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bending rigidity κ and Lamé coefficients μ and λ reads (details in
SI Text)
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where the nonlinear strain tensor is
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1
2
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#
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f
R
: [2]

Here, d2x ≡ ffiffiffi
g

p
dx1dx2, where g is the determinant of the metric

tensor associated with the spherical background metric. Within
shallow shell theory, g≈ 1 (SI Text).
If we represent the normal displacements in the form f ðxÞ=

f0 + f ′ðxÞ, where f0 represents the uniform contraction of the
sphere in response to the external pressure, and f ′ is the defor-
mation with reference to this contracted state so that

R ​d2x  f ′= 0,
then the energy is quadratic in fields u1, u2, and f0. These variables
can be eliminated in a functional integral of expð−G½ f ′; f0;
u1; u2$=kBTÞ by Gaussian integration (details in SI Text). The ef-
fective free energy Geff that results is the sum of a harmonic part
G0 and an anharmonic part G1 in the remaining variable f ′ðxÞ,
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where Y = 4μðμ+ λÞ=ð2μ+ λÞ is the 2D Young’s modulus and
PT
ij = δij −∂i∂j=∇2 is the transverse projection operator. The

“mass” term Y ðf ′=RÞ2 in the harmonic energy functional reflects
the coupling between out-of-plane deformation and in-plane
stretching due to curvature, absent in the harmonic theory of
flat membranes (plates). The cubic interaction term with a cou-
pling constant −Y=2R is also unique to curved membranes and
is prohibited by symmetry for flat membranes. These terms are
unusual because they have system-size–dependent coupling
constants. Note that an inward pressure (p> 0) acts like a nega-
tive R-dependent surface tension in the harmonic term. As re-
quired, the effective elastic energy of fluctuating flat mem-
branes is retrieved for R→∞ and p= 0. In the following, we
exclusively use the field f ′ðxÞ and thus drop the prime without
ambiguity.

When only the harmonic contributions are considered, the
equipartition result for the thermally generated Fourier com-
ponents fq =

R
d2x  f ðxÞexpðiq · xÞ with 2D wavevector q are

D
fq fq′

E

0
=

AkBTδq;−q′

κq4 −
pR
2
q2 +

Y
R2

; [4]

where A is the area of integration in the ðx1; x2Þ plane. Long-
wavelength modes are restricted by the finite size of the sphere;
i.e., q ≳ 1=R. In contrast to flat membranes for which the ampli-
tude of long-wavelength (q→ 0) modes diverges as kBT=ðκq4Þ,
the coupling between in-plane and out-of-plane deformations
of curved membranes cuts off fluctuations with wave vectors
smaller than a characteristic inverse length scale (26),

q*= ðℓ*Þ−1 =
&

Y
κR2

'1=4
≡
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R
;

where we have introduced the dimensionless Föppl-von Kármán
number γ =YR2=κ (11). We focus here on the case γ % 1, so
ℓ* & R. As p approaches pc ≡ 4

ffiffiffiffiffiffi
κY

p
=R2, the modes with q= q*

become unstable and their amplitude diverges. This corresponds
to the well-known buckling transition of spherical shells under
external pressure (27). When p> pc, the shape of the deformed
shell is no longer described by small deformations from a sphere,
and the shallow shell approximation breaks down.

Anharmonic Corrections to Elastic Moduli. The anharmonic part of
the elastic energy, neglected in the analysis described above,
modifies the fluctuation spectrum by coupling Fourier modes at
different wave vectors. Upon rescaling all lengths by ℓ*, it can be
shown that the size of anharmonic contributions to hjfqj2i is set
by the dimensionless quantities kBT

ffiffiffi
γ

p
=κ and p=pc. The corre-

lation function including the anharmonic terms in Eq. 3 is given
by the Dyson equation,
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; [5]

where ΣðqÞ is the self-energy, which we evaluate to one-loop
order, using perturbation theory. Whereas hjfqj2i can be numer-
ically evaluated at any q, an approximate but concise description
of the fluctuation spectrum is obtained by expanding the self-
energy up to order q4 and defining renormalized values YR, κR,
and pR of the Young’s modulus, bending rigidity, and pressure,
from the coefficients of the expansion:

AkBT
D((fq→ 0

((2
E−1

≡ κRq4 −
pRR
2

q2 +
YR

R2 +O
"
q6
#
: [6]

To lowest order in kBT=κ and p=pc we obtain the approximate
expressions (details in SI Text)

YR ≈Y
!
1−

3
256

kBT
κ

ffiffiffi
γ

p
&
1+

4
π
p
pc

'$
; [7]

pR ≈ p+
1

24π
kBT
κ

pc
ffiffiffi
γ

p
&
1+

63π
128

p
pc

'
; [8]

and

κR ≈ κ

!
1+

61
4; 096

kBT
κ

ffiffiffi
γ

p
&
1−

1; 568
915π

p
pc

'$
: [9]

Fig. 1. Simulated thermally fluctuating shells. (A) Triangulated shell with
5,530 points separated by average nearest-neighbor distance r0 with Young’s
modulus Y = 577e=r20 and bending rigidity κ = 50e at temperature kBT = 20e,
where e is theenergy scale of the Lennard-Jones potential used to generate the
disordered mesh. (B) Same as in Awith external pressure p= 0:5pc, where pc is
the classical buckling pressure. The thermally excited shell has already buckled
under pressure to a shape with a much smaller enclosed volume than in A.
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strain, leading to the formation of a periodic array of elongated,
almost closed ellipses, as shown in Fig. 2D for 3 ¼ "0.21. Since
the specimens are made of an elastomeric material, the process
is fully reversible and repeatable. Upon release of the applied
vertical displacement, the deformed structures recover their
original congurations.

