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Maxwell counting

In 1864, James Clerk Maxwell wrote, in On the calculation of the
equilibrium and stiffness of frames,

A frame of s points in space requires in general 8s—6 connecting lines to
render it stiff. In those cases in which stiffness can be produced with a smaller
number of lines, certain conditions must be fulfilled, rendering the case one of
a maximum or minimum value of one or more of its lines. The stiffness of
such frames is of an inferior order, as a small disturbing force may produce
a displacement infinite in comparison with itself.



Example of Maxwell counting in 2D

For a two-dimensional pin-jointed structure, Maxwell's statement
would be that a structure with j joints would require, in general,
2j — 3 bars to be rigid.



Calladine’s extension of Maxwell's Rule

Calladine pointed out, in 1978, that the difference between the
number of bars b and 2j — 3 (in 2D) or 3j — 6 (in 3D) exactly
counts the difference between the number of infinitesimal
mechanisms m and the number of states of self-stress s

m—s=2—3 (2D)
m—s=3/—-6 (3D)
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Compatibility /equilibrium relationships

Consider possible nodal displacements of the nodes and extensions
of the bars:

Nodal displacements Bar extensions



Compatibility /equilibrium relationships

Consider possible forces at the nodes and tensions in the bars:
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Compatibility /equilibrium relationships

C is the compatibility matrix, describing the (first order)
relationship between joint displacements and bar extensions.

Cd=e
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Any solution to Cd = 0 is either an internal mechanism, or a
rigid-body mechanism.



Compatibility /equilibrium relationships

The tranpose of C is the equilibrium matrix, describing the
relationship between nodal forces, and internal forces in the bars
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Any solution to CTt = 0 is a state of self-stress



Proof of the Maxwell Calladine equation (in 2D)

Consider the dimensions of vector spaces associated with C:

If C has rank r, nullspace N(C),

m+3=dimN(C))=2j—r
s=dim\N(CT)=b—r

and so, for any value of r

m—s=2—b-3
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Counting for infinite, repetitive structures



Some repetitive structures have the number of constraints
equal to the number of freedoms
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equal to the number of freedoms




Some repetitive structures have the number of constraints
equal to the number of freedoms

The unexpected properties of these structures can be explored
through counting
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Example: the kagome lattice
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Counting for repetitive structures

Consider the dimensions of vector spaces associated with C:
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If C has rank r, nullspace N'(C),

m+2=dim(N(C))=2j—r
dim(N(CT)) =b—r



Counting for repetitive structures

Consider the dimensions of vector spaces associated with C:

2j
If C has rank r, nullspace N'(C),

m+2=dim(N(C))=2j —r
dim(N(CT)) =b—r

Rotation is not an allowed rigid-body mode with a fixed unit cell



Counting states of self-stress

Unlike in the finite case, we are not going to define a state of
self-stress as any solution t to CTt = 0, because we do not wish to
include ‘loads at infinity’, e.g., uniform tensile or shear stress.
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because for any particular structure, we do not know if the
structure is able to support all possible loads at infinity.



Counting states of self-stress

Unlike in the finite case, we are not going to define a state of
self-stress as any solution t to CTt = 0, because we do not wish to
include ‘loads at infinity’, e.g., uniform tensile or shear stress.

However, this causes difficulties for a general counting rule,
because for any particular structure, we do not know if the
structure is able to support all possible loads at infinity.

A better approach is to consider an ‘augmented’ compatibility
matrix, where uniform deformation of the unit cell is allowed.



