Statistical mechanics of ribbons and thin spherical shells

Geometry, elasticity, fluctuations, and order in 2D soft matter, KITP, February 29, 2016

Research Interests

Statistical mechanics of membranes

PRE (2013, 2014) arXiv (2015)

Mechanics of metamaterials

Soft. Matter (2013), PRL (2014)

Assembly of colloids

EPL (2007), J. Phys. Chem. B (2011)

Statistical mechanics

Immune system

PNAS (2008), PRL (2009), Nature (2010), ARPC (2010), JSP (2011,2012), ARCM (2013)

Growth of glucagon fibrils

Sci. Rep. (2015)

Protein search for target site on DNA

J. Phys. A (2009)

How thermal fluctuations affect the mechanics of thin solid sheets, ribbons and spherical shells?

J. Paulose et al., PNAS **109**, 19551 (2012)

Statistical mechanics of polymers

Short polymers are straight

$$R \approx L$$

$$L \ll \ell_p$$

Long polymers perform self-avoiding random walk

$$R \sim \ell_p (L/\ell_p)^{\nu} \quad L \gg \ell_p$$

Flory exponent $\nu \approx 0.59$

Persistence length

$$\langle \mathbf{t}(s+\ell) \cdot \mathbf{t}(s) \rangle = e^{-\ell/\ell_p}$$

 $\ell_p = A/(k_B T)$

A polymer bending stiffness

P.-G. de Gennes, Scaling concepts in polymer physics

What happens in 2D solid membranes in the presence of thermal fluctuations?

Free energy cost of solid membrane deformations

Monge representation

$$\mathbf{R}(x,y) = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} u_x(x,y) \\ u_y(x,y) \\ f(x,y) \end{pmatrix}$$

reference flat state

small deformations

$$F = \int\!\! dA\, \frac{1}{2} \left[\lambda u_{ii}^2 + 2\mu u_{ij}^2 + \kappa (\nabla^2 f)^2 \right] \qquad \text{scaling with membrane thickness} \\ \text{stretching, shearing} \qquad \text{bending} \qquad \lambda, \mu \sim Et \\ \kappa \sim Et^3$$

$$\lambda, \mu \sim Et$$
 $\kappa \sim Et^3$

strain tensor
$$u_{ij} = \frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right) + \frac{1}{2} (\partial_i f) (\partial_j f)$$

Correlation functions

$$F = \int dA \frac{1}{2} \left[\lambda u_{ii}^2 + 2\mu u_{ij}^2 + \kappa \left(\nabla^2 f \right)^2 \right]$$

$$u_{ij} = \frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right) + \frac{1}{2} (\partial_i f) (\partial_j f)$$
thermal average

$$\langle \mathcal{O} \rangle \equiv \int \mathcal{D} \left[u_x, u_y, f \right] \mathcal{O} e^{-F/k_B T} / Z$$

$$Z \equiv \int \mathcal{D} \left[u_x, u_y, f \right] e^{-F/k_B T}$$

in-plane fluctuations

$$G_{u_i u_j} (\mathbf{r}_a - \mathbf{r}_b) \equiv \langle u_i(\mathbf{r}_a) u_j(\mathbf{r}_b) \rangle$$

out-of-plane fluctuations

$$G_{ff}(\mathbf{r}_a - \mathbf{r}_b) \equiv \langle f(\mathbf{r}_a) f(\mathbf{r}_b) \rangle$$

Fourier transform

$$G(\mathbf{q}) = \int (d^2\mathbf{r}/A)e^{-i\mathbf{q}\cdot\mathbf{r}}G(\mathbf{r})$$

