Counting rules for periodic frameworks

Simon Guest

Department of Engineering
University of Cambridge

Outline

Background

Counting for infinite, repetitive structures

Using symmetry to extend counting rules

A symmetry criterion for 'equiauxetic' materials

Conclusions

Outline

Background

Counting for infinite, repetitive structures

Using symmetry to extend counting rules

A symmetry criterion for 'equiauxetic' materials

Conclusions

Maxwell counting

In 1864, James Clerk Maxwell wrote, in On the calculation of the equilibrium and stiffness of frames,

```
    A frame of s points in space requires in general 3s-6 connecting lines to
    render it stiff. In those cases in which stiffness can be produced with a smaller
    number of lines, certain conditions must be fulfilled, rendering the case one of
    a maximum or minimum value of one or more of its lines. The stiffness of
    such frames is of an inferior order, as a small disturbing force may produce
    a displacement infinite in comparison with itself.
```


Example of Maxwell counting in 2D

For a two-dimensional pin-jointed structure, Maxwell's statement would be that a structure with j joints would require, in general, $2 j-3$ bars to be rigid.

Calladine's extension of Maxwell's Rule

Calladine pointed out, in 1978, that the difference between the number of bars b and $2 j-3$ (in 2D) or $3 j-6$ (in 3D) exactly counts the difference between the number of infinitesimal mechanisms m and the number of states of self-stress s

$$
\begin{aligned}
& m-s=2 j-3 \\
& m-s=3 j-6
\end{aligned}
$$

Calladine's extension of Maxwell's Rule

Calladine pointed out, in 1978, that the difference between the number of bars b and $2 j-3$ (in 2D) or $3 j-6$ (in 3D) exactly counts the difference between the number of infinitesimal mechanisms m and the number of states of self-stress s

$$
\begin{align*}
& m-s=2 j-3 \\
& m-s=3 j-6 \tag{3D}
\end{align*}
$$

Compatibility/equilibrium relationships

Consider possible nodal displacements of the nodes and extensions of the bars:

Nodal displacements
Bar extensions

Compatibility/equilibrium relationships

Consider possible forces at the nodes and tensions in the bars:

Nodal forces
Bar tensions

Compatibility/equilibrium relationships

C is the compatibility matrix, describing the (first order) relationship between joint displacements and bar extensions.

$$
\begin{gathered}
\mathbf{C d}=\mathbf{e} \\
{\left[\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y} \\
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right]=\left[\begin{array}{c}
e_{\mathrm{I}} \\
e_{\text {II }} \\
e_{\text {III }} \\
e_{\text {IV }} \\
e_{\mathrm{V}}
\end{array}\right]}
\end{gathered}
$$

Any solution to $\mathbf{C d}=\mathbf{0}$ is either an internal mechanism, or a rigid-body mechanism.

Compatibility/equilibrium relationships

The tranpose of \mathbf{C} is the equilibrium matrix, describing the relationship between nodal forces, and internal forces in the bars

$$
\begin{gathered}
\mathbf{C}^{\mathrm{T}} \mathbf{t}=\mathbf{f} \\
{\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & -1 / \sqrt{2} \\
0 & 1 & 0 & 0 & 1 / \sqrt{2} \\
0 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 / \sqrt{2} \\
0 & 0 & 0 & -1 & -1 / \sqrt{2} \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
t_{\mathrm{I}} \\
t_{\mathrm{II}} \\
t_{\mathrm{III}} \\
t_{\mathrm{IV}} \\
t_{\mathrm{V}}
\end{array}\right]=\left[\begin{array}{c}
f_{1 x} \\
f_{1 y} \\
f_{2 x} \\
f_{2 y} \\
f_{3 x} \\
f_{3 y} \\
f_{4 x} \\
f_{4 y}
\end{array}\right]}
\end{gathered}
$$

Any solution to $\mathbf{C}^{\mathrm{T}} \mathbf{t}=\mathbf{0}$ is a state of self-stress

Proof of the Maxwell Calladine equation (in 2D)

Consider the dimensions of vector spaces associated with \mathbf{C} :

