the full circular domain. (d) The nine subwrinkle solution
mapped to the strip geometry by a conformal map.

The existence of self-similar isometric immersions has im-
plications to the modeling of non-Euclidean elastic sheets.
As for the strip with � = 1, the solution w0

2(x1, x2) is har-
monic yet the extension of w0

2(x1, x2) to an exact isomet-
ric immersion has divergent bending energy for R ' 1.25
with the bending content concentrated near the singular point
x1 = x2 ⇡ 1.25/

p
2 [22]. We can isometrically immerse disks

with larger R by a global refinement of the wavelength i.e
taking n > 2. These solutions increase the bending energy
globally. An energetically favorable alternative might be to
introduce a branch point in the n = 2 solution near the singu-
lar point, and locally refining the wavelength instead. Indeed,
numerics for � = 1/3 in the strip geometry indicate that, even
within the small slopes approximation, localized self similar
wrinkling profiles may be energetically preferred over global
refinement of the wavelength [2, 23].

Crumpled sheets have an energy scale t5/3 which is inter-
mediate between the stretching and bending energies [32, 33].
In contrast, the existence of W2,2 isometric immersions for
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Small Slopes Decreasing Thickness
In this asymptotic regime, the saddle shape is energetically preferred.

Fig. 4 The normalized energy of numerical minimizers of EF for
r0 = 0.1, R = 1, K0 =�1 and n = 1/2. The dotted line corresponds
to the energy of stretching free deformations with out-of-plane
displacement h =

p
|K0|xy while the solid line is the value F . The

configurations plotted are colored by the approximate Gaussian
curvature det(D2h) which graphically illustrates the convergence to
a stretching free deformation.

which quantifies that for t2 < F/
�
pK0(R2 � r2

0)
�

the saddle
shapes are energetically preferred over flat deformations.

Stretching free deformations with n-fold odd rotational
symmetry that qualitatively resemble the hydrogels in Fig. 3
also exist. Specifically, the one parameter family of quadratic
functions hn =

p
|K0|y(x � cot(p/n)y) satisfy (7) as well.

These functions vanish along the lines q = 0,p/n and thus a
deformation with n-fold odd rotational symmetry can be con-
structed by taking odd periodic extensions of hn about the line
q = p/n to form a surface hn (Fig. 5). Similar construc-
tions have been used to study the morphology of disks with
uniform circumferential growth.51,52 Now, the surfaces hn are
not smooth – they have jump discontinuities in their second
derivative across lines of inflection – but have finite bending
energy and thus are allowable deformations in the FvK ansatz.
This is in contrast to a ridge singularity formed during crum-
pling in which jump discontinuities in azimuthal tangent vec-
tors lead to the bending energy diverging across the ridge.65

Note, for n = 2 the smooth saddle shape h =
p

|K0|xy is re-
covered and there is no need to make such extensions.

The elastic energy of the periodic deformations with out-
of-plane displacement hn scales like n2t2 and again in the
vanishing thickness limit we expect minimizers over the class
of deformations with n-fold odd rotational symmetry to con-
verge, up to rotations and translations in space, to hn. This
convergence to hn is observed in numerical experiments and it
is clear that there is no regime in which higher period profiles
are energetically selected over saddle shapes (Fig. 6). Indeed,
this statement follows from the following scaling law for n-
wave deformations:

min{F/2,cnt2} minEF [g,h ] min{F ,Cn2t2}, (10)

Fig. 5 1: The one parameter family of isometric immersions with
out-of-plane displacement h = y(x� cot(p/n)) parametrized by
n 2 {2,3, . . .} vanishes along the lines q = 0 and q = p/n. 2: We
can “cut out” the section of the surface bounded between these two
lines. 3: We can take the odd reflection of this isolated piece of the
surface about the the line q = 0. 4-7: By continually taking the odd
reflection of sectors about lines where the surface vanishes we can
construct a periodic isometric immersion.

where c and C are constants that depend on R,r0 and K0.38

This inequality captures the penalization paid energetically by
adding more waves and proves that in the FvK model there
can be no refinement of the number of waves with decreasing
thickness.