Longitudinal and transverse projection operators

$$P_{ij}^{L}(\mathbf{q}) = q_i q_j / q^2$$

$$P_{ij}^{T}(\mathbf{q}) = \delta_{ij} - q_i q_j / q^2$$

$$G_{ff}(\mathbf{q}) \equiv \frac{k_B T}{A \kappa_R(q) q^4} \qquad G_{u_i u_j}(\mathbf{q}) \equiv \frac{k_B T P_{ij}^L(\mathbf{q})}{A (2\mu_R(q) + \lambda_R(q)) q^2} + \frac{k_B T P_{ij}^T(\mathbf{q})}{A \mu_R(q) q^2}$$

Renormalized elastic constants

renormalized scale dependent elastic constants

bending rigidity Young's modulus shear modulus

$$\kappa_R \sim (L/\ell_{\rm th})^{+\eta}$$
 $\eta \approx 0.82$ $Y_R, \mu_R \sim (L/\ell_{\rm th})^{-\eta_u}$ $\eta_u = 2 - 2\eta \approx 0.36$

$$Y = \frac{4\mu(\mu + \lambda)}{(2\mu + \lambda)}$$

$$\begin{array}{l} {\rm critical} \\ {\rm size} \end{array} \ \ell_{\rm th} \sim \frac{\kappa}{\sqrt{k_B T Y}} \sim \sqrt{\frac{E t^5}{k_B T}} \ \ {\rm amplitude\ of} \\ {\rm fluctuations} \sim \ \ {\rm membrane} \\ {\rm thickness} \\ \end{array}$$

D. Nelson and L. Peliti, <u>J. de Physique</u> **48**, 1085 (1987)

J. A. Aronovitz and T. C. Lubensky, <u>PRL</u> **60**, 2634 (1988)

E. Guitter, F. David, S. Leibler and L. Peliti, J. de Physique 50, 1787 (1989)

P. Le Doussal and L. Radzihovsky, PRL 69, 1209 (1992)

Renormalized elastic constants

Universal renormalized Poisson's ratio

theory
Monte Carlo simulations

P. Le Doussal and L. Radzihovsky, PRL 69, 1209 (1992)

M. Falcioni et al., Europhys. Lett. 38, 67 (1997)

Normal-normal correlations and height fluctuations

$$\hat{\mathbf{n}}(x,y) = \frac{1}{\sqrt{1 + (\nabla f)^2}} \begin{pmatrix} -\partial_x f \\ -\partial_y f \\ 1 \end{pmatrix}$$

thermal length scale $\ell_{\rm th} \sim \kappa/\sqrt{k_B T Y}$ microscopic cutoff a_0

$$\langle \hat{\mathbf{n}} (\mathbf{r}_a) \cdot \hat{\mathbf{n}} (\mathbf{r}_b) \rangle \approx 1 + \langle \nabla f(\mathbf{r}_a) \cdot \nabla f(\mathbf{r}_b) \rangle - \frac{1}{2} \langle |\nabla f(\mathbf{r}_a)|^2 \rangle - \frac{1}{2} \langle |\nabla f(\mathbf{r}_b)|^2 \rangle$$

$$\langle \hat{\mathbf{n}}(\mathbf{r}_a) \cdot \hat{\mathbf{n}}(\mathbf{r}_b) \rangle \approx 1 - \frac{k_B T}{2\pi\kappa} \left[\eta^{-1} + \ln\left(\frac{\ell_{\text{th}}}{a_0}\right) \right] + C \frac{k_B T}{\kappa} \left(\frac{\ell_{\text{th}}}{|\mathbf{r}_b - \mathbf{r}_a|} \right)^{\eta}$$

Normal-normal correlations approach constant value at large separation.

Signature of long range ordered flat phase!