If \mathbf{C} has rank r, nullspace $\mathcal{N}(\mathbf{C})$,

$$
\begin{aligned}
m+3=\operatorname{dim}(\mathcal{N}(\mathbf{C})) & =2 j-r \\
s=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{\mathrm{T}}\right)\right) & =b-r
\end{aligned}
$$

and so, for any value of r

$$
m-s=2 j-b-3
$$

Outline

Background

Counting for infinite, repetitive structures

Using symmetry to extend counting rules

A symmetry criterion for 'equiauxetic' materials

Conclusions

Some repetitive structures have the number of constraints equal to the number of freedoms

Some repetitive structures have the number of constraints equal to the number of freedoms

Some repetitive structures have the number of constraints equal to the number of freedoms

Some repetitive structures have the number of constraints equal to the number of freedoms

The unexpected properties of these structures can be explored through counting

Example: the kagome lattice

$$
\left[\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
-1 / 2 & -\sqrt{3} / 2 & 0 & 0 & 1 / 2 & \sqrt{3} / 2 \\
1 / 2 & \sqrt{3} / 2 & 0 & 0 & -1 / 2 & -\sqrt{3} / 2 \\
0 & 0 & 1 / 2 & -\sqrt{3} / 2 & -1 / 2 & \sqrt{3} / 2 \\
0 & 0 & -1 / 2 & \sqrt{3} / 2 & 1 / 2 & -\sqrt{3} / 2
\end{array}\right]\left[\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y} \\
d_{3 x} \\
d_{3 y}
\end{array}\right]=\left[\begin{array}{c}
e_{\mathrm{I}} \\
e_{\mathrm{II}} \\
e_{\mathrm{III}} \\
e_{\mathrm{IV}} \\
e_{\mathrm{V}} \\
e_{\mathrm{VI}}
\end{array}\right]
$$

Counting for repetitive structures

Consider the dimensions of vector spaces associated with \mathbf{C} :

If \mathbf{C} has rank r, nullspace $\mathcal{N}(\mathbf{C})$,

$$
\begin{aligned}
m+2=\operatorname{dim}(\mathcal{N}(\mathbf{C})) & =2 j-r \\
\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{\mathrm{T}}\right)\right) & =b-r
\end{aligned}
$$

Counting for repetitive structures

Consider the dimensions of vector spaces associated with \mathbf{C} :

If \mathbf{C} has rank r, nullspace $\mathcal{N}(\mathbf{C})$,

$$
\begin{aligned}
m+2=\operatorname{dim}(\mathcal{N}(\mathbf{C})) & =2 j-r \\
\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{\mathrm{T}}\right)\right) & =b-r
\end{aligned}
$$

Rotation is not an allowed rigid-body mode with a fixed unit cell

Counting states of self-stress

Unlike in the finite case, we are not going to define a state of self-stress as any solution \mathbf{t} to $\mathbf{C}^{\mathrm{T}} \mathbf{t}=\mathbf{0}$, because we do not wish to include 'loads at infinity', e.g., uniform tensile or shear stress.

Counting states of self-stress

Unlike in the finite case, we are not going to define a state of self-stress as any solution \mathbf{t} to $\mathbf{C}^{\mathrm{T}} \mathbf{t}=\mathbf{0}$, because we do not wish to include 'loads at infinity', e.g., uniform tensile or shear stress.

However, this causes difficulties for a general counting rule, because for any particular structure, we do not know if the structure is able to support all possible loads at infinity.

Counting states of self-stress

Unlike in the finite case, we are not going to define a state of self-stress as any solution \mathbf{t} to $\mathbf{C}^{\mathrm{T}} \mathbf{t}=\mathbf{0}$, because we do not wish to include 'loads at infinity', e.g., uniform tensile or shear stress.

However, this causes difficulties for a general counting rule, because for any particular structure, we do not know if the structure is able to support all possible loads at infinity.

A better approach is to consider an 'augmented' compatibility matrix, where uniform deformation of the unit cell is allowed.

