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Maxwell counting

In 1864, James Clerk Maxwell wrote, in On the calculation of the
equilibrium and stiffness of frames,



Example of Maxwell counting in 2D

For a two-dimensional pin-jointed structure, Maxwell’s statement
would be that a structure with j joints would require, in general,
2j − 3 bars to be rigid.



Calladine’s extension of Maxwell’s Rule

Calladine pointed out, in 1978, that the difference between the
number of bars b and 2j − 3 (in 2D) or 3j − 6 (in 3D) exactly
counts the difference between the number of infinitesimal
mechanisms m and the number of states of self-stress s

m − s = 2j − 3 (2D)

m − s = 3j − 6 (3D)
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Compatibility/equilibrium relationships

Consider possible nodal displacements of the nodes and extensions
of the bars:
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Compatibility/equilibrium relationships

Consider possible forces at the nodes and tensions in the bars:
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Compatibility/equilibrium relationships

C is the compatibility matrix, describing the (first order)
relationship between joint displacements and bar extensions.

Cd = e
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Any solution to Cd = 0 is either an internal mechanism, or a
rigid-body mechanism.



Compatibility/equilibrium relationships

The tranpose of C is the equilibrium matrix, describing the
relationship between nodal forces, and internal forces in the bars

CTt = f
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Any solution to CTt = 0 is a state of self-stress



Proof of the Maxwell Calladine equation (in 2D)

Consider the dimensions of vector spaces associated with C: C

︸ ︷︷ ︸
2j

b

If C has rank r , nullspace N (C),

m + 3 = dim(N (C)) = 2j − r

s = dim(N (CT)) = b − r

and so, for any value of r

m − s = 2j − b − 3
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Some repetitive structures have the number of constraints
equal to the number of freedoms

40 mm

The unexpected properties of these structures can be explored
through counting
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Example: the kagome lattice
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Counting for repetitive structures

Consider the dimensions of vector spaces associated with C: C

︸ ︷︷ ︸
2j

b

If C has rank r , nullspace N (C),

m + 2 = dim(N (C)) = 2j − r

dim(N (CT)) = b − r

Rotation is not an allowed rigid-body mode with a fixed unit cell
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Counting states of self-stress

Unlike in the finite case, we are not going to define a state of
self-stress as any solution t to CTt = 0, because we do not wish to
include ‘loads at infinity’, e.g., uniform tensile or shear stress.

However, this causes difficulties for a general counting rule,
because for any particular structure, we do not know if the
structure is able to support all possible loads at infinity.

A better approach is to consider an ‘augmented’ compatibility
matrix, where uniform deformation of the unit cell is allowed.
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Deformations of the unit cell

We consider affine transformations of the unit cell:
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Deformations of the unit cell

We consider affine transformations of the unit cell:

?



Example: ‘augmented’ deformation vector for kagome
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Augmented compatibility matrix for the kagome

C∗d∗ = e


−1 0 1 0 0 0
1 0 −1 0 0 0

−1/2 −
√

3/2 0 0 1/2
√

3/2

1/2
√

3/2 0 0 −1/2 −
√

3/2

0 0 1/2 −
√

3/2 −1/2
√

3/2

0 0 −1/2
√

3/2 1/2 −
√

3/2

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0
1 0 0
0 0 0

0
√

3/2 1/2
0 0 0

1/2
√

3/2 −(1 +
√

3)/2




d1x
d1y
d2x
d2y
d3x
d3y
−
dxx
dyy
dxy

=

 eI
eII
eIII
eIV
eV
eVI





Counting for repetitive structures (revised)
Consider the dimensions of vector spaces associated with C∗: C∗

︸ ︷︷ ︸
2j+3

b

If C∗ has rank r∗, nullspace N (C∗),

m + 2 = dim(N (C∗)) = 2j + 3− r∗

s = dim(N (C∗T)) = b − r∗

For any value of r∗

m − s = 2j − b + 3− 2

In 3D,
m − s = 3j − b + 6− 3



Counting for repetitive structures (revised)
Consider the dimensions of vector spaces associated with C∗: C∗

︸ ︷︷ ︸
2j+3

b

If C∗ has rank r∗, nullspace N (C∗),

m + 2 = dim(N (C∗)) = 2j + 3− r∗

s = dim(N (C∗T)) = b − r∗

For any value of r∗

m − s = 2j − b + 3− 2

In 3D,
m − s = 3j − b + 6− 3



Counting for repetitive structures (revised)
Consider the dimensions of vector spaces associated with C∗: C∗