Height fluctuations are small compared to the membrane size $\left\langle \frac{f(\mathbf{r})^2}{L^2} \right\rangle \sim \frac{k_B T}{\kappa} \left(\frac{\ell_{\mathrm{th}}}{L}\right)^{\eta}$

$$\left\langle \frac{f(\mathbf{r})^2}{L^2} \right\rangle \sim \frac{k_B T}{\kappa} \left(\frac{\ell_{\rm th}}{L} \right)^{\eta}$$

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)

Thermal length scale for various membranes

sheet of paper

 $\ell_{\rm th} \sim 50 {\rm km} \sim 30 {\rm miles}$

red blood cell membrane

$$\ell_{\rm th} \sim 1 \mu {\rm m}$$

bacterial cell wall

internal pressure
suppresses

thermal
fluctuations

$$\ell_{\rm th} \sim 10 {\rm nm}$$

Graphene is one atom thick 2D crystalline membrane

Extremely flexible

$$\kappa \approx 1.2 \text{eV} \approx 2 \times 10^{-19} J$$

Very stiff in-plane

$$Y \approx 350 N/m$$

At room temperature thermal fluctuations are important at all length scales!

$$\ell_{\rm th} \sim \kappa / \sqrt{k_B TY} \sim 2 \text{Å}$$

Shrinking of projected area

$$\hat{\mathbf{n}}(x,y) = \frac{1}{\sqrt{1 + (\nabla f)^2}} \begin{pmatrix} -\partial_x f \\ -\partial_y f \\ 1 \end{pmatrix}$$

projected area on XY plane

$$\Delta A_p = n_z \Delta A$$

Projected area shrinks due to thermal fluctuations!

$$\left\langle \frac{\delta A}{A} \right\rangle_0 \approx -\frac{1}{2} \left\langle |\nabla f|^2 \right\rangle \approx -\frac{k_B T}{4\pi\kappa} \left[\frac{1}{\eta} + \ln\left(\frac{\ell_{\rm th}}{a_0}\right) \right]$$

Fluctuating membranes have negative thermal expansion coefficient!

$$\alpha = \frac{1}{A} \frac{dA}{dT} \approx -\frac{k_B}{4\pi\kappa} \left[\frac{1}{\eta} - \frac{1}{2} + \ln\left(\frac{\ell_{\rm th}}{a_0}\right) \right]$$

$$\ell_{\rm th} \sim \kappa / \sqrt{k_B T Y}$$

Membranes under uniform tension

tension suppresses height fluctuations

$$G_{ff}(\mathbf{q}) = \frac{k_B T}{A \left(\kappa_R(q) q^4 + \sigma q^2\right)}$$

tension dominates on scales larger than

$$\ell_{\sigma} \sim \left(\frac{\kappa}{\sigma \ell_{\rm th}^{\eta}}\right)^{1/(2-\eta)} \sim \ell_{\rm th} \left(\frac{k_B T Y}{\sigma \kappa}\right)^{1/(2-\eta)}$$

For large tension, $\sigma \gtrsim k_B T Y / \kappa$, thermal fluctuations become irrelevant!

External tension provides a cutoff for the renormalization of elastic constants

Area extension under uniform tension

E. Guitter et al., <u>J. de Physique</u> **50**, 1787 (1989)

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)

$$\left\langle \frac{\delta A}{A} \right\rangle \approx \frac{\sigma}{(\mu + \lambda)} - \frac{1}{2} \left\langle |\nabla f|^2 \right\rangle$$

$$\left\langle \frac{\delta A}{A} \right\rangle \approx \left\langle \frac{\delta A}{A} \right\rangle_0 + \left\{ \begin{array}{c} \mathcal{C}_1 \frac{\sigma}{Y} \left(\frac{L}{\ell_{\rm th}} \right)^{\eta_u}; & L < \ell_{\sigma} \\ \mathcal{C}_2 \frac{k_B T}{\kappa} \left(\frac{\sigma \kappa}{k_B T Y} \right)^{\eta/(2-\eta)} + \frac{\sigma}{(\mu+\lambda)}; & L > \ell_{\sigma} \end{array} \right.$$

 $\sigma \kappa/(k_B T Y)$

Scaling of in-plane elastic properties with the system size of graphene membranes

$$C_{11,
m eq} = B_{
m eq} + \mu_{
m eq}$$
 $B_{
m eq}, C_{11,
m eq}, \mu_{
m eq}, Y_{
m eq} \sim Y \left(rac{\ell_{
m th}}{L}
ight)^{\eta_u}$ J.H. Los et al., PRL **116**, 015901 (2016)

Poisson's ratio deviates from -1/3! Break down of linear response theory? Samples too small?