Deformations of the unit cell

We consider affine transformations of the unit cell:

Deformations of the unit cell

We consider affine transformations of the unit cell:

Deformations of the unit cell

We consider affine transformations of the unit cell:

Deformations of the unit cell

We consider affine transformations of the unit cell:

Deformations of the unit cell

We consider affine transformations of the unit cell:

Example: ‘augmented' deformation vector for kagome

Augmented compatibility matrix for the kagome

$$
\mathbf{C}^{*} \mathbf{d}^{*}=\mathbf{e}
$$

$$
\left[\begin{array}{ccccccccc}
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 / 2 & -\sqrt{3} / 2 & 0 & 0 & 1 / 2 & \sqrt{3} / 2 & 0 & 0 & 0 \\
1 / 2 & \sqrt{3} / 2 & 0 & 0 & -1 / 2 & -\sqrt{3} / 2 & 0 & \sqrt{3} / 2 & 1 / 2 \\
0 & 0 & 1 / 2 & -\sqrt{3} / 2 & -1 / 2 & \sqrt{3} / 2 & 0 & 0 & 0 \\
0 & 0 & -1 / 2 & \sqrt{3} / 2 & 1 / 2 & -\sqrt{3} / 2 & 1 / 2 & \sqrt{3} / 2 & -(1+\sqrt{3}) / 2
\end{array}\right]\left[\begin{array}{c}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y} \\
d_{3 x} \\
d_{3 y} \\
- \\
d_{x x} \\
d_{y y} \\
d_{x y}
\end{array}\right]=\left[\begin{array}{c}
e_{\mathrm{II}} \\
e_{\mathrm{II}} \\
e_{\mathrm{III}} \\
e_{\mathrm{IV}} \\
e_{\mathrm{V}} \\
e_{\mathrm{VI}}
\end{array}\right]
$$

Counting for repetitive structures (revised)

Consider the dimensions of vector spaces associated with \mathbf{C}^{*} :

If \mathbf{C}^{*} has rank r^{*}, nullspace $\mathcal{N}\left(\mathbf{C}^{*}\right)$,

$$
\begin{aligned}
m+2=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{*}\right)\right) & =2 j+3-r^{*} \\
s=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{* T}\right)\right) & =b-r^{*}
\end{aligned}
$$

Counting for repetitive structures (revised)

Consider the dimensions of vector spaces associated with \mathbf{C}^{*} :

If \mathbf{C}^{*} has rank r^{*}, nullspace $\mathcal{N}\left(\mathbf{C}^{*}\right)$,

$$
\begin{aligned}
m+2=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{*}\right)\right) & =2 j+3-r^{*} \\
s=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{* T}\right)\right) & =b-r^{*}
\end{aligned}
$$

For any value of r^{*}

$$
m-s=2 j-b+3-2
$$

Counting for repetitive structures (revised)

Consider the dimensions of vector spaces associated with \mathbf{C}^{*} :

If \mathbf{C}^{*} has rank r^{*}, nullspace $\mathcal{N}\left(\mathbf{C}^{*}\right)$,

$$
\begin{aligned}
m+2=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{*}\right)\right) & =2 j+3-r^{*} \\
s=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{* T}\right)\right) & =b-r^{*}
\end{aligned}
$$

For any value of r^{*}

$$
m-s=2 j-b+3-2
$$

In 3D,

$$
m-s=3 j-b+6-3
$$

Mechanism for a 'locally isostatic' system $(b=2 j)$

Mechanism for a 'locally isostatic' system $(b=2 j)$

Mechanism for a 'locally isostatic' system $(b=2 j)$

Mechanism for a 'locally isostatic' system $(b=2 j)$

Original structure

Mechanism for a 'locally isostatic' system $(b=2 j)$

Original structure Structure displaced by its mechanism

Mechanism for a 'locally isostatic' system $(b=2 j)$

Original structure

Outline

Background

Counting for infinite, repetitive structures

Using symmetry to extend counting rules

A symmetry criterion for 'equiauxetic' materials

Conclusions

The Fowler symmetry iceberg proposition
Every counting rule has a symmetry-adapted version.

The Fowler symmetry iceberg proposition

Every counting rule has a symmetry-adapted version.