Fig. 6 The normalized energy of numerical minimizers of EF over
deformations with n-fold odd rotational symmetry for r0 = 0.1,
R = 1, K0 =�1 and n = 1/2. The dotted lines correspond to the
energy of stretching free deformations with out-of-plane
displacement hn while the solid line is the value F . The
configurations plotted are colored by the approximate Gaussian
curvature det(D2h).

2.2 Boundary layers in the FvK model

The exact minimizers of EF with n waves are not stretching
free deformations but have localized regions of stretching near
their inner and outer radius and along lines of inflection (Fig.
7). Near the inner and outer radius of the disk these layers
are the result of local stress and torque balance at the bound-

1–12 | 5

Small slopes theory always predicts a saddle shape. 



Chebychev Nets and the Hyperbolic Plane by
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Chebychev Nets

I
A Chebychev Net is a configuration x(u, v)
with metric

g = du2 + cos(�(u, v))dudv + dv2.
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Small Slopes Lifted to Exact Isometry

Isometric Immersion Periodic Reflections
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Piecewise Smooth Exact Isometries

Fig. 13 The energy W of discs cut from periodic Amsler surfaces

An with n = 2,3,4,5 waves. The vertical dashed lines correspond to

the radius where the principal curvatures of An diverge. The dashed

curve corresponds to the energy W of disks cut from hyperboloids of

revolution.

isometric immersions of H2 grow exponentially with the
size of the domain highlights the fact that the two dimen-
sionless numbers t/R and ε =

√

|K0|R both contribute
to the morphology of the sheets. More accurate mod-
els have to account for both of these scales, not just the
thin limit t/R → 0. In particular, for a fixed surface of
constant negative Gaussian curvature, if ε ≫ 1 then the
bending content will be large in regions where the prin-
cipal curvatures diverge. Within these regions it is nat-
ural to expect the surface to stretch to relieve this diver-
gent bending energy. This reduction in large bending en-
ergy through stretching is not captured in either the FvK
model in which much of the geometrical complexities are
removed or the Kirchhoff model in which the sheet is as-
sumed to be infinitesmally thin. It may be more appropri-
ate to consider a combination of different asymptotic ap-
proximations to the full elastic energy in various regions
of the domain. A hierarchy of such theories has been con-
jectured to exist57 and further research in this area may
better elucidate the role both geometry and elasticity play
in the realized equilibrium shape of the sheet.

3. For the periodic isometric immersions we constructed in
the Kirchhoff approximation the number of waves is de-
termined by the local property that at the origin the im-
mersion has more then two asymptotic directions. At
such points the immersion is necessarily non-smooth to
account for the multiple directions of vanishing curva-
ture and have thus have been called bifurcation points.96

Although the piecewise smooth surfaces we constructed
have lower energy then their smooth counterparts, it is
conceivable that more complicated isometric immersions
containing multiple bifurcations but having lower energy
could exist. Moreover, bifurcation points are a generic

feature of hyperbolic geometries in that for metrics with
negative Gaussian curvature sufficiently bounded away
from zero it is always possible to find a global iso-
metric immersion, except it can have multiple bifurca-
tion points.96 The geometry of such surfaces could serve
as a model for the observed morphology in many non-
Euclidean which do not have a globally defined number
of waves, but rather have local buckling behavior which
increases the number of waves near the boundary.1
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Non-smooth isometries have lower energy than their smooth counterparts. 
This cannot be captured by the small slopes approximations.
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Small slopes region

Conjecture: Branch points can be introduced near the singularities to lower 
bending energy. The introduction of branch points is energetically favorable 
to global refinement of the wavelength. 



Strip Geometry
     is a strip geometry                                   with metric:

where              and for  

⌦ = R⇥ [0,W ]

g = (1 + 2✏2f(y)) dx2 + dy

2

✏ > 0 ↵ 2 (0,1) :

f(y) ⇠ (1 + y/l)�↵.
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Isometric Immersions Exist



Strip Geometry
To match the metric to lowest order in     we assume an ansatz of the form:✏

F (x, y) =
�
x+ ✏

2
u(x, y), y + ✏

2
v(x, y), ✏w(x, y)

�

The lowest order condition for an isometry is the following small-slope version of 
Gauss’s Theorema Egregium:

det(D2(w(x, y)) = w

xx

w

yy

� (w
xy

)2 = �f

00(y).