Temperature dependence of Young's modulus for graphene membranes

R.J.T. Nicholl et al., Nat. Comm. 6, 8789 (2015)

Bending experiments with graphene membranes at room temperature

$$mg = kh_g$$

 $10\mu\mathrm{m}$

$$k = \frac{3\kappa_R W}{L^3}$$

M. K. Blees et al., Nature **524**, 204 (2015)

Bending rigidity of graphene membranes at room temperature

M. K. Blees et al., Nature **524**, 204 (2015)

Bending rigidity of graphene membranes at room temperature

M. K. Blees et al., Nature 524, 204 (2015)

Frozen fluctuations in nearly flat membranes

A. Košmrlj and D. Nelson, <u>PRE</u> **88**, 012136 (2013)

A. Košmrlj and D. Nelson, PRE 89, 022126 (2014)

frozen height fluctuations
$$h_{\rm eff}^2 = \frac{1}{A} \int\!\! dA\, \overline{h^2}$$
 thickness t

Linear response properties averaged over frozen disorder

$$\overline{\kappa_{\rm eff}}/\kappa \sim \sqrt{\left(Y h_{\rm eff}^2\right)/\kappa} \sim h_{\rm eff}/t$$

$$\overline{Y_{\rm eff}}/Y, \overline{\mu_{\rm eff}}/\mu \sim \sqrt{\kappa/\left(Y h_{\rm eff}^2\right)} \sim t/h_{\rm eff}$$

Thermal and frozen fluctuations of graphene membranes

frozen fluctuations

$$\kappa_{\rm eff} \sim \kappa \sqrt{Y h_{\rm eff}^2/\kappa} \sim 4 {\rm keV}$$

$$h_{\rm eff} \sim 80 {\rm nm}$$

thermal fluctuations

$$\kappa_R \sim \kappa \left(\frac{W}{\ell_{\rm th}}\right)^{\eta} \sim 1 {\rm keV}$$

$$\ell_{\rm th} \approx \sqrt{\frac{16\pi^3 \kappa^2}{3k_B TY}} \approx 2 {\rm nm} \quad W \approx 10 \mu {\rm m}$$

M. K. Blees et al., Nature **524**, 204 (2015)

Graphene kirigami

paper model of soft spring

stretching of soft springs comes from bending of graphene and does not affect the electronic properties

graphene model of soft spring

APPLICATIONS: microscale flexible electronics sensitive force sensors (10⁻¹⁵ N) micro-actuators

M. K. Blees et al., Nature **524**, 204 (2015)

Graphene kirigami

Future directions: Study how thermal fluctuations and disorder affect the mechanics of such structures

M. K. Blees et al., Nature **524**, 204 (2015)

How thermal fluctuations affect the mechanics of long ribbons?

Mechanics of ribbons at T=0

rotation rate of material frame

$$\frac{d\mathbf{e}_i}{ds} = \mathbf{\Omega} \times \mathbf{e}_i$$

Energy cost of deformations

$$E = \int \frac{ds}{2} \left[A_1 \Omega_1^2 + A_2 \Omega_2^2 + C \Omega_3^2 \right]$$

bending around e_1

bending around e_2 twisting around e_3

 $R_{2} = \Omega_{2}^{-1}$ $P = 2\pi\Omega_{3}^{-1}$ $A_{2} = \frac{YW^{3}}{12} \gg A_{1}, C \qquad C = 2\kappa W(1 - \nu)$