Example: Euler's theorem

$$
v+f=e+2
$$

becomes

$$
\Gamma_{\sigma}(v) \times \Gamma_{\epsilon}+\Gamma_{\sigma}(f)=\Gamma_{\perp}(e)+\Gamma_{0}+\Gamma_{\epsilon}
$$

Invariant vector subspaces

Consider that a structure has symmetry group \mathcal{G}. Then, vector spaces V associated with the structure can be split into subspaces V_{i} that are invariant with respect to any operation $g \in \mathcal{G}$, and the set of matrices describing the effect of any $g \in \mathcal{G}$ on any vector $v_{i} \in V_{i}$ defines a matrix representation of the group. The trace of these matrices is called the character of the representation.

Invariant vector subspaces

Consider that a structure has symmetry group \mathcal{G}. Then, vector spaces V associated with the structure can be split into subspaces V_{i} that are invariant with respect to any operation $g \in \mathcal{G}$, and the set of matrices describing the effect of any $g \in \mathcal{G}$ on any vector $v_{i} \in V_{i}$ defines a matrix representation of the group. The trace of these matrices is called the character of the representation.

If the V_{i} are as small as possible, these representations are called irreducible representations, and these (and the corresponding characters) are known for any group \mathcal{G}.

Invariant vector subspaces

Consider that a structure has symmetry group \mathcal{G}. Then, vector spaces V associated with the structure can be split into subspaces V_{i} that are invariant with respect to any operation $g \in \mathcal{G}$, and the set of matrices describing the effect of any $g \in \mathcal{G}$ on any vector $v_{i} \in V_{i}$ defines a matrix representation of the group. The trace of these matrices is called the character of the representation.

If the V_{i} are as small as possible, these representations are called irreducible representations, and these (and the corresponding characters) are known for any group \mathcal{G}.

For any vector space V, we give the set of characters for all $g \in G$ the symbol Γ_{V} and loosely call this the 'representation'. Most importantly, the structure of V as a summation of irreducible invariant vector spaces can be found directly from Γ_{V}, and hence we can consider this to count the dimensions of V in terms of dimensions of irreducible representations.

Example: $\mathcal{G}=\mathcal{C}_{s}$, a single plane of reflection

Character table (with z perpendicular to the plane of symmetry)

| \mathcal{C}_{s} | E | σ_{h} | | |
| ---: | ---: | ---: | :--- | :--- | :--- |
| A^{\prime} | 1 | 1 | x | 'symmetric' |
| $A^{\prime \prime}$ | 1 | -1 | z, R_{y} | 'antisymmetric' |

Example: $\mathcal{G}=\mathcal{C}_{s}$, a single plane of reflection

Character table (with z perpendicular to the plane of symmetry)

| \mathcal{C}_{s} | E | σ_{h} | | |
| ---: | ---: | ---: | :--- | :--- | :--- |
| A^{\prime} | 1 | 1 | x | 'symmetric' |
| $A^{\prime \prime}$ | 1 | -1 | z, R_{y} | 'antisymmetric' |

Reminder: counting for finite structures in 2D

Consider the dimensions of vector spaces associated with \mathbf{C} :

If \mathbf{C} has rank r, nullspace $\mathcal{N}(\mathbf{C})$,

$$
\begin{gathered}
m+3=\operatorname{dim}(\mathcal{N}(\mathbf{C}))=2 \times j-r \\
s=\operatorname{dim}\left(\mathcal{N}\left(\mathbf{C}^{\mathrm{T}}\right)\right)=b-r
\end{gathered}
$$

Eliminating r gives the Maxwell-Calladine equation

$$
m-s=2 j-b-3
$$

Counting with symmetry for finite structures

Consider the symmetries of vector spaces associated with \mathbf{C} for the appropriate symmetry group \mathcal{G} :

Counting with symmetry for finite structures

Consider the symmetries of vector spaces associated with \mathbf{C} for the appropriate symmetry group \mathcal{G} :