Interestingly, Figs. 2C–D clearly shows that the porous
structures 3.6.3.6 and 3.4.6.4 buckle into a chiral pattern, while
the initially expanded congurations are non-chiral. Therefore,
in these two systems buckling acts as a reversible chiral
symmetry breaking mechanism. Despite many studies on
pattern formation induced by mechanical instabilities,15

relatively little is known about the use of buckling as a reversible
chiral symmetry breaking mechanism. Although several
processes have been recently reported to form chiral
patterns,19–23 all of these work only at a specic length-scale,
preventing their use for the formation of chiral structures over a
wide range of length scales, as required by applications.
Furthermore, most of these chiral symmetry breaking processes
are irreversible19–21 and only few systems have been demon-
strated to be capable of reversibly switching between non-chiral
and chiral congurations.22,23 Remarkably, since the mecha-
nism discovered here exploits a mechanical instability that is
scale independent, our results raise opportunities for reversible
chiral symmetry breaking over a wide range of length scales.

Both experiments and simulations reported in Fig. 2 clearly
indicate that the onset of instability is strongly affected by the
arrangement of the holes. A more quantitative comparison
between the response of the structures investigated in this
paper can be made by inspecting the evolution of stress during
both experiments and simulations (see Fig. 3). Although all
structures are characterized by roughly the same porosity, the

hole arrangement is found to strongly affect both the effective
modulus Ē (calculated as the initial slope of the stress–strain
curves reported in Fig. 3) and the critical strain 3cr (calculated as
the strain at which the stress–strain curves reported in Fig. 3
plateau), demonstrating that through a careful choice of the

Fig. 2 Numerical (left) and experimental (right) images of all four structures (4.4.4.4, 3.3.3.3.3.3, 3.6.3.6 and 3.4.6.4) at different levels of deformation: (A) 3¼ 0.00, (B)
3 ¼ "0.07, (C) 3 ¼ "0.15 and (D) 3 ¼ "0.21. All configurations are characterized by an initial void-volume-fraction j z 0.5. Scale bars: 20 mm.

Fig. 3 (A) Experimental and numerical stress–strain curves for the four struc-
tures. S denotes the nominal stress (calculated as force divided by the cross-
sectional area in the undeformed configuration). Dashed lines correspond to
experiments and solid lines to simulations. Note that for 3 < "0.20 the porous
structure 4.4.4.4. shows a stiffening behavior due to densification. A similar
response is observed also for the other three structures, but for larger values of
applied strain 3. (B) Table summarizing the mechanical properties of the four
periodic structures measured from experiments and simulations.
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Fig. 1: (Color online) Snapshots from Monte Carlo simulations of the solid and liquid modulated phases of two-dimensional
hard-core/soft-shoulder particles with σs/σ= 5; shown are the solid (Ms) and liquid (Ml) micelle phases, solid (Ls) and liquid
(Ll) lamellar phases, and the solid inverse micelle phase (IMs). The blue circles are the hard cores of the particles and the
overlapping diffuse green circles represent their soft shoulders.

model: consider a uniform density of spheres at densities
just large enough so that the soft-shoulders only begin
to touch the hard cores. The energy can be lowered by,
for instance, bringing pairs of spheres together —moving
two spheres closer requires no additional energy, but by
reducing the number of nearest neighbors the overall
energy is reduced. Indeed, the same physics drives the
formation of a multiply-occupied clusters of penetrable
spheres (σ= 0) [15], while the ground state of a generalized
exponential repulsion [16] is a multiply-occupied fcc lattice
with a lattice constant independent of the average density.
To explore the HCSS ensemble we introduce a lattice

model with occupation ni = 0, 1 at each site to enforce
the hard-core repulsion. The remaining soft shoulder is
characterized by an interaction V ijSS and the density is set
through the chemical potential µ in the Hamiltonian:

H[ni] =
1

2

∑

ij

niV
ij
SSnj −

∑

i

µni . (2)

Note that the sum is not over nearest neighbors but over
all sites —the range of the interaction is encoded in V ijSS.
This model with a square-shouder VSS was used to study
electron liquids in weak magnetic fields [3,4]. There it
was a toy model of the true interactions, while here we
study its consequences for generic VSS. To develop a mean-
field theory, we rewrite the partition function in terms of
a continuous field φ through the Hubbard-Stratonovich
transformation1

Z =
∑

nj

∫
[dφ] exp

{

− ρ
2
0

2β

∫
ddk

(2π)d
φ(k)V −1SS (k)φ(−k)

+
∑

j

nj(iφj +βµ)

}

, (3)

where we have used both continuum and discrete variables
to simplify the notation; d is the dimension of space2.

