Isometric Immersions, Energy Minimization and Branch Points in Non-Euclidean Elastic Sheets

John Gemmer john_gemmer@brown.edu

Division of Applied Mathematics Brown University

Collaborators:
Shankar Venkataramani (University of Arizona)
Eran Sharon (Hebrew University of Jerusalem)

Swelling Thin Elastic Sheets

Spontaneous pattern formation from localized swelling

Twinning in metal alloys

Bhattacharya, Kaushik. Microstructure of martensite: why it forms and how it gives rise to the shapememory effect. Vol. 2. Oxford University Press, 2003.

Thin elastic sheets

Huang, Jiangshui, et al. "Smooth cascade of wrinkles at the edge of a floating elastic film." Physical review letters 105.3 (2010): 038302.

Davidovitch, Benny, et al. "Prototypical model for tensional wrinkling in thin sheets." Proceedings of the National Academy of Sciences 108.45 (2011): 18227-18232.

Non-Euclidean Model

The equilibrium configuration of a sheet of thickness t is a $W^{2,2}$ map that minimizes:

$$
0 \quad k_{1}^{2}+k_{2}^{2}
$$

$$
E[F]=\underbrace{\int_{\Omega}\left\|(\nabla F)^{T} \nabla F-\mathbf{g}\right\|^{2} d A_{\mathbf{g}}}_{\text {"stre hing energy" }}+t^{2} \underbrace{\int_{\Omega} \mid D^{2} F^{2} d A_{\mathbf{g}}}_{\text {"bolding energy" }}
$$

zero stretching $\Longleftrightarrow(\nabla F)^{T} \nabla F=\mathrm{g} \Longleftrightarrow$ isometric immersion.

Experimental Observations

Ω is a strip geometry with metric:

$$
\mathbf{g}=(1+f(y)) d x^{2}+d y^{2}
$$

Multiple scale buckling
Sharon, E., Roman, B., \& Swinney, H. L. (2007). Geometrically driven wrinkling observed in free plastic sheets and leaves. Physical Review E, 75(4), 046211.

Toy Problem

Hyperbolic Plane: Assume the metric has constant negative Gaussian curvature.
Summary of Known Results: Given a local smooth isometric immersion of a metric with negative Gaussian curvature, this immersion cannot be extended smoothly beyond a finite distance d. Moreover, the singularities form a "singular edge", i.e. a one-dimensional submanifold on which the surface fails to be C^{2}.

Pseudosphere

Breather Surface

Kuen's Surface

A natural question is what is the relationship between the existence of these singularities and the observed morphologies in thin elastic sheets.

Negative Curvature: Disk Geometry

Small slopes approximation: Introduce dimensionless curvature $\epsilon=\sqrt{-K} R$.
Ansatz: $X=x+\epsilon^{2} u_{1}(x, y), \quad Y=y+\epsilon^{2} u_{2}(x, y), \quad Z=\epsilon \eta(x, y)$
Solvability Condition: $\operatorname{det}\left(D^{2} \eta\right)=-1$.
One parameter family of solutions: $\eta_{a}=\frac{1}{2}\left(a x^{2}-\frac{1}{a} y^{2}\right)$

$$
\text { Pick: } a=\cot (\pi / n) \text {. }
$$

Theorem:(J. Gemmer, SV). D is the unit disk with a metric whose FvK curvature is -1 . For all $n \in \mathbb{N}$, we have a n-periodic local minimizer for the elastic energy, whose energy satisfies the bounds

$$
\min \left(C_{1}, C_{2} n t^{2}\right) \leq E_{F v K} \leq \min \left(c_{1}, c_{2} n^{2} t^{2}\right)
$$

Multiple Branch Points

The origin is not special and multiple branch points can be introduced
(a)

(c)

(b)

(d)

(c)

(d)

"Generic" isometric immersions

Bifurcation points

Small Slopes Decreasing Thickness

In this asymptotic regime, the saddle shape is energetically preferred.

Small slopes theory always predicts a saddle shape.

Chebychev Nets and the Hyperbolic Plane

- A Chebychev Net is a configuration $\mathbf{x}(u, v)$ with metric

$$
\mathbf{g}=d u^{2}+\cos (\phi(u, v)) d u d v+d v^{2}
$$

Small Slopes Lifted to Exact Isometry

Isometric Immersion

in iे $\dot{4}$ iे o in $\vec{~} \vec{i}$

$$
n \sim \exp \left(\sqrt{K_{0}} R\right)
$$

Periodic Reflections

Piecewise Smooth Exact Isometries

Non-smooth isometries have lower energy than their smooth counterparts. This cannot be captured by the small slopes approximations.

$$
\max \left\{\left|k_{1}\right|,\left|k_{2}\right|\right\} \geq \frac{1}{64} \exp \left(\left|K_{0}\right|^{\frac{1}{2}} R\right)
$$

Concentration of Energy

\bigcirc Small slopes region

Conjecture: Branch points can be introduced near the singularities to lower bending energy. The introduction of branch points is energetically favorable to global refinement of the wavelength.