If \mathbf{C} has a row/column space with 'representation' $\Gamma(r)$, nullspace with representation $\Gamma(N)$ and left-nullspace with representation $\Gamma\left(N^{\mathrm{T}}\right)$,

$$
\begin{gathered}
\Gamma(m)+\Gamma_{T}+\Gamma_{R}=\Gamma(N)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(r) \\
\Gamma(s)=\Gamma\left(N^{\mathrm{T}}\right)=\Gamma(b)-\Gamma(r)
\end{gathered}
$$

Counting with symmetry for finite structures

Consider the symmetries of vector spaces associated with \mathbf{C} for the appropriate symmetry group \mathcal{G} :

$$
\underbrace{\left.\left[\begin{array}{l}
\mathrm{c}
\end{array}\right]\right\} \Gamma(b)}_{\Gamma_{T \otimes} \mathrm{C}(j)}
$$

If \mathbf{C} has a row/column space with 'representation' $\Gamma(r)$, nullspace with representation $\Gamma(N)$ and left-nullspace with representation $\Gamma\left(N^{\mathrm{T}}\right)$,

$$
\begin{aligned}
\Gamma(m)+\Gamma_{T}+\Gamma_{R}=\Gamma(N) & =\Gamma_{T} \otimes \Gamma(j)-\Gamma(r) \\
\Gamma(s)=\Gamma\left(N^{\mathrm{T}}\right) & =\Gamma(b)-\Gamma(r)
\end{aligned}
$$

Eliminating $\Gamma(r)$ gives the symmetry-extended Maxwell-Calladine equation

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

$\Gamma(j)$	
Γ_{T}	
$-\Gamma(b)$	
$=$	
$-\Gamma_{T}$	
$-\Gamma_{R}$	
$\Gamma(m)-\Gamma(s)$	

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

$\Gamma_{s}(j)$	E
$\times \Gamma_{T}$	
$=$	
$-\Gamma(b)$	
$=$	
$-\Gamma_{T}$	
$-\Gamma_{R}$	
$\Gamma(m)-\Gamma(s)$	

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

$\Gamma_{s}(j)$	E
$\times \Gamma_{T}$	
$=$	
$-\Gamma(b)$	
$=$	
$-\Gamma_{T}$	
$-\Gamma_{R}$	
$\Gamma(m)-\Gamma(s)$	

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

$\Gamma_{s}(j)$	E
$\times \Gamma_{T}$	
$=$	
$-\Gamma(b)$	
$=$	
$-\Gamma_{T}$	
$-\Gamma_{R}$	
$\Gamma(m)-\Gamma(s)$	

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

$\Gamma(j)$	6	2
$\times \Gamma_{T}$	2	0
$=$	12	0
$-\Gamma(b)$	-9	-1
$=$	3	-1
$-\Gamma_{T}$	-2	0
$-\Gamma_{R}$	-1	1
$\Gamma(m)-\Gamma(s)$	0	0

\mathcal{C}_{s}	E	σ_{h}
$\times \Gamma_{T}$	2	0
$=$	12	0
$-\Gamma(b)$	-9	-3
$=$	3	-3
$-\Gamma_{T}$		
$-\Gamma_{R}$		
$\Gamma(m)-\Gamma(s)$		

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

$\Gamma(j)$	6	2
$\times \Gamma_{T}$	2	0
$=$	12	0
$-\Gamma(b)$	-9	-1
$=$	3	-1
$-\Gamma_{T}$	-2	0
$-\Gamma_{R}$	-1	1
$\Gamma(m)-\Gamma(s)$	0	0

\mathcal{C}_{s}	E	σ_{h}
$\Gamma(j)$	6	0
$\times \Gamma_{T}$	2	0
$-\Gamma(b)$	12	0
$=$	3	-3
$-\Gamma_{T}$	-2	0
$-\Gamma_{R}$	-1	1
$\Gamma(m)-\Gamma(s)$	0	-2

Symmetry-adapted counting for the example structures

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)-\Gamma_{T}-\Gamma_{R}
$$

\mathcal{C}_{s}	E	σ_{h}
$\times \Gamma_{T}$	6	0
$=$	2	0
$-\Gamma(b)$	-9	-3
$=$	3	-3
$-\Gamma_{T}$	-2	0
$-\Gamma_{R}$	-1	1
$\Gamma(m)-\Gamma(s)$	0	-2

Symmetry of deformations of the unit cell

Affine deformations of the unit cell can be defined as a second-order tensor, which can be written as the symmetric part of a 2×2 (in 2D) or a 3×3 (in 3D) matrix. The antisymmetric parts of the matrix represent the rotations that we do not want.