1Because it oscillates in sign, VSS(k) has a zero and is not invert-
ible. We can, however, decompose VSS = V+−V− into nonvanish-
ing potentials and introduce two dummy fields φ± to complete the
Hubbard-Stratonovich transformation. This does not alter the mean-
field equations. See Park Y. and Fisher M. E., Phys. Rev. E, 60
(1999) 6323.
2Our Fourier transform convention has φ(k) with units of volume,

Vtot, and VSS(k) has units V
−1
tot .

Here ρ0 = γdσ−d is the density of the lattice where we
have chosen the lattice constant to equal the hard sphere
diameter σ and γd is a lattice and dimensionally dependent
geometrical factor. Summing over nj = 0, 1 results in the
exact partition function

Z =
∫
[dφ] exp

{

− ρ
2
0

2β

∫
ddk

(2π)d
φ(k)V −1SS (k)φ(−k)

+
∑

j

ln [1+ exp (βµ+ iφj)]

}

. (4)

The average site occupation is ⟨ni⟩= β−1d lnZ/dµ=
λeiφi/(1+λeiφi), where λ= eβµ is the fugacity. This is
related to the number density profile through ρi = ρ0⟨ni⟩.
Note that the presence of the hard cores introduces a new
length scale σ which competes with the overlap of the
shoulders at σs. Equation (4) can be used as the basis
for a systematic expansion about the mean-field solution,
governed by the equations V −1SS (k)φ(k) = iβρ(k)/ρ

2
0.

Nevertheless, we will consider only the mean-field theory
in what follows.
We first consider the stability of fluctuations around a

uniform density, following refs. [14,17,18]. In the mean-
field approximation, we can recast eq. (4) in terms of
the free energy for fixed ρ (not fixed µ), obtained via
the Legendre transform, to recover the standard density
functional form:

βF =
β

2ρ20

∫
ddk

(2π)d
ρ(k)VSS(k)ρ(−k)

+

∫
ddr
[
ρ ln (ρ/ρ0)+ (ρ0− ρ) ln (1− ρ/ρ0)

]
. (5)

Working to quadratic order in fluctuations about a
constant ρ we find an instability when both V −1SS (k)< 0
and ρ0 ! ρ/ρ0 (1− ρ/ρ0)β|VSS(k)|. This stability criterion
is a generalization of the result in ref. [14] which we
recover at low volume fractions, when ρ/ρ0→ 0 and the
hard cores rarely overlap.
To simplify our analysis of the mean-field lattice model,

we first consider the stripe phase. We need only consider
Fourier modes which belong to the reciprocal lattice of the
periodic structure (including the k= 0 mode). Fixing the
zero mode of the density, we find that the wave vectors
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Fig. 1: (Color online) Snapshots from Monte Carlo simulations of the solid and liquid modulated phases of two-dimensional
hard-core/soft-shoulder particles with σs/σ= 5; shown are the solid (Ms) and liquid (Ml) micelle phases, solid (Ls) and liquid
(Ll) lamellar phases, and the solid inverse micelle phase (IMs). The blue circles are the hard cores of the particles and the
overlapping diffuse green circles represent their soft shoulders.

model: consider a uniform density of spheres at densities
just large enough so that the soft-shoulders only begin
to touch the hard cores. The energy can be lowered by,
for instance, bringing pairs of spheres together —moving
two spheres closer requires no additional energy, but by
reducing the number of nearest neighbors the overall
energy is reduced. Indeed, the same physics drives the
formation of a multiply-occupied clusters of penetrable
spheres (σ= 0) [15], while the ground state of a generalized
exponential repulsion [16] is a multiply-occupied fcc lattice
with a lattice constant independent of the average density.
To explore the HCSS ensemble we introduce a lattice

model with occupation ni = 0, 1 at each site to enforce
the hard-core repulsion. The remaining soft shoulder is
characterized by an interaction V ijSS and the density is set
through the chemical potential µ in the Hamiltonian:

H[ni] =
1

2

∑

ij

niV
ij
SSnj −

∑

i

µni . (2)

Note that the sum is not over nearest neighbors but over
all sites —the range of the interaction is encoded in V ijSS.
This model with a square-shouder VSS was used to study
electron liquids in weak magnetic fields [3,4]. There it
was a toy model of the true interactions, while here we
study its consequences for generic VSS. To develop a mean-
field theory, we rewrite the partition function in terms of
a continuous field φ through the Hubbard-Stratonovich
transformation1

Z =
∑

nj

∫
[dφ] exp

{

− ρ
2
0

2β

∫
ddk

(2π)d
φ(k)V −1SS (k)φ(−k)

+
∑

j

nj(iφj +βµ)

}

, (3)

where we have used both continuum and discrete variables
to simplify the notation; d is the dimension of space2.

1Because it oscillates in sign, VSS(k) has a zero and is not invert-
ible. We can, however, decompose VSS = V+−V− into nonvanish-
ing potentials and introduce two dummy fields φ± to complete the
Hubbard-Stratonovich transformation. This does not alter the mean-
field equations. See Park Y. and Fisher M. E., Phys. Rev. E, 60
(1999) 6323.
2Our Fourier transform convention has φ(k) with units of volume,

Vtot, and VSS(k) has units V
−1
tot .