2

curvatures diverge [20]. This phenomenon is readily observed
as the singular rim bounding surfaces of revolution with con-
stant negative curvature, e.g the tractricoid (a.k.a “the” pseu-
dosphere). Efimov generalized Hilbert’s results to (geodesi-
cally) complete surfaces with uniformly negative Gaussian
curvature K  �c < 0, by showing that any isometric immer-
sion will necessarily have singularities where the immersed
surface is not C2, i.e. fails to be twice di↵erentiable [21].

In this letter we investigate the relation between singular-
ities for isometric immersions of hyperbolic metrics and the
observed morphologies of swelling elastic sheets. For a large
class of metrics we show there exist exact isometric immer-
sions with mild singularities where the surface fails to be twice
di↵erentiable in the classical sense (is not C2), but is nonethe-
less weakly twice di↵erentiable with finite bending energy (is
W2,2). The construction of these surfaces consists of gluing
together local solutions of the isometric immersion problem
in a manner that preserves continuity of the tangent plane and
is a generalization of the techniques in [22].

The main motivation of this work is to explain the frac-
tal like periodic patterns observed both experimentally [1, 3]
and numerically [2, 6, 23] in torn elastic sheets and swelling
hydrogels [9]. Such complex, self-similar patterns are usu-
ally associated with “strongly frustrated” systems, e.g. elastic
sheets with boundary conditions that preclude the possibility
of finite energy isometric immersions [24–26], or at alloy-
alloy interfaces between distinct crystal structures [27, 28].
Why then do we observe self-similar buckling patterns despite
the existence of smooth isometries in the form of surfaces of
revolution [7] and helices [26]? Our construction of finite en-
ergy isometric immersions corresponding to periodic, and self
similar wrinkling profiles addresses this puzzle.

We first consider a strip ⌦ defined by �1 < x1 < 1, 0 
x2 < 1 with free boundary conditions and

g = (1 + ✏2 f (x2)) dx2
1 + dx2

2, (3)

where f is a function satisfying f (x2) > 0, f (x2) ! 0 as
x2 ! 1, f 00(x2) > 0 and ✏ > 0. This metric corresponds to
x2 dependent growth in the x1 direction and is a generaliza-
tion of the metrics considered in [2, 3, 6, 26, 29]. To construct
approximate isometries, we consider a Föppl - von Kármán
ansatz with in-plane deformations ✏2u1(x1, x2), ✏2u2(x1, x2)
and out-of-plane deformation ✏w(x1, x2). With this ansatz, the
in-plane strain is given by

�i j = ✏
2
⇣
ui, j + u j,i + w,iw, j � �1i�1 j f

⌘
+ ✏4
⇣
u1,iu1, j + u2,iu2, j

⌘
,

(4)
where z,i denotes the derivative of any quantity z with respect
to xi and �i j is the Kronecker delta. Formal asymptotic expan-
sions ui =

P
↵=0 ✏

2↵u↵i ,w =
P
↵=0 ✏

2↵w↵ yield the following
equations for an isometry at O(1):

0 = u0
i, j + u0

j,i + w0
,iw

0
, j � �1i�1 j f (x2). (5)

Eliminating u0
1 and u0

2 yields the solvability condition:
h
w0,w0

i
= � f 00(x2)

2
, (6)

where [h, g] = 1
2
�
h,x1 x1 g,x2 x2 � 2h,x1 x2 g,x1 x2 + g,x1 x1 h,x2 x2

�
[30].

The hyperbolic Monge-Ampere equation Eq. (6), is a small-
slopes version of Gauss’s Theorema Egregium [30].