Symmetry of deformations of the unit cell

Affine deformations of the unit cell can be defined as a second-order tensor, which can be written as the symmetric part of a 2×2 (in 2D) or a 3×3 (in 3D) matrix. The antisymmetric parts of the matrix represent the rotations that we do not want.

Symmetry of deformations of the unit cell

Affine deformations of the unit cell can be defined as a second-order tensor, which can be written as the symmetric part of a 2×2 (in 2 D) or a 3×3 (in 3D) matrix. The antisymmetric parts of the matrix represent the rotations that we do not want.

$$
\Gamma_{a}=\Gamma_{T}^{2}-\Gamma_{R}
$$

Counting with symmetry for repetitive structures

Consider the symmetries of vector spaces associated with \mathbf{C}^{*} for the appropriate symmetry group \mathcal{G} :

Counting with symmetry for repetitive structures

Consider the symmetries of vector spaces associated with \mathbf{C}^{*} for the appropriate symmetry group \mathcal{G} :

$$
\begin{aligned}
\Gamma(m)+\Gamma_{T}=\Gamma(N) & =\Gamma_{T} \otimes \Gamma(j)+\Gamma_{T}^{2}-\Gamma_{R}-\Gamma\left(r^{*}\right) \\
\Gamma(s)=\Gamma\left(N^{\mathrm{T}}\right) & =\Gamma(b)-\Gamma\left(r^{*}\right)
\end{aligned}
$$

Counting with symmetry for repetitive structures

Consider the symmetries of vector spaces associated with \mathbf{C}^{*} for the appropriate symmetry group \mathcal{G} :

$$
\begin{aligned}
\Gamma(m)+\Gamma_{T}=\Gamma(N) & =\Gamma_{T} \otimes \Gamma(j)+\Gamma_{T}^{2}-\Gamma_{R}-\Gamma\left(r^{*}\right) \\
\Gamma(s)=\Gamma\left(N^{\mathrm{T}}\right) & =\Gamma(b)-\Gamma\left(r^{*}\right)
\end{aligned}
$$

Eliminating $\Gamma\left(r^{*}\right)$ gives

$$
\Gamma(m)-\Gamma(s)=\Gamma_{T} \otimes \Gamma(j)-\Gamma(b)+\Gamma_{T}^{2}-\Gamma_{R}-\Gamma_{T}
$$

Which group should we use for repetitive structures?

Which group should we use for repetitive structures?

The complete geometric symmetry group of a repetitive structure is a space group (plane/wallpaper group in 2D) which has infinite order. However, by identifying components that are equivalent under a displacement, we can factor our the infinite displacement group, leaving us with a point group with which we can work.

Example: counting symmetries for the kagome lattice

- Plane Group p6m
- Point Group $C_{6 v}$

Components preserved by E

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$
$\Gamma(j)$	3					
$\times \Gamma_{T}$	2					
$=$	6					
$-\Gamma(b)$	-6					
$=$	0					
$-\Gamma_{T}$	-2					
$-\Gamma_{R}$	-1					
$+\Gamma_{T}^{2}$	4					

The kagome lattice - C_{6} axes

Components preserved by C_{6}

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$
$\Gamma(j)$	3	0				
$\times \Gamma_{T}$	2	1				
$=$	6	0				
$-\Gamma(b)$	-6	0				
$=$	0	0				
$-\Gamma_{T}$	-2	-1				
$-\Gamma_{R}$	-1	-1				
$+\Gamma_{T}^{2}$	4	1				