Here ρ0 = γdσ−d is the density of the lattice where we
have chosen the lattice constant to equal the hard sphere
diameter σ and γd is a lattice and dimensionally dependent
geometrical factor. Summing over nj = 0, 1 results in the
exact partition function

Z =
∫
[dφ] exp

{

− ρ
2
0

2β

∫
ddk

(2π)d
φ(k)V −1SS (k)φ(−k)

+
∑

j

ln [1+ exp (βµ+ iφj)]

}

. (4)

The average site occupation is ⟨ni⟩= β−1d lnZ/dµ=
λeiφi/(1+λeiφi), where λ= eβµ is the fugacity. This is
related to the number density profile through ρi = ρ0⟨ni⟩.
Note that the presence of the hard cores introduces a new
length scale σ which competes with the overlap of the
shoulders at σs. Equation (4) can be used as the basis
for a systematic expansion about the mean-field solution,
governed by the equations V −1SS (k)φ(k) = iβρ(k)/ρ

2
0.

Nevertheless, we will consider only the mean-field theory
in what follows.
We first consider the stability of fluctuations around a

uniform density, following refs. [14,17,18]. In the mean-
field approximation, we can recast eq. (4) in terms of
the free energy for fixed ρ (not fixed µ), obtained via
the Legendre transform, to recover the standard density
functional form:

βF =
β

2ρ20

∫
ddk

(2π)d
ρ(k)VSS(k)ρ(−k)

+

∫
ddr
[
ρ ln (ρ/ρ0)+ (ρ0− ρ) ln (1− ρ/ρ0)

]
. (5)

Working to quadratic order in fluctuations about a
constant ρ we find an instability when both V −1SS (k)< 0
and ρ0 ! ρ/ρ0 (1− ρ/ρ0)β|VSS(k)|. This stability criterion
is a generalization of the result in ref. [14] which we
recover at low volume fractions, when ρ/ρ0→ 0 and the
hard cores rarely overlap.
To simplify our analysis of the mean-field lattice model,

we first consider the stripe phase. We need only consider
Fourier modes which belong to the reciprocal lattice of the
periodic structure (including the k= 0 mode). Fixing the
zero mode of the density, we find that the wave vectors
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Figure 1. (A) Schematic representation of the protein–DNA search problem. The protein (yellow)
must find its target site (red) on a long DNA molecule confined within the cell nucleoid (in bacteria)
or cell nucleus (in eukaryotes). Compare with figure 9(A) which shows confined DNA. (B) The
target site must be recognized with 1 base-pair (0.34 nm) precision, as displacement by 1 bp results
in a different sequence and consequently a different site.

3d1d

n

(A) (B)

Figure 2. (A) The mechanism of facilitated diffusion. The search process consists of alternating
rounds of 3D and 1D diffusion, each with average duration τ3D and τ1D, respectively. (B) The
antenna effect [9]. During 1D diffusion (sliding) along DNA, a protein visits on average n̄ sites.
This allows the protein to associate some distance ∼n̄ away from the target site and reach it by
sliding, effectively increasing the reaction cross-section from 1bp to ∼n̄. The antenna effect is
responsible for the speed-up by facilitated diffusion.

1.3. History of the problem: theory

To resolve this discrepancy, one possible mechanism of facilitated diffusion that includes both
3D diffusion and effectively 1D diffusion of protein along DNA (the 1D/3D mechanism) was
suggested. This mechanism was first proposed and dismissed by Riggs et al [1] but was soon
revived and rigorously studied by Richter and Eigen [3], then further expanded and corrected
by Berg and Blomberg [4] and finally developed by Berg et al [5]. The basic idea of the 1D/3D
mechanism is that while searching for its target site, the protein repeatedly binds and unbinds
DNA and, while bound non-specifically, slides along the DNA, undergoing one-dimensional
(1D) Brownian motion or a random walk. Upon dissociation from the DNA, the protein
diffuses three dimensionally in solution and binds to the DNA in a different place for the next
round of one-dimensional searching (figure 2(A)).

During 1D sliding the protein is kept on DNA by the binding energy to non-specific
DNA. This energy has been measured for several DNA-binding proteins and has a range
of 10–15 kBT (at physiological salt concentration), was shown to be driven primarily by
screened electrostatic interactions between charged DNA and protein molecules [6], and

3
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This indicates that the single filament is actually made from
protofilaments (12). The morphologies observed are in line
with previous work (3). Samples obtained at 0.25-0.5 mg/
mL were dominated by the twisted morphology (Figure 3a)
with just a small fraction of straight, linear fibrils. Samples
obtained at 2.5-8 mg/mL were almost exclusively straight
fibrils (Figure 3b), although a small fraction consisted of
twisted fibrils and what appeared to be pairwise bundled,
untwisted fibrils. In the interval from 0.5 to 2.5 mg/mL both
straight and twisted fibril morphologies were found, with

twisted fibrils becoming increasingly rare and straight fibrils
increasingly numerous as the glucagon concentration in-
creased (Figure 3c).
ThT fluorescence curves from fibrillating 0.5, 0.75, and 1