︸ ︷︷ ︸
2j+3

b

If C∗ has rank r∗, nullspace N (C∗),

m + 2 = dim(N (C∗)) = 2j + 3− r∗

s = dim(N (C∗T)) = b − r∗

For any value of r∗

m − s = 2j − b + 3− 2

In 3D,
m − s = 3j − b + 6− 3



Mechanism for a ‘locally isostatic’ system (b = 2j)
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Mechanism for a ‘locally isostatic’ system (b = 2j)

Structure displaced 
by its mechanism

Original structure
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The Fowler symmetry iceberg proposition

Every counting rule has a symmetry-adapted version.

Example: Euler’s theorem

v + f = e + 2

becomes
Γσ(v)× Γε + Γσ(f ) = Γ⊥(e) + Γ0 + Γε
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Invariant vector subspaces

Consider that a structure has symmetry group G. Then, vector
spaces V associated with the structure can be split into subspaces
Vi that are invariant with respect to any operation g ∈ G, and the
set of matrices describing the effect of any g ∈ G on any vector
vi ∈ Vi defines a matrix representation of the group. The trace of
these matrices is called the character of the representation.

If the Vi are as small as possible, these representations are called
irreducible representations, and these (and the corresponding
characters) are known for any group G.

For any vector space V , we give the set of characters for all g ∈ G
the symbol ΓV and loosely call this the ‘representation’. Most
importantly, the structure of V as a summation of irreducible
invariant vector spaces can be found directly from ΓV , and hence
we can consider this to count the dimensions of V in terms of
dimensions of irreducible representations.
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Example: G = Cs , a single plane of reflection

Character table (with z perpendicular to the plane of symmetry)

Cs E σh

A′ 1 1 x ‘symmetric’
A′′ 1 −1 z ,Ry ‘antisymmetric’

x
z x

z
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Reminder: counting for finite structures in 2D

Consider the dimensions of vector spaces associated with C: C

︸ ︷︷ ︸
2j

b

If C has rank r , nullspace N (C),

m + 3 = dim(N (C)) = 2× j − r

s = dim(N (CT)) = b − r

Eliminating r gives the Maxwell-Calladine equation

m − s = 2j − b − 3



Counting with symmetry for finite structures
Consider the symmetries of vector spaces associated with C for the
appropriate symmetry group G: C

︸ ︷︷ ︸
ΓT⊗Γ(j)

Γ(b)

If C has a row/column space with ‘representation’ Γ(r), nullspace
with representation Γ(N) and left-nullspace with representation
Γ(NT),

Γ(m) + ΓT + ΓR = Γ(N) = ΓT ⊗ Γ(j)− Γ(r)

Γ(s) = Γ(NT) = Γ(b)− Γ(r)

Eliminating Γ(r) gives the symmetry-extended Maxwell-Calladine
equation

Γ(m)− Γ(s) = ΓT ⊗ Γ(j)− Γ(b)− ΓT − ΓR
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Symmetry-adapted counting for the example structures

Γ(m)− Γ(s) = ΓT ⊗ Γ(j)− Γ(b)− ΓT − ΓR
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Symmetry of deformations of the unit cell

Affine deformations of the unit cell can be defined as a
second-order tensor, which can be written as the symmetric part of
a 2× 2 (in 2D) or a 3× 3 (in 3D) matrix. The antisymmetric parts
of the matrix represent the rotations that we do not want.

Γa = Γ2
T

− ΓR
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Counting with symmetry for repetitive structures
Consider the symmetries of vector spaces associated with C∗ for
the appropriate symmetry group G: C∗
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Eliminating Γ(r∗) gives

Γ(m)− Γ(s) = ΓT ⊗ Γ(j)− Γ(b) + Γ2
T − ΓR − ΓT
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The complete geometric symmetry group of a repetitive structure
is a space group (plane/wallpaper group in 2D) which has infinite
order. However, by identifying components that are equivalent
under a displacement, we can factor our the infinite displacement
group, leaving us with a point group with which we can work.
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Example: counting symmetries for the kagome lattice