 $R_1 = \Omega_1^{-1}$ $A_1 = \kappa W(1 - \nu^2)$

 Y, κ, ν –2D elastic constants

L.D. Landau and E.M. Lifshitz, *Theory of Elasticity*

Mechanics of ribbons at T>0

Construct a ribbon with $L/W\gg 1$ square blocks of size W

Thermal fluctuations renormalize elastic constants for each block

$$\kappa_R \sim \kappa \left(W/\ell_{\rm th} \right)^{\eta} \quad Y_R \sim Y \left(W/\ell_{\rm th} \right)^{-\eta_u} \quad \ell_{\rm th} \sim \kappa/\sqrt{k_B T Y}$$

Effective elastic constants for a ribbon thus become

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)

Coupling between bending and twisting

rotation rate of material frame

Energy cost of deformations

$$\frac{d\mathbf{e}_i}{ds} = \mathbf{\Omega} \times \mathbf{e}_i \qquad E = \int \frac{ds}{2} \left[A_1(T)\Omega_1^2 + A_2(T)\Omega_2^2 + C(T)\Omega_3^2 \right]$$

bending and twisting modes are coupled!

Successive rotations do not commute!

$$R_y\left(\frac{\pi}{2}\right)R_z\left(\frac{\pi}{2}\right)\hat{\mathbf{z}} = R_y\left(\frac{\pi}{2}\right)\hat{\mathbf{z}} = \hat{\mathbf{x}}$$

$$R_z\left(\frac{\pi}{2}\right)R_y\left(\frac{\pi}{2}\right)\hat{\mathbf{z}} = R_z\left(\frac{\pi}{2}\right)\hat{\mathbf{x}} = \hat{\mathbf{y}}$$

Persistence length for ribbons

$$\langle \mathbf{e}_3(s+\ell) \cdot \mathbf{e}_3(s) \rangle = e^{-\ell/\ell_p}$$

$$\langle \mathbf{e}_3(s+\ell) \cdot \mathbf{e}_3(s) \rangle = e^{-\ell/\ell_p} \left[\frac{10^4}{800} \right]^{10^4}$$

$$\ell_p = \frac{2}{k_B T} \left(A_1^{-1} + A_2^{-1} \right)^{-1} \quad 10^2$$

S. Panyukov and Y. Rabin, PRE **62**, 7136 (2000)

$$\ell_p \approx \frac{2\kappa_R W}{k_B T} \sim \frac{\kappa W^{1+\eta}}{k_B T \ell_{\rm th}^{\eta}}$$

$$\ell_{\rm th} \sim \kappa / \sqrt{k_B T Y}$$

Persistence length for graphene nano ribbons at room temperature

Pulling of long ribbons

rotation rate of material frame

Energy cost of deformations

$$\frac{d\mathbf{e}_i}{ds} = \mathbf{\Omega} \times \mathbf{e}_i \qquad E = \int \frac{ds}{2} \left[A_1 \Omega_1^2 + A_2 \Omega_2^2 + C \Omega_3^2 \right] - Fz$$

Partition function

Ribbon end to end distance

$$Z = \sum_{\text{configurations}} e^{-E/k_B T}$$
 $\langle z \rangle = k_B T \frac{\partial \ln Z}{\partial F}$

It is very hard to calculate the partition function directly!

Analogy with the quantum mechanical rotating top

Statistical mechanics

$\hat{\mathbf{z}}$

ribbon backbone coordinate

bending and twisting rigidities

$$A_1(T), A_2(T), C(T)$$

pulling force

F

Quantum mechanics

time

t

moments of inertia

$$I_1, I_2, I_3$$

gravitational force

F

Use tools from quantum mechanics!

H. Yamakawa, Pure Appl. Chem. 46, 135 (1976)

Note: in classical mechanics this corresponds to the Kirchhoff kinetic analogy

Pulling and bending of ribbons

Pulling and bending can be described with the same formalism by properly setting the initial material frame orientation.