mg/mL glucagon showed a gradual decrease in fluorescence
intensity seen in the late part of the fibrillation curves (Figure
4a). To examine this behavior, low concentration samples
(0.5 mg/mL) were examined immediately after the maximum
intensity was reached and after 64 h where the intensity had
dropped by approximately 30%. At 0.5 mg/mL the maximum
fluorescence intensity is reached after 39 h, and TEM showed
that regularly twisted fibrils are formed (Figure 4b). After
64 h, the intensity had dropped, and an opaque, dense
network of fibrils has formed (Figure 4c). By diluting the
sample 10-fold in the same buffer, the dense network
dissolves and reveals twisted fibrils visually identical to the
fibrils formed after 39 h (Figure 4d). For comparison, a
sample at high concentration (8 mg/mL) was subjected to
the same analysis. Though no decrease in fluorescence
intensity is observed, a similar fibril network was formed.
The dense fibril network could also in this case be dissolved
by diluting the sample in the same buffer, and once again
the straight fibril morphology was shown to be conserved
(data not shown). The decrease in fluorescence intensity after
the maximum has been reached can in principle shift the
lag time compared to the ideal case without decrease. The
smooth line in Figure 4a shows a fit of the fluorescence
intensity data up to 50 h to the function I(t) ) A + [B + R(t
- C)]/[1 + exp(-(t - C)/D)]E, where the sigmoidal form is
modified by the slope R. With this function, we obtain a
29.7 h lag time, still defined by I(t) reaching 5% of the
maximum intensity. The effect of the decrease in fluores-
cence can be probed by setting R ) 0 and keeping the other
parameters fixed. The lag time of the resulting curve is 29.8
h. The time determined from the experiment is 30.2 h. These
differences are well within the experimental variation.
Seeding Experiments. To investigate how well the different

glucagon fibril species act as templates for new fibrils, seeds
were produced from samples containing mature fibrils grown
at 0.25 and 8 mg/mL, respectively. Fractions of these two
seed stocks were added to fresh solutions of 0.25 and 8 mg/
mL glucagon. Fibrillation kinetics of the seeded solutions
was monitored by ThT fluorescence, and the resulting lag
times are plotted in Figure 5. Seeding a fresh 0.25 mg/mL
glucagon solution with seeds from fibrils formed at either
0.25 or 8 mg/mL glucagon solution causes a large reduction
in lag time (Figure 5a). In the absence of seeds, the lag time
is approximately 23 h, but by adding seeds in concentrations
higher than 0.1 µg/mL the lag time is strongly reduced. At
seed concentrations above 2.5 µg/mL the solution starts to
fibrillate immediately. Seeding a fresh 8 mg/mL glucagon
solution with seeds of an 8 mg/mL solution also leads to a
large reduction in lag time (Figure 5b). The lag time is
roughly 13 h without seeds and becomes completely
eliminated at maximum seed concentration. However, when
seeds, which were formed in a 0.25 mg/mL glucagon
solution, were added to a fresh 8 mg/mL glucagon solution,
only a modest effect was observed at the highest concentra-
tion (Figure 5b).
To determine if the seeding morphology propagated during

the seeding experiment, samples seeded with the maximum
fraction of seeds were subjected to analysis by TEM (Figure

FIGURE 3: TEM pictures of glucagon fibrils formed at three
different concentrations reveal a change in morphology. (a) 0.25
mg/mL. At low concentration, the majority of the fibrils consist of
two or more filaments twisted around each other. The width of the
fibrils is approximately 14 nm and the twist repeat approximately
80 nm. (b) 8 mg/mL. At high concentration, the fibrils are primarily
straight, although a very small population of twisted fibrils are
present. The width of the straight fibrils is approximately 6 nm.
(c) 1.5 mg/mL. At an interval between high and low concentration
both straight and twisted morphologies are present. Scale bar
represents 100 nm.

Selection of Glucagon Fibril Morphology Biochemistry, Vol. 46, No. 24, 2007 7317
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bending rigidity κ and Lamé coefficients μ and λ reads (details in
SI Text)

G=
Z ​
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u2kk − pf

$
; [1]

where the nonlinear strain tensor is

uijðxÞ=
1
2
"
∂iuj + ∂jui + ∂if∂jf

#
− δij

f
R
: [2]

Here, d2x ≡ ffiffiffi
g

p
dx1dx2, where g is the determinant of the metric

tensor associated with the spherical background metric. Within
shallow shell theory, g≈ 1 (SI Text).
If we represent the normal displacements in the form f ðxÞ=

f0 + f ′ðxÞ, where f0 represents the uniform contraction of the
sphere in response to the external pressure, and f ′ is the defor-
mation with reference to this contracted state so that

R ​d2x  f ′= 0,
then the energy is quadratic in fields u1, u2, and f0. These variables
can be eliminated in a functional integral of expð−G½ f ′; f0;
u1; u2$=kBTÞ by Gaussian integration (details in SI Text). The ef-
fective free energy Geff that results is the sum of a harmonic part
G0 and an anharmonic part G1 in the remaining variable f ′ðxÞ,

G0 =
1
2

Z ​

d2x
!
κ
"
∇2f ′

#2 − pR
2
j∇f ′j2 + Y

R2f ′
2
$
; [3]