I Plane Group p6m

I Point Group C6v



Components preserved by E

C6v E 2C6 2C3 C2 3σv 3σd

Γ(j) 3
×ΓT 2

= 6
−Γ(b) −6

= 0
−ΓT −2
−ΓR −1
+Γ2

T 4

Γ(m)− Γ(s) 1



The kagome lattice — C6 axes



Components preserved by C6

C6v E 2C6 2C3 C2 3σv 3σd

Γ(j) 3 0
×ΓT 2 1

= 6 0
−Γ(b) −6 0

= 0 0
−ΓT −2 −1
−ΓR −1 −1
+Γ2

T 4 1

Γ(m)− Γ(s) 1 −1



The kagome lattice — C3 axes



Components preserved by C3

C6v E 2C6 2C3 C2 3σv 3σd

Γ(j) 3 0 0
×ΓT 2 1 −1

= 6 0 0
−Γ(b) −6 0 0

= 0 0 0
−ΓT −2 −1 1
−ΓR −1 −1 −1
+Γ2

T 4 1 1

Γ(m)− Γ(s) 1 −1 1



The kagome lattice — C2 axes



Components preserved by C2

C6v E 2C6 2C3 C2 3σv 3σd

Γ(j) 3 0 0 3
×ΓT 2 1 −1 −2

= 6 0 0 −6
−Γ(b) −6 0 0 0

= 0 0 0 −6
−ΓT −2 −1 1 2
−ΓR −1 −1 −1 −1
+Γ2

T 4 1 1 4

Γ(m)− Γ(s) 1 −1 1 −1



The kagome lattice — σv lines



Components preserved by σv

C6v E 2C6 2C3 C2 3σv 3σd

Γ(j) 3 0 0 3 1
×ΓT 2 1 −1 −2 0

= 6 0 0 −6 0
−Γ(b) −6 0 0 0 −2

= 0 0 0 −6 −2
−ΓT −2 −1 1 2 0
−ΓR −1 −1 −1 −1 1
+Γ2

T 4 1 1 4 0

Γ(m)− Γ(s) 1 −1 1 −1 −1



The kagome lattice — σd lines



Components preserved by σd

C6v E 2C6 2C3 C2 3σv 3σd

Γ(j) 3 0 0 3 1 1
×ΓT 2 1 −1 −2 0 0

= 6 0 0 −6 0 0
−Γ(b) −6 0 0 0 −2 0

= 0 0 0 −6 −2 0
−ΓT −2 −1 1 2 0 0
−ΓR −1 −1 −1 −1 1 1
+Γ2

T 4 1 1 4 0 0

Γ(m)− Γ(s) 1 −1 1 −1 −1 1



Character table for C6v

C6v E 2C6 2C3 C2 3σv 3σd

A1 1 1 1 1 1 1 z
A2 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0 (x , y) (Rx ,Ry )
E2 2 −1 −1 2 0 0



Decomposition into irreducible representations for each
representation

C6v E 2C6 2C3 C2 3σv 3σd

Γ(j) 3 0 0 3 1 1 A1 + E2

×ΓT 2 1 −1 −2 0 0 E1

= 6 0 0 −6 0 0 B1 + B2 + 2E1

−Γ(b) −6 0 0 0 −2 0 −A1 − B1 − E1 − E2

= 0 0 0 −6 −2 0 −A1 + B2 + E1 − E2

−ΓT −2 −1 1 2 0 0 −E1

−ΓR −1 −1 −1 −1 1 1 −A2

+Γ2
T 4 1 1 4 0 0 A1 + A2 + E2

Γ(m)− Γ(s) 1 −1 1 −1 −1 1 B2



Kagome mechanism has representation B2

The deformation is preserved by E , C3, σd ; reversed by C6, C2, σv .
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Basic equiauxetic concept in 2D

There are three affine deformation modes associated with the
deformation of a network

If we can find a mode of deformation with enough symmetry that
it can only be associated with uniform contraction, that mode
must have ν = −1

We call such a mode equiauxetic
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2D Symmetry condition 1: the network must have enough
symmetry

This restricts us to examples that have at least 3-fold symmetry.

(2-fold symmetry cannot distinguish between shear and contraction
— they both appear as ‘totally symmetric’ in a symmetry analysis)
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2D Symmetry condition 2: the mode of deformation must
have enough symmetry

If the mode of deformation does not preserve at least 3-fold
symmetry, a symmetry analysis cannot detect is to be equiauxetic.