Strip Geometry

Ω is a strip geometry $\Omega=\mathbb{R} \times[0, W]$ with metric:

$$
\mathbf{g}=\left(1+2 \epsilon^{2} f(y)\right) d x^{2}+d y^{2}
$$

where $\epsilon>0$ and for $\alpha \in(0, \infty)$:

$$
f(y) \sim(1+y / l)^{-\alpha} .
$$

Isometric Immersions Exist

Strip Geometry

To match the metric to lowest order in ϵ we assume an ansatz of the form:

$$
F(x, y)=\left(x+\epsilon^{2} u(x, y), y+\epsilon^{2} v(x, y), \epsilon w(x, y)\right)
$$

The lowest order condition for an isometry is the following small-slope version of Gauss's Theorema Egregium:

$$
\operatorname{det}\left(D^{2}(w(x, y))=w_{x x} w_{y y}-\left(w_{x y}\right)^{2}=-f^{\prime \prime}(y)\right.
$$

We can solve the Monge-Ampere equation by assuming $\omega(x, y)=\phi(y) \psi(x)$,

$$
\begin{gathered}
\phi(y)=(1+y / l)^{-\alpha / 2} \\
\psi^{\prime 2} \pm k^{\frac{2 \alpha}{1+\alpha}}|\psi|^{\frac{2 \alpha}{1+\alpha}}=1 .
\end{gathered}
$$

Lines of inflection

Energy of Single Wavelength Isometries

For a single wavelength isometry with wavenumber k the bending content per unit length \bar{B} satsifies:

$$
\bar{B} \sim C_{1} k^{2} \int_{0}^{W} \frac{d y}{(1+y / l)^{\alpha}}+\frac{C_{2}}{k^{2} l^{4}} \int_{0}^{W} \frac{d y}{(1+y / l)^{\alpha+4}}
$$

Optimizing over k the "global" wavelength satisfies:

$$
\lambda_{g l o b} \sim l\left|\frac{(1+W / l)^{1-\alpha}-1}{(1+W / l)^{-3-\alpha}-1}\right|^{\frac{1}{4}}
$$

However the optimal "local" wavelength satisfies:

$$
\lambda_{l o c}(\zeta) \sim l(1+y / l)=(y+l)
$$

There is a competition between the two principal curvatures in the sheet.

Branch Points

Beltrami-Enneper Theorem: The rate of rotation of the tangent plane along an asymptotic line is proportional to the square root of the Gaussian curvature.

$$
\text { Disparity: } \eta=\frac{H}{\sqrt{|K|}}=\sqrt{\frac{k_{1}}{k_{2}}}+\sqrt{\frac{k_{2}}{k_{1}}}
$$

Bifurcation with Disparity

Energy of Branch Points

Series Solution

$$
\begin{gathered}
\alpha=\infty(\text { Exponential Case }) \\
\omega_{0}(x, y)=\frac{\exp (-\beta y) \cos (k x)}{\sqrt{2} k} \\
\omega_{1}(x, y)=e^{-3 \beta y}\left(\frac{\left(k^{2}-3 \beta^{2}\right) \cos (3 k x)}{576 \sqrt{2} k^{3}}-\frac{\left(\beta^{2}+k^{2}\right) \cos (k x)}{64 \sqrt{2} k^{3}}\right) \\
\omega_{2}(x, y)=\left(\frac{\left(-9 \beta^{4}+43 k^{4}+42 \beta^{2} k^{2}\right) \cos (k x)}{36864 \sqrt{2} k^{5}}+\frac{\left(-9 \beta^{4}+7 k^{4}+42 \beta^{2} k^{2}\right) \cos (3 k x)}{73728 \sqrt{2} k^{5}}\right. \\
\left.-\frac{\left(9 \beta^{4}+17 k^{4}-42 \beta^{2} k^{2}\right) \cos (5 k x)}{368640 \sqrt{2} k^{5}}\right) e^{-5 \beta y}
\end{gathered}
$$

$$
\epsilon=1
$$

$$
\epsilon=2
$$

$$
\epsilon=3
$$

Convergence of Series

Summary

1. Differential growth can lead to non-Euclidean geometries. A fundamental question is can we deduce the three dimensional shape from exact knowledge of the swelling pattern.
2. This is a problem with multiple scales. Can we classify all asymptotic regimes.
3. Growth is a highly dynamic process. Perhaps local minimizers are selected along particular dynamic pathways.
4. What is the role of the piecewise smooth solutions to the physically observed patterns?