Pulling and bending of ribbons of varying lengths 33

For long ribbons direction of pulling force is irrelevant!

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)

Bending of ribbons at varying temperature

Fixed force and ribbon dimensions

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)

Pulling of long ribbons

$$L \gg \ell_p \sim \kappa W^{1+\eta_f}/(k_B T \ell_c^{\eta_f})$$

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)

Small pulling force $F\ell_p \ll k_B T$

$$F\ell_p \ll k_B T$$

Large pulling force $F\ell_p \gg k_B T$

$$F\ell_p \gg k_B T$$

$$\frac{\langle h \rangle}{L} \approx 1 + C \frac{k_B T}{\kappa} \left(\frac{\kappa F}{k_B T YW} \right)^{1/\delta} + \frac{F}{YW}$$

Non-linear response is reflecting the 2D nature of ribbons!

Potential experimental tests

 $10 \mu \mathrm{m}$

Prepare nano-ribbons

 $W \sim 10 \mathrm{nm}$ $L \gtrsim \ell_p \sim 10 \mu \mathrm{m}$

pulling (gravity) twisting (magnetic field)

 $10 \mu \mathrm{m}$

M. K. Blees et al., Nature **524**, 204 (2015)

Molecular dynamics simulations of ribbons

Rastko Sknepnek (Dundee) Mark Bowick (Syracuse)

$$\langle \mathbf{t}(s) \cdot \mathbf{t}(s+x) \rangle = e^{-x/\ell_p}$$

$$\ell_p \approx \frac{2W \kappa_R(W)}{k_B T}$$

Molecular dynamics simulations of ribbons

$$W = 10, L = 250$$

Measure height fluctuations along the ribbon backbone

$$\langle h^2(s) \rangle$$

Persistence length

$$\langle \mathbf{t}(s) \cdot \mathbf{t}(s+x) \rangle = e^{-x/\ell_p}$$

$$\ell_p \approx \frac{2W \kappa_R(W)}{k_B T}$$

Ribbon fluctuations from molecular dynamics simulations

Data collapse without adjustable parameters!

Measured renormalized bending rigidity

$$\kappa_R(W) \approx \frac{k_B T \ell_p}{2W}$$

How thermal fluctuations affect the mechanics of spherical shells?

J. Paulose *et al.*, <u>PNAS</u> **109**, 19551 (2012)

Mechanics of spherical shells

free energy cost of deformations

$$F = \int dA \frac{1}{2} \left[\lambda u_{ii}^2 + 2\mu u_{ij}^2 + \kappa (\nabla^2 f)^2 \right]$$

strain tensor

$$u_{ij} = \frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right) + \frac{1}{2} (\partial_i f) (\partial_j f) - \frac{f \delta_{ij}}{R}$$

Elastic length scale

bending energy $E_b \sim \frac{\kappa f^2}{\ell^4}$

$$E_b \sim \frac{\kappa f^2}{\ell^4}$$

stretching energy $E_s \sim \frac{Yf^2}{D^2}$

$$E_s \sim rac{Yf^2}{R^2}$$

stretching energy dominates for

$$\ell > \ell^* \sim \left(\frac{\kappa R^2}{Y}\right)^{1/4} \sim \sqrt{Rt}$$

Buckling of spherical shells by external pressure

$$p_c = 4\sqrt{\kappa Y}/R^2 \sim Et^2/R^2$$

Macroscopic buckling instability arrested by a wax mandrel

$$\ell^* \sim (\kappa R^2 / Y)^{1/4} \sim \sqrt{Rt}$$

R = 10.8 cm $R/t \approx 2000$

R. L. Carlson et al., Exp. Mech. 7, 281 (1967)

Thermal fluctuations of spherical shells

$$u_{ij} = \frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right) + \frac{1}{2} (\partial_i f) (\partial_j f) - \frac{f \delta_{ij}}{R}$$

radial fluctuations

$$G_{ff}(\mathbf{q}) \equiv \frac{k_B T}{A \left[\kappa_R(q) q^4 - \frac{1}{2} p_R(q) R q^2 + \frac{Y_R(q)}{R^2} \right]}$$