G1 =
Y
2

Z ​

d2x
!&

1
2
PT
ij ∂if ′∂jf ′

'2
−

f ′
R
PT
ij ∂if ′∂jf ′

$
;

where Y = 4μðμ+ λÞ=ð2μ+ λÞ is the 2D Young’s modulus and
PT
ij = δij −∂i∂j=∇2 is the transverse projection operator. The

“mass” term Y ðf ′=RÞ2 in the harmonic energy functional reflects
the coupling between out-of-plane deformation and in-plane
stretching due to curvature, absent in the harmonic theory of
flat membranes (plates). The cubic interaction term with a cou-
pling constant −Y=2R is also unique to curved membranes and
is prohibited by symmetry for flat membranes. These terms are
unusual because they have system-size–dependent coupling
constants. Note that an inward pressure (p> 0) acts like a nega-
tive R-dependent surface tension in the harmonic term. As re-
quired, the effective elastic energy of fluctuating flat mem-
branes is retrieved for R→∞ and p= 0. In the following, we
exclusively use the field f ′ðxÞ and thus drop the prime without
ambiguity.

When only the harmonic contributions are considered, the
equipartition result for the thermally generated Fourier com-
ponents fq =

R
d2x  f ðxÞexpðiq · xÞ with 2D wavevector q are

D
fq fq′

E

0
=

AkBTδq;−q′

κq4 −
pR
2
q2 +

Y
R2

; [4]

where A is the area of integration in the ðx1; x2Þ plane. Long-
wavelength modes are restricted by the finite size of the sphere;
i.e., q ≳ 1=R. In contrast to flat membranes for which the ampli-
tude of long-wavelength (q→ 0) modes diverges as kBT=ðκq4Þ,
the coupling between in-plane and out-of-plane deformations
of curved membranes cuts off fluctuations with wave vectors
smaller than a characteristic inverse length scale (26),

q*= ðℓ*Þ−1 =
&

Y
κR2

'1=4
≡

γ1=4

R
;

where we have introduced the dimensionless Föppl-von Kármán
number γ =YR2=κ (11). We focus here on the case γ % 1, so
ℓ* & R. As p approaches pc ≡ 4

ffiffiffiffiffiffi
κY

p
=R2, the modes with q= q*

become unstable and their amplitude diverges. This corresponds
to the well-known buckling transition of spherical shells under
external pressure (27). When p> pc, the shape of the deformed
shell is no longer described by small deformations from a sphere,
and the shallow shell approximation breaks down.

Anharmonic Corrections to Elastic Moduli. The anharmonic part of
the elastic energy, neglected in the analysis described above,
modifies the fluctuation spectrum by coupling Fourier modes at
different wave vectors. Upon rescaling all lengths by ℓ*, it can be
shown that the size of anharmonic contributions to hjfqj2i is set
by the dimensionless quantities kBT

ffiffiffi
γ

p
=κ and p=pc. The corre-

lation function including the anharmonic terms in Eq. 3 is given
by the Dyson equation,

D((fq
((2
E
=

1
D((fq

((2
E−1
0
−ΣðqÞ

; [5]

where ΣðqÞ is the self-energy, which we evaluate to one-loop
order, using perturbation theory. Whereas hjfqj2i can be numer-
ically evaluated at any q, an approximate but concise description
of the fluctuation spectrum is obtained by expanding the self-
energy up to order q4 and defining renormalized values YR, κR,
and pR of the Young’s modulus, bending rigidity, and pressure,
from the coefficients of the expansion:

AkBT
D((fq→ 0

((2
E−1

≡ κRq4 −
pRR
2

q2 +
YR

R2 +O
"
q6
#
: [6]

To lowest order in kBT=κ and p=pc we obtain the approximate
expressions (details in SI Text)

YR ≈Y
!
1−

3
256

kBT
κ

ffiffiffi
γ

p
&
1+

4
π
p
pc

'$
; [7]

pR ≈ p+
1

24π
kBT
κ

pc
ffiffiffi
γ

p
&
1+

63π
128

p
pc

'
; [8]

and

κR ≈ κ

!
1+

61
4; 096

kBT
κ

ffiffiffi
γ

p
&
1−

1; 568
915π

p
pc

'$
: [9]

Fig. 1. Simulated thermally fluctuating shells. (A) Triangulated shell with
5,530 points separated by average nearest-neighbor distance r0 with Young’s
modulus Y = 577e=r20 and bending rigidity κ = 50e at temperature kBT = 20e,
where e is theenergy scale of the Lennard-Jones potential used to generate the
disordered mesh. (B) Same as in Awith external pressure p= 0:5pc, where pc is
the classical buckling pressure. The thermally excited shell has already buckled
under pressure to a shape with a much smaller enclosed volume than in A.
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How thermal fluctuations affect the mechanics of 
thin solid sheets, ribbons and spherical shells?