The kagome lattice - C_{3} axes

Components preserved by C_{3}

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$
$\Gamma(j)$	3	0	0			
$\times \Gamma_{T}$	2	1	-1			
$=$	6	0	0			
$-\Gamma(b)$	-6	0	0			
$=$	0	0	0			
$-\Gamma_{T}$	-2	-1	1			
$-\Gamma_{R}$	-1	-1	-1			
$+\Gamma_{T}^{2}$	4	1	1			

The kagome lattice $-C_{2}$ axes

Components preserved by C_{2}

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$
$\Gamma(j)$	3	0	0	3		
$\times \Gamma_{T}$	2	1	-1	-2		
$=$	6	0	0	-6		
$-\Gamma(b)$	-6	0	0	0		
$=$	0	0	0	-6		
$-\Gamma_{T}$	-2	-1	1	2		
$-\Gamma_{R}$	-1	-1	-1	-1		
$+\Gamma_{T}^{2}$	4	1	1	4		
$\Gamma(m)-\Gamma(s)$	1	-1	1	-1		

The kagome lattice $-\sigma_{v}$ lines

Components preserved by σ_{v}

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$
$\Gamma(j)$	3	0	0	3	1	
$\times \Gamma_{T}$	2	1	-1	-2	0	
$=$	6	0	0	-6	0	
$-\Gamma(b)$	-6	0	0	0	-2	
$=$	0	0	0	-6	-2	
$-\Gamma_{T}$	-2	-1	1	2	0	
$-\Gamma_{R}$	-1	-1	-1	-1	1	
$+\Gamma_{T}^{2}$	4	1	1	4	0	
$\Gamma(m)-\Gamma(s)$	1	-1	1	-1	-1	

The kagome lattice $-\sigma_{d}$ lines

Components preserved by σ_{d}

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$
$\Gamma(j)$	3	0	0	3	1	1
$\times \Gamma_{T}$	2	1	-1	-2	0	0
$=$	6	0	0	-6	0	0
$-\Gamma(b)$	-6	0	0	0	-2	0
$=$	0	0	0	-6	-2	0
$-\Gamma_{T}$	-2	-1	1	2	0	0
$-\Gamma_{R}$	-1	-1	-1	-1	1	1
$+\Gamma_{T}^{2}$	4	1	1	4	0	0
$\Gamma(m)-\Gamma(s)$	1	-1	1	-1	-1	1

Character table for $C_{6 v}$

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$	
A_{1}	1	1	1	1	1	1	z
A_{2}	1	1	1	1	-1	-1	R_{z}
B_{1}	1	-1	1	-1	1	-1	
B_{2}	1	-1	1	-1	-1	1	
E_{1}	2	1	-1	-2	0	0	$(x, y)\left(R_{x}, R_{y}\right)$
E_{2}	2	-1	-1	2	0	0	

Decomposition into irreducible representations for each representation

$C_{6 v}$	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$	
$\Gamma(j)$	3	0	0	3	1	1	$A_{1}+E_{2}$
$\times \Gamma_{T}$	2	1	-1	-2	0	0	E_{1}
$=$	6	0	0	-6	0	0	$B_{1}+B_{2}+2 E_{1}$
$-\Gamma(b)$	-6	0	0	0	-2	0	$-A_{1}-B_{1}-E_{1}-E_{2}$
$=$	0	0	0	-6	-2	0	$-A_{1}+B_{2}+E_{1}-E_{2}$
$-\Gamma_{T}$	-2	-1	1	2	0	0	$-E_{1}$
$-\Gamma_{R}$	-1	-1	-1	-1	1	1	$-A_{2}$
$+\Gamma_{T}^{2}$	4	1	1	4	0	0	$A_{1}+A_{2}+E_{2}$
$\Gamma(m)-\Gamma(s)$	1	-1	1	-1	-1	1	B_{2}

Kagome mechanism has representation B_{2}
The deformation is preserved by E, C_{3}, σ_{d}; reversed by C_{6}, C_{2}, σ_{v}.

Kagome mechanism has representation B_{2}

The deformation is preserved by E, C_{3}, σ_{d}; reversed by C_{6}, C_{2}, σ_{v}.