Deformations of the unit cell

We consider affine transformations of the unit cell:
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Deformations of the unit cell

We consider affine transformations of the unit cell:




Example: ‘augmented’ deformation vector for kagome



Augmented compatibility matrix for the kagome

C'd"=e
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Counting for repetitive structures (revised)
Consider the dimensions of vector spaces associated with C*:

2j+3
If C* has rank r*, nullspace N/(C*),

m+ 2 = dim(N(C*
s =dim(N(C*T

)=2j+3—r"

)
N=b-r
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Counting for repetitive structures (revised)
Consider the dimensions of vector spaces associated with C*:

Cr b

2j+3

If C* has rank r*, nullspace N/(C*),
m+ 2 = dim(N(C*

s =dim(N(C*T

)=2j+3-r
N=b-r
For any value of r*

m—s=2j—b+3-2

In 3D,
m—s=3—b+6-3



Mechanism for a ‘locally isostatic’ system (b = 2/)
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Mechanism for a ‘locally isostatic’ system (b = 2j)
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Mechanism for a ‘locally isostatic’ system (b = 2j)
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Using symmetry to extend counting rules



The Fowler symmetry iceberg proposition

Every counting rule has a symmetry-adapted version.
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The Fowler symmetry iceberg proposition

Every counting rule has a symmetry-adapted version.
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Example: Euler’'s theorem

v+f=e+2

becomes
Fo(v) xTe+To(f)=T1(e)+To+Te



Invariant vector subspaces

Consider that a structure has symmetry group G. Then, vector
spaces V associated with the structure can be split into subspaces
V; that are invariant with respect to any operation g € G, and the
set of matrices describing the effect of any g € G on any vector

vi € V; defines a matrix representation of the group. The trace of
these matrices is called the character of the representation.
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Invariant vector subspaces

Consider that a structure has symmetry group G. Then, vector
spaces V associated with the structure can be split into subspaces
V; that are invariant with respect to any operation g € G, and the
set of matrices describing the effect of any g € G on any vector

vi € V; defines a matrix representation of the group. The trace of
these matrices is called the character of the representation.

If the V; are as small as possible, these representations are called
irreducible representations, and these (and the corresponding
characters) are known for any group G.

For any vector space V/, we give the set of characters for all g € G
the symbol 'y, and loosely call this the ‘representation’. Most
importantly, the structure of V' as a summation of irreducible
invariant vector spaces can be found directly from 'y, and hence
we can consider this to count the dimensions of V' in terms of
dimensions of irreducible representations.



Example: G = Cs, a single plane of reflection

Character table (with z perpendicular to the plane of symmetry)

Cs | E oy
A1 1 x ‘symmetric’
A"'1l -1 z R, ‘antisymmetric’
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Reminder: counting for finite structures in 2D

Consider the dimensions of vector spaces associated with C:

2j
If C has rank r, nullspace N(C),

m+3=dim(N(C))=2xj—r
s=dim(N(CT)=b—r

Eliminating r gives the Maxwell-Calladine equation

m—s=2—b-3



Counting with symmetry for finite structures

Consider the symmetries of vector spaces associated with C for the
appropriate symmetry group G:

Cc r(b)
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Counting with symmetry for finite structures

Consider the symmetries of vector spaces associated with C for the
appropriate symmetry group G:

C r(b)

Fr@rQ)
If C has a row/column space with ‘representation’ '(r), nullspace
with representation I'(/V) and left-nullspace with representation
r(NT),
Fm)+Tr+Tr=T(N)=T7al({)-T(r)
M(s) =T(N") =T(b)—T(r)



Counting with symmetry for finite structures
Consider the symmetries of vector spaces associated with C for the
appropriate symmetry group G:

C r(b)

Fr@rQ)
If C has a row/column space with ‘representation’ '(r), nullspace
with representation I'(/V) and left-nullspace with representation
r(NT),
Fm)+Tr+Tr=T(N)=T7al({)-T(r)
M(s) =T(N") =T(b)—T(r)

Eliminating I'(r) gives the symmetry-extended Maxwell-Calladine
equation

F(m) ~T(s) =Tr @ ()~ T(b) 7~ g



Symmetry-adapted counting for the example structures

F(m) = T(s) =Tr @ ()~ T(b) 7~ g
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Symmetry-adapted counting for the example structures

F(m) = T(s) =Tr @ ()~ T(b) 7~ g
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Symmetry-adapted counting for the example structures
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Symmetry-adapted counting for the example structures
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N