J. Paulose et al., PNAS 
109, 19551 (2012)
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What happens in 2D solid membranes in the 
presence of thermal fluctuations?
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Free energy cost of solid 
membrane deformations

strain tensor

Monge representation
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Correlation functions 7
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Renormalized elastic constants
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Normal-normal correlations and
height fluctuations
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Thermal length scale for various membranes 12
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14Membranes under uniform tension
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17Scaling of in-plane elastic properties
with the system size of graphene membranes

J.H. Los et al., PRL 116, 015901 (2016)

where sα ¼ Lα=Lα;0, with Lα;0ðα ¼ x; yÞ the ground state
dimensions, and where seq ¼ sðP ¼ 0Þ is the equilibrium
size obtained from the isotropic NPT simulations at P ¼ 0.
The subscript “P” in Eq. (9) indicates that Ly should be
taken equal to sy ¼ sðPÞ resulting from isotropic NPT
simulations at pressure P and that Px should be varied
around P. However, since we verified that the dependence of
∂Px=∂sx on sy is very weak we adopted the last approxi-
mation in Eq. (9), which is exact for P ¼ 0.
The results are shown in Fig. 2. The inset shows that the

previously found negative thermal expansion [15] is also
size dependent, but tending to a constant for large L0. On
the basis of Fig. 2(a), with the slope ∂P=∂s ¼ 2B=s
tending to a constant for large s, we propose the following
phenomenological relation for BðsÞ

BðsÞ ¼
s½Beq=seq þ CDðs − seqÞ&

1þDðs − seqÞ
; ð10Þ

where Beq is the equilibrium value at P ¼ 0. Substitution of
Eq. (10) into Eq. (8) and integration yields the equation of
state

PðsÞ ¼ −
2

D

!
Beq

seq
− C

"
ln ½1þDðs − seqÞ& − 2Cðs − seqÞ:

ð11Þ

Similarly, we write

C11ðsxÞ ¼
sx½C11;eq=seq þ ~C ~Dðsx − seqÞ&

1þ ~Dðsx − seqÞ
; ð12Þ

which substituted in Eq. (9) gives an equation for PxðsxÞ
similar to Eq. (11) but with s, Beq, C, and D replaced by sx,
C11;eq=2, ~C=2, and ~D. This form allows the excellent fits
shown in Fig. 2, providingBeq andC11;eq as a function ofL0.
In the left panels of Fig. 3 we show that both B and C11

vanish for large L0, decreasing as a power law ∼L−ηu, with
ηu ≃ 0.325 (insets). The right panels give the corresponding
results for Y and ν at P ¼ 0, calculated using Eqs. (6)
and (7). Note that, according to LCBOPII, the in-plane elastic
moduli of graphene at T ¼ 0 K are B ¼ 12.69 eV=Å2 and
μ ¼ 9.26 eV=Å2, yielding Y ¼ 21.41 eV=Å2 ¼ 343 N=m
and ν ¼ 0.156, in agreement with ab initio data [30] and with
the small size limit in Fig. 3 where Y ≃ 314 N=m and also
with the experimental phonon spectrum of graphite [31,32].
By simulations at 1 K for N ¼ 24 we verified that the
remaining difference is due to temperature.
Interestingly, the power law decrease of B, C11, and

Yeq as a function of L0 sets in from L0 ≃ 20 Å, a value
twice smaller than the Ginzburg critical value L' ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πκ2=ð3YkBTÞ

p ≃ 40 Å (using κ ≃ 1.1 eV [2])
expected from membrane theory [11]. The Poisson ratio
ν for small sizes is close to its bare value and increases up to
0.275 for larger L0, against the SCSA prediction ν ¼ −1=3.
Since the scaling of B and μ is consistent with the SCSA, it
is very unlikely that ν will reach the value −1=3 for
L0 → ∞, as the outcome of Eq. (7) only depends on the
prefactors. We remark that ν ¼ −1=3 in Eqs. (6) and (7)
leads to BR ¼ −λR and λR ¼ 2BR − C11, implying that λR
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18Temperature dependence of Young’s
modulus for graphene membranes

R.J.T. Nicholl et al., Nat. Comm. 6, 8789 (2015)

sphere. In the majority of measured devices we observe a linear
relationship between er and sr (Fig. 2a), allowing us to determine
the in-plane stiffness of graphene. It is given by E2D¼ (1–n)sr/er,
where nB0.165 is the Poisson ratio for graphene18. While in
realistic devices both strain and stress vary slightly throughout the
device, our finite element modelling (FEM) confirms that the
exact numerical solution for E2D does not deviate more than 10%
from the simple analytical estimate above (Supplementary Fig. 1).
This is within the uncertainty of extracting E2D from our data.
We also note that the obtained E2D agrees with the value
obtained by fitting P(h) data to the bulge-test equation
P ¼ 4s0h=a2þ 8E2Dh3=3ð1$ vÞa4 (Fig. 2a, Inset) commonly
used in thin film mechanics measurements17,19. In all 26
measured monolayer CVD graphene membranes (Fig. 2b), we

find E2D¼ 35±29 N m$ 1, consistent with previous work16. In a
few devices we observed pronounced non-linear dependence
of sr(er), with E2D¼ (1–n)dsr/der increasing from less than
10 N m$ 1 at low stress to 50 N m$ 1 at higher stress (Fig. 2c).