As an example: a square lattice has a mode of deformation that
destroys the 4-fold symmetry; it is not an equiauxetic mode, but a
shear mode.

To give a Poisson’s ratio close to -1, we should also ensure that
the equiauxetic mode is the only mode that doesn’t require
stretching of bars.
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Example from Mitschke catalogue
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Extension to 3D: symmetry requirement

In 3D, the equiauxetic criterion is that the structure must have
cubic symmetry.

However, the difficulty in 3D is to find a structure where the
equiauxetic mode is the only mode. This is difficult because the
periodic Maxwell’s rule in 3D gives

m − s = 3j − b + 3

and hence for b = 3j there are three modes, rather than the unique
mode in 2D.

The only possibility is to find some special geometry that
overconstrains the structure, but still allows one totally symmetric
mode.
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One possible 3D example

Given by Milton1.

step is to modify the structure so it tapers to a point at the four supports. The final step is the bend the tips of these
supports a short distance s in the negative x3 direction, so that the microstructure is strictly contained in a box having the
four supports as corners of one face. The final construction may have rigid flat rectangles as in Fig. 18(b). If one a desires a
construction that only involves rigid bars then one should first make the rectangle into a thin triangular prism as shown in
Fig. 18(c) and then make the transformation to a truss of bars as in Fig. 3(b).

Following the construction of Bückmann et al. (in preparation) and as shown in Fig. 19 one can assemble 5 (or 6) panels
based on the cell geometry of Fig. 7 to form a cubic cell which acts as a three-dimensional dilator. To obtain three-
dimensional dilator cells which allow arbitrary expansion one could use the cell structure of Fig. 8 as the basis for the
panels. A periodic dilational material of these cubic cells would have an arbitrarily large flexibility window as defined by
Sartbaeva et al. (2006).

Now we can use these dilators to construct three-dimensional orthorhombic materials with an arbitrary response. By
orthorhombic we mean that the vectors u, v and w are mutually orthogonal and remain so as the material deforms. Let the
cell of the material, that we will construct, have sides of lengths l1 � 9u9, l2 � 9v9 and l3 � 9w9 in the x1, x2, and x3

directions. Let Pðl�1 ,lþ1 ,l�2 ,lþ2 ,l�3 ,lþ3 Þ denote the rectangular prism

0ol�1 ol1olþ1 , 0ol�2 ol2olþ2 , 0ol�3 ol3olþ3 , ð4:1Þ

and let P denote the set of all such rectangular prisms. Here we show that any trajectory ðl1,l2,l3Þ ¼ ðf 1ðt0Þ,f 2ðt0Þ,f 3ðt0ÞÞ

taking values in a rectangular prism in P is realizable. We assume the parameterization has been chosen so t0 has
dimensions of length, and t0 increases from t�0 40 to tþ0 4t�0 along the trajectory, and that f 1ðt0Þ, f 2ðt0Þ, and f 3ðt0Þ are
defined, bounded, continuous and positive on the closed interval I¼ ½t�0 ,tþ0 �. This implies f 1ðIÞ 2 D, f 2ðIÞ 2 D and f 3ðIÞ 2 D.
The corner of the geometry which accomplishes the realizability is shown in Fig. 20. This geometry is a generalization of
the two dimensional geometry of Fig. 14. In the x1, x2, and x3 directions there are blue, red, and cyan tubes, respectively,
which are each n units long, where each unit consists of four panels joined to make a square tube. Each tube retains its
square cross section due to its contact with the green dilator cells. Choose t¼ t0=n, where t0 2 I, and scale the tripod
support leg length d as d¼ d0=

ffiffiffi
n
p

. From the results of Section 2.4 and rescaling we can realize h¼ n�1f 1ðntÞ, g ¼ n�1f 2ðntÞ

x1

x3

x2

Fig. 18. As shown in (a) two dimensional cells can be extended into the x3-direction to obtain panels, which can be used to construct three dimensional

cells. The panels are tapered at their four supports, and the tapered ends are bent slightly in the x3-direction, so that all the microstructure is to one side

of the plane through the four support points. To avoid confusion those faces of the rigid objects parallel to the x3-axis are colored in pink. Any rigid flat