Cs E Oh Oh
rg)y| o6 2 I'(J')
xI+ 2 0 xI+
= 12 0 =
—I(b) -9 -1 —I(b)
—Ir —Ir
—Tr —Tr
F(m)—T(s) [(m)—T(s)




Symmetry-adapted counting for the example structures

F(m) — F(s) =Ir® F(/) — F(b) —I+—Tg
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Symmetry-adapted counting for the example structures
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Symmetry-adapted counting for the example structures
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Symmetry-adapted counting for the example structures

F(m) — F(s) =Ir® F(/) — F(b) —I+—Tg
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Symmetry-adapted counting for the example structures

F(m) — F(s) =Ir® F(/) — F(b) —I+—Tg
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Symmetry of deformations of the unit cell

Affine deformations of the unit cell can be defined as a
second-order tensor, which can be written as the symmetric part of
a2x2(in2D) or a3 x 3 (in 3D) matrix. The antisymmetric parts
of the matrix represent the rotations that we do not want.
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Counting with symmetry for repetitive structures

Consider the symmetries of vector spaces associated with C* for
the appropriate symmetry group G:

<

Fr®r()+(M3—Tr)

T(m +Tr=T(N)=T7@T()+T%—Tr—T(r)
M(s)=T(N")=T(b)—T(r")

Eliminating I'(r*) gives

F(m)—T(s)=Tr®@T()—T(b)+TF —Tp—Tr



Which group should we use for repetitive structures?



Which group should we use for repetitive structures?

The complete geometric symmetry group of a repetitive structure
is a space group (plane/wallpaper group in 2D) which has infinite
order. However, by identifying components that are equivalent
under a displacement, we can factor our the infinite displacement
group, leaving us with a point group with which we can work.



Example: counting symmetries for the kagome lattice

TS NN

» Plane Group pbm
» Point Group G,



Components preserved by E

GCov E 2CG 2CG G 30, 304
r{) 3
><FT 2
= 6
—r(b) | —6
= 0
-] -2
—Tr| -1
+r2| 4
(m)—T(s) 1




The kagome lattice — Cg axes




Components preserved by Cg
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The kagome lattice — (3 axes




Components preserved by C3
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The kagome lattice — C, axes




Components preserved by G,

GCov E 2CG 2CG & 30, 304
r{) 3 0 0 3
| 2 1 -1 —2
= 6 0 0 -6
—r(b) | —6 0 0 0
= 0 0 0 -6
I+ -2 -1 1 2
Trl-1 -1 -1 -1
+r2| 4 1 1 4
(m)—T(s) 1 -1 1 -1




o, lines

The kagome lattice




Components preserved by o,

Gov E 2CG 2CG & 30, 304
r{) 3 0 0 3 1
x| 2 1 -1 -2 0
= 6 0 0 -6 0
—r(b) | —6 0 0 0 -2
= 0 0 0 -6 -2
I+ -2 -1 1 2 0
—fTr|-1 -1 -1 -1 1
+r2| 4 1 1 4 0
(m)—T(s) 1 -1 1 -1 -1