We seek solutions of (6) in the product form w0(x1, x2) =
2�

1
2 (x1)�(x2) with  (x1) periodic in x1. The variables sepa-

rate if ��00(x2)�(x2) = (�0(x2))2 = f 00(x2) > 0 for some con-
stant �. Requiring f (x2) ! 0 as x2 ! 1 yields 0 < �  1.
For � = 1 we obtain �(x2) = e�x2/l, f (x2) = 1

4 e�2x2/l. For
0 < � < 1 we obtain �(x2) = (1 + x2/l)��/(1��), f (x2) =
�/ ((2 (1 + �)) (1 + x2/l)�2�/(1��), where l > 0 is the length
scale of swelling.  is determined by

 0(x1)2 � ��1 00(x1) (x1) = 1. (7)

Observing that  (x1) 00(x1) = 1
2

@ 02
@ ln(| |) and letting k denote a

constant of integration, we have

 02 ± k2�| |2� = 1, (8)

identifying solutions  (x) with the motion of a unit mass
particle in the potential V( ) = ± 1

2 (k| |)2�. With V( ) =
+ 1

2 (|k|| |2�) we get periodic solutions with amplitude 1/k and
half wavelength �k ⇠ k�1.

Note it follows from Eq. (8) that solutions to Eq. (7) satisfy
 00 = ⌥�k2�| |2��1sgn( ) and hence for � , 1 solutions to
Eq. (7) are not smooth across the lines  = 0. To construct
periodic profiles we take odd periodic extensions  of  across
these lines. For example, by solving Eq. (7) with boundary
conditions  (��k/2) =  (�k/2) and extending periodically we
obtain a wavy profile  that (weakly) solves Eq. (7); see Fig.
1. By construction,  , 

0
are continuous across the lines  =

0 while  
00

has a jump discontinuity or diverges. Moreover,
for 1/4 < �  1 it follows that  

00
is square integrable and

thus these deformations have finite bending energy. Since the
concavity of  changes across the lines  = 0 we refer to these
as lines of inflection.

FIG. 1. Piecewise smooth small slope isometric immersion with out-
of-plane displacement w0(x1, x2) =  (x1)�(x2) for � = 1/2. The out-
of-plane displacement vanishes along the green lines i.e.  (x1) = 0,
and the periodic surface is created by odd periodically reflecting the
smooth surface across these lines.

We now explore the possibility of “lifting” the small slope
isometries to full isometric immersions using the formal
asymptotic expansion in ✏. For n � 1 the equations for an
isometry at O(✏2n), and the corresponding solvability condi-

Lines of inflection

!(x, y) = �(y) (x)We can solve the Monge-Ampere equation by assuming                                         , 
�(y) = (1 + y/l)�↵/2

 02 ± k
2↵

1+↵ | |
2↵

1+↵ = 1.



Energy of Single Wavelength Isometries

B̄ ⇠ C1k
2

Z W

0

dy

(1 + y/l)↵
+

C2

k2l4

Z W

0

dy

(1 + y/l)↵+4

For a single wavelength isometry with wavenumber    the bending content per unit 
length      satsifies: B̄

k

Optimizing over    the “global” wavelength satisfies:k

�
glob

⇠ l

�����
(1 +W/l)1�↵ � 1

(1 +W/l)�3�↵ � 1

�����

1
4

.

However the optimal “local” wavelength satisfies:

�
loc

(⇣) ⇠ l(1 + y/l) = (y + l).

There is a competition between the two principal curvatures in the sheet.



Branch Points
Beltrami-Enneper Theorem: The rate of rotation of the tangent plane along an 
asymptotic line is proportional to the square root of the Gaussian curvature.

Disparity: ⌘ =
Hp
|K|

=

r
k1
k2

+

r
k2
k1



Bifurcation with Disparity
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Energy of Branch Points
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Series Solution
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Convergence of Series



1. Differential growth can lead to non-Euclidean geometries. A fundamental question 
is can we deduce the three dimensional shape from exact knowledge of the 
swelling pattern. 

2. This is a problem with multiple scales. Can we classify all asymptotic regimes. 

3. Growth is a highly dynamic process. Perhaps local minimizers are selected along 
particular dynamic pathways. 

4. What is the role of the piecewise smooth solutions to the physically observed 
patterns?

Summary