Elastic length scale provides a cutoff for the renormalization

$$\kappa_R \sim \kappa (\ell^*/\ell_{\rm th})^{\eta}$$
 $\eta \approx 0.82$

$$Y_R \sim Y(\ell^*/\ell_{\rm th})^{-\eta_u}$$
 $\eta_u \approx 0.36$

Thermal fluctuations generate compressive "pressure"!

$$p_R \approx p + \frac{k_B T Y}{6\pi \kappa R}$$

Shells buckle at a lower external pressure due to thermal fluctuations

thermal length scale

$$\ell_{\rm th} \sim \frac{\kappa}{\sqrt{k_B T Y}} \sim \sqrt{\frac{E t^5}{k_B T}}$$

elastic length scale

$$\ell^* \sim \left(\kappa R^2/Y\right)^{1/4} \sim \sqrt{Rt}$$

J. Paulose et al., PNAS 109, 19551 (2012)

Thermal fluctuations alone crush large spherical shells

Spherical shells get crushed when thermally generated "pressure" exceeds the critical buckling threshold

$$p_R \approx \frac{k_B T Y}{6\pi \kappa R} > p_c = \frac{4\sqrt{\kappa_R Y_R}}{R^2}$$

Small spherical shells are stable to thermal fluctuations

$$R < R_c$$

Large spherical shells get crushed by thermal fluctuations

$$R > R_c$$

shells can be inflated with internal pressure

$$R_c \approx 54 \frac{\kappa}{k_B T} \sqrt{\frac{\kappa}{Y}} \sim \frac{Et^4}{k_B T}$$

graphene-like shell

$$R_c \sim 60 \mathrm{nm}$$

E. Coli-like shell

$$R_c \sim 1 \mu \mathrm{m}$$

red blood celllike shell

$$R_c \sim 400 \mu \mathrm{m}$$

$$\left\langle \frac{\delta R}{R} \right\rangle = -\frac{k_B T}{8\pi\kappa} \left[\eta^{-1} + \ln(\ell_{\rm th}/a_0) \right] + C_1 \frac{k_B T}{\kappa} \left(\frac{p\kappa R}{k_B T Y} \right)^{\eta/(2-\eta)} + \frac{pR}{4(\mu + \lambda)}$$

Potential experimental test with polymersomes

Can make polymersomes of size $R \sim 100 \mu \mathrm{m}$, but they may be under osmotic pressure!

thickness

 $t \approx 10 \text{nm}$

"double emulsion" of ampiphillic diblock copolymers (PEG-b-PLA) tune wetting properties to eject thin crystalline bilayer shells

crush
polymersomes
with osmotic
shock

Shum et al., <u>JACS</u> **130**, 9543 (2008)

Summary

thermal fluctuations are important for graphene (and BN, MoS₂, WS₂, ...)

thermal fluctuations spontaneously crush large spherical shells

long narrow ribbons behave like flexible 1D polymers, but retain features of 2D membranes

increased scale dependent bending and twisting rigidities

non-linear response to stretching

Acknowledgements

Collaborators

- K. Bertoldi (Harvard)
- M. Bowick (Syracuse)
- A. Chakraborty (MIT)
- I. Cohen (Cornell)
- M. Jensen (NBI, Copenhagen)
- M. Kardar (MIT)
- P. McEuen (Cornell)

- D. Nelson (Harvard)
- L. Oddersehede (NBI, Copehagen)
- D. Otzen (Aarhus)
- R. Sknepnek (Dundee)
- A. Trusina (NBI, Copenhagen)
- J. Vlassak (Harvard)
- J. Weaver (Harvard)
- D. Weitz (Harvard)