The kagome lattice — o4 lines

TR NN



Components preserved by o4

Gov E 2CG 2CG & 30, 304

ry( 3 o o 3 1 1

xf+| 2 1 -1 -2 0 0

=| 6 0 0 -6 0

~f()| -6 0 0 0 -2 0

=/ 0 0 0 -6 -2 0
~rr|-2 -1 1 2 0 0
Tg|-1 -1 -1 -1 1 1

+r<| 4 1 1 4 0 O
rm-r(s)|] 1 -1 1 -1 -1 1




Character table for G,

Gy | E 2C 2CG3 (G 30, 304

Aq 1 1 1 1 1 1 =z

As 1 1 1 1 -1 -1 R,

B 1 -1 1 -1 1 -1

B> 1 -1 1 -1 -1 1

E 2 1 -1 -2 0 0 (x,¥)(RRy)
E> 2 -1 -1 2 0 0




Decomposition into irreducible representations for each
representation

GCov E 2CG 2G3 G 30, 30y
r{) 3 0 0 3 1 1 AA+E
x[r 2 1 -1 =2 0 0 £
= 6 0 0 -6 0 0 Bi+B+2E
—Ir(b) | —6 0 0 0 -2 0 -AA—-Bi—-E—-E
= 0 0 0O -6 =2 0 -“Ai+B+E -6
1T+ -2 -1 1 2 0 0 —-K
—fTp| -1 -1 -1 -1 1 1 A
42| 4 1 1 4 0 0 A+A+E
r(m)—T(s) 1 -1 1 -1 -1 1 B




Kagome mechanism has representation B,

The deformatio ved by E, G5, rsed by Cg, G2, 0.
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Kagome mechanism has representation B,

The deformation is preserved by E, C3, o4; reversed by G5, G5, 0,.
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A symmetry criterion for ‘equiauxetic’ materials
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There are three affine deformation modes associated with the
deformation of a network
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must have v = —1



Basic equiauxetic concept in 2D

There are three affine deformation modes associated with the
deformation of a network

If we can find a mode of deformation with enough symmetry that
it can only be associated with uniform contraction, that mode
must have v = —1

We call such a mode equiauxetic



2D Symmetry condition 1: the network must have enough
symmetry

This restricts us to examples that have at least 3-fold symmetry.



2D Symmetry condition 1: the network must have enough
symmetry

This restricts us to examples that have at least 3-fold symmetry.

(2-fold symmetry cannot distinguish between shear and contraction
— they both appear as ‘totally symmetric’ in a symmetry analysis)




2D Symmetry condition 2: the mode of deformation must
have enough symmetry

If the mode of deformation does not preserve at least 3-fold
symmetry, a symmetry analysis cannot detect is to be equiauxetic.
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As an example: a square lattice has a mode of deformation that
destroys the 4-fold symmetry; it is not an equiauxetic mode, but a
shear mode.



2D Symmetry condition 2: the mode of deformation must
have enough symmetry

If the mode of deformation does not preserve at least 3-fold
symmetry, a symmetry analysis cannot detect is to be equiauxetic.

As an example: a square lattice has a mode of deformation that
destroys the 4-fold symmetry; it is not an equiauxetic mode, but a
shear mode.

To give a Poisson’s ratio close to -1, we should also ensure that
the equiauxetic mode is the only mode that doesn't require
stretching of bars.
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Example from Mitschke catalogue



Extension to 3D: symmetry requirement

In 3D, the equiauxetic criterion is that the structure must have
cubic symmetry.
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In 3D, the equiauxetic criterion is that the structure must have
cubic symmetry.

However, the difficulty in 3D is to find a structure where the
equiauxetic mode is the only mode. This is difficult because the
periodic Maxwell’s rule in 3D gives

m—-s=3—b+3

and hence for b = 3;j there are three modes, rather than the unique
mode in 2D.



Extension to 3D: symmetry requirement

In 3D, the equiauxetic criterion is that the structure must have
cubic symmetry.

However, the difficulty in 3D is to find a structure where the
equiauxetic mode is the only mode. This is difficult because the
periodic Maxwell’s rule in 3D gives

m—-s=3—b+3

and hence for b = 3;j there are three modes, rather than the unique
mode in 2D.

The only possibility is to find some special geometry that
overconstrains the structure, but still allows one totally symmetric
mode.



One possible 3D example

Given by Milton?.

a

! Journal of the Mechanics and Physics of Solids, 61-(2013) 1543-156



A meta-material based on the Milton example

Biickmann et al.2 have manufactured the meta-material shown,
and measured a Poisson’s ratio of —0.76.

2New Journal of Physics (2014) 16 033032
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Conclusions



Conclusion

> Any counting rule will have a symmetry-extended counterpart.

> These rules allow strong statements to be made about
placement of structural components to achieve particular
structural behaviour.

» Symmetry helps show where we should look to achieve
limiting equiauxetic behaviour, with v close to —1.
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