Outline

Background

Counting for infinite, repetitive structures

Using symmetry to extend counting rules

A symmetry criterion for 'equiauxetic' materials

Conclusions

Basic equiauxetic concept in 2D

There are three affine deformation modes associated with the deformation of a network

Basic equiauxetic concept in 2D

There are three affine deformation modes associated with the deformation of a network

Basic equiauxetic concept in 2D

There are three affine deformation modes associated with the deformation of a network

If we can find a mode of deformation with enough symmetry that it can only be associated with uniform contraction, that mode must have $\nu=-1$

Basic equiauxetic concept in 2D

There are three affine deformation modes associated with the deformation of a network

If we can find a mode of deformation with enough symmetry that it can only be associated with uniform contraction, that mode must have $\nu=-1$

We call such a mode equiauxetic

2D Symmetry condition 1: the network must have enough

 symmetryThis restricts us to examples that have at least 3-fold symmetry.

2D Symmetry condition 1: the network must have enough

 symmetryThis restricts us to examples that have at least 3-fold symmetry.
(2-fold symmetry cannot distinguish between shear and contraction — they both appear as 'totally symmetric' in a symmetry analysis)

2D Symmetry condition 2: the mode of deformation must have enough symmetry

If the mode of deformation does not preserve at least 3-fold symmetry, a symmetry analysis cannot detect is to be equiauxetic.

2D Symmetry condition 2: the mode of deformation must have enough symmetry

If the mode of deformation does not preserve at least 3-fold symmetry, a symmetry analysis cannot detect is to be equiauxetic.

As an example: a square lattice has a mode of deformation that destroys the 4-fold symmetry; it is not an equiauxetic mode, but a shear mode.

2D Symmetry condition 2: the mode of deformation must have enough symmetry

If the mode of deformation does not preserve at least 3-fold symmetry, a symmetry analysis cannot detect is to be equiauxetic.

As an example: a square lattice has a mode of deformation that destroys the 4-fold symmetry; it is not an equiauxetic mode, but a shear mode.

To give a Poisson's ratio close to -1 , we should also ensure that the equiauxetic mode is the only mode that doesn't require stretching of bars.

Example from Mitschke catalogue

Example from Mitschke catalogue

Example from Mitschke catalogue

Example from Mitschke catalogue

Example from Mitschke catalogue

Extension to 3D: symmetry requirement

In 3D, the equiauxetic criterion is that the structure must have cubic symmetry.

Extension to 3D: symmetry requirement

In 3D, the equiauxetic criterion is that the structure must have cubic symmetry.

However, the difficulty in 3D is to find a structure where the equiauxetic mode is the only mode. This is difficult because the periodic Maxwell's rule in 3D gives

$$
m-s=3 j-b+3
$$

and hence for $b=3 j$ there are three modes, rather than the unique mode in 2D.

Extension to 3D: symmetry requirement

In 3D, the equiauxetic criterion is that the structure must have cubic symmetry.

However, the difficulty in 3D is to find a structure where the equiauxetic mode is the only mode. This is difficult because the periodic Maxwell's rule in 3D gives

$$
m-s=3 j-b+3
$$

and hence for $b=3 j$ there are three modes, rather than the unique mode in 2D.

The only possibility is to find some special geometry that overconstrains the structure, but still allows one totally symmetric mode.

One possible 3D example

Given by Milton ${ }^{1}$.

${ }^{1}$ Journal of the Mechanics and Physics of Solids, 61(2013) 1543-156

A meta-material based on the Milton example

Bückmann et al. ${ }^{2}$ have manufactured the meta-material shown, and measured a Poisson's ratio of -0.76 .

(b)

[^0]
Outline

Background

Counting for infinite, repetitive structures

Using symmetry to extend counting rules

A symmetry criterion for 'equiauxetic' materials

Conclusions

Conclusion

- Any counting rule will have a symmetry-extended counterpart.
- These rules allow strong statements to be made about placement of structural components to achieve particular structural behaviour.
- Symmetry helps show where we should look to achieve limiting equiauxetic behaviour, with ν close to -1 .

[^0]: ${ }^{2}$ New Journal of Physics (2014) 16033032