rectangles in the final construction as in (b) can be transformed into thin triangular prisms as in (c) and then replaced by a truss of bars if desired. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 19. Shown in (a) is the panel which corresponds to the two-dimensional dilator cell of Fig. 7. To avoid confusion those faces of the rigid objects

parallel to the x3-axis are colored in pink. Following Bückmann et al. (in preparation) copies of these can be assembled as the faces of a cube to form a

three-dimensional dilator cell, as illustrated in (b). Only five, rather than six, panels are shown. In fact these are all that are needed. For clarity two of

these panels are colored in brown and the three dimensional structure of each panel is omitted. They are oriented so the microstructure lies strictly inside

the cube formed by the eight support points. (For interpretation of the references to color in this figure caption, the reader is referred to the web version

of this article.)

G.W. Milton / J. Mech. Phys. Solids 61 (2013) 1543–15601556

1Journal of the Mechanics and Physics of Solids, 61 (2013) 1543–156



A meta-material based on the Milton example
Bückmann et al.2 have manufactured the meta-material shown,
and measured a Poisson’s ratio of −0.76.

CONTENTS 14

Figure 7. (a) Photograph of a macroscopic polymer-based finite crystal with 2×2×2

unit cells fabricated by 3D printing, following the blueprint and the parameters given
in Fig. 1. (b) Measured lateral versus axial strain (solid red curve) as obtained from
an image correlation approach upon pushing along the vertical z-direction. The green
circles on straight lines correspond to a Poisson’s ratio of −0.76 and −0.77, respectively,
the black circles to numerical calculations for d/a = 0.75%. Extrapolation to an infinite
three-dimensional crystal (see previous section) delivers a Poisson’s ratio of ν = −0.79.

a = 4.8 cm. The constituent polymer material has a measured Young’s modulus of
about E ≈ 1.5 GPa. The measurement setup for the macroscopic samples consists of
two metallic stamps and a linear stage containing a force cell. The sliding boundary
conditions (see previous section) are achieved by placing the watered sample between
the stamps. We have alternatively attempted to implement fixed boundary conditions
by gluing the sample to the stamp by double-sided tape. This has led to the same lateral
displacements of the sample indicating very strong forces parallel to the stamps. This
suggests to us that assuming sliding boundary conditions is adequate. We gradually push
onto one stamp by moving the linear stage while fixing the other stamp and recording
the images of one of the sample surfaces. These images are taken with a Canon EOS
550D camera in Full HD (1920 × 1080 pixels) resolution and 24 frames per second.
The objective lens (Tamron SP 70-300mm f/4-5,6 Di VC USD) is located at a distance
of approximately 1.5 m to the sample. We have checked that image distortions (e.g.,
barrel-type aberrations) are sufficiently small to not influence our experiments. The
displacements of the unit cells’ corners are tracked using an autocorrelation approach
used previously [10]. Multiple measurements with increasing maximum strain for a
crystal composed of 2 × 2 × 2 unit cells (see Fig. 7(a)) are depicted in Fig. 7(b). The
graph shows the strain along the horizontal x-direction versus the strain along the axial
pushing direction (z). The solid red curve corresponds to two measurement cycles, i.e.,
the sample is pushed, released and pushed and released again. Clearly, the four parts

CONTENTS 16

Figure 8. Gallery of polymer dilational metamaterial microstructures with different
sizes and aspect ratios following the blueprint illustrated in Fig. 1 (without the small
cubic tracking markers), all fabricated by 3D dip-in direct laser writing. (a) Photograph
of a structure with 3 × 3 × 9 unit cells (and a smaller one on the right-hand side)
a = 180µm. (b) Electron micrograph of two microstructure samples with overall
aspect ratios of 1:1 and 2:1, respectively a = 35µm. (c) Magnified view onto one unit
cell of the structure, revealing details within the unit cell (compare Fig. 1), a = 35µm.

8. Conclusion

We have designed, fabricated, and characterized a three-dimensional microstructure
based on a simple-cubic translational lattice that effectively acts as an auxetic,

2New Journal of Physics (2014) 16 033032
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Conclusion

I Any counting rule will have a symmetry-extended counterpart.

I These rules allow strong statements to be made about
placement of structural components to achieve particular
structural behaviour.

I Symmetry helps show where we should look to achieve
limiting equiauxetic behaviour, with ν close to −1.
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