We performed numerous consistency checks to rule out
possible measurement artifacts. First, we observed no hysteresis
in P(h) data between loading and unloading cycles (Fig. 2a, inset).
This establishes that graphene is not slipping against the
substrate. Second, we observed similarly soft E2D for CVD
graphene (Fig. 2b; grain size B50 mm, bigger than the membrane
size) and exfoliated graphene (E2DB50–80 N m$ 1 in two
devices). This confirms that E2D in our experiments is not
affected by the grain boundaries in graphene, which is consistent
with conclusions from previous experiments15. Third, we cross-
checked our results against the measurements obtained via AFM
nanoindentation (Supplementary Fig. 3). In the regime of low
loading forces o300 nN, nanoindentation measurements on the
same devices yielded E2D consistent with optical profilometry
measurements. It is important to note that AFM nanoindentation
pushes graphene towards the substrate, while electrostatic loading
pulls graphene away from it. Similarity in E2D values obtained for
opposite loading directions confirms that interaction of graphene
with the sidewalls does not affect the measured E2D. Finally,
simple estimates show that the organic residues that may remain
on graphene after the fabrication process are unlikely to affect
E2D. A uniform residue layer with Young’s modulus of B2 GPa
(ref. 20) and thickness o5 nm is expected to be at least 100 times
softer compared with graphene.

Probing the effects of static and dynamic crumpling. In the
remaining part of the manuscript, we demonstrate that the
observed decrease in stiffness is due to the crumpled nature of
graphene. Indeed, static wrinkles with wavelength B50 nm and
average amplitude B1 nm are observed in our samples via AFM
(Fig. 1c, left/bottom). Somewhat larger micron-scale features are
seen in a minority of membranes, as shown in the SEM images
(Fig. 1c, right). Flexural phonons are invariably present in
graphene at room temperature. Signatures of such flexural
phonons have been observed in transmission electron microscopy
imaging of graphene21. Similarly, uncontrolled stress and hence
static wrinkling is always present in experimentally available
free-standing graphene specimens22. To understand intuitively
how crumpling due to flexural phonons or wrinkles can affect
mechanics of graphene, one only has to consider a simple
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in-plane stiffness E2D is extracted from the slope of linear fit to these data
(black line). Inset: Raw centre-point deflection, h, versus pressure, P, data
used for calculation of stress and strain (red: loading cycle, blue: unloading
cycle) along with a fit to the bulge-test equation (black line). (b) Histogram
of E2D for all measured CVD graphene devices. (c) A non-linear stress-
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eye. (d) A cartoon view of a crumpled membrane.
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sphere. In the majority of measured devices we observe a linear
relationship between er and sr (Fig. 2a), allowing us to determine
the in-plane stiffness of graphene. It is given by E2D¼ (1–n)sr/er,
where nB0.165 is the Poisson ratio for graphene18. While in
realistic devices both strain and stress vary slightly throughout the
device, our finite element modelling (FEM) confirms that the
exact numerical solution for E2D does not deviate more than 10%
from the simple analytical estimate above (Supplementary Fig. 1).
This is within the uncertainty of extracting E2D from our data.
We also note that the obtained E2D agrees with the value
obtained by fitting P(h) data to the bulge-test equation
P ¼ 4s0h=a2þ 8E2Dh3=3ð1$ vÞa4 (Fig. 2a, Inset) commonly
used in thin film mechanics measurements17,19. In all 26
measured monolayer CVD graphene membranes (Fig. 2b), we

find E2D¼ 35±29 N m$ 1, consistent with previous work16. In a
few devices we observed pronounced non-linear dependence
of sr(er), with E2D¼ (1–n)dsr/der increasing from less than
10 N m$ 1 at low stress to 50 N m$ 1 at higher stress (Fig. 2c).

We performed numerous consistency checks to rule out
possible measurement artifacts. First, we observed no hysteresis
in P(h) data between loading and unloading cycles (Fig. 2a, inset).
This establishes that graphene is not slipping against the
substrate. Second, we observed similarly soft E2D for CVD
graphene (Fig. 2b; grain size B50 mm, bigger than the membrane
size) and exfoliated graphene (E2DB50–80 N m$ 1 in two
devices). This confirms that E2D in our experiments is not
affected by the grain boundaries in graphene, which is consistent
with conclusions from previous experiments15. Third, we cross-
checked our results against the measurements obtained via AFM
nanoindentation (Supplementary Fig. 3). In the regime of low
loading forces o300 nN, nanoindentation measurements on the
same devices yielded E2D consistent with optical profilometry
measurements. It is important to note that AFM nanoindentation
pushes graphene towards the substrate, while electrostatic loading
pulls graphene away from it. Similarity in E2D values obtained for
opposite loading directions confirms that interaction of graphene
with the sidewalls does not affect the measured E2D. Finally,
simple estimates show that the organic residues that may remain
on graphene after the fabrication process are unlikely to affect
E2D. A uniform residue layer with Young’s modulus of B2 GPa
(ref. 20) and thickness o5 nm is expected to be at least 100 times
softer compared with graphene.

Probing the effects of static and dynamic crumpling. In the
remaining part of the manuscript, we demonstrate that the
observed decrease in stiffness is due to the crumpled nature of
graphene. Indeed, static wrinkles with wavelength B50 nm and
average amplitude B1 nm are observed in our samples via AFM
(Fig. 1c, left/bottom). Somewhat larger micron-scale features are
seen in a minority of membranes, as shown in the SEM images
(Fig. 1c, right). Flexural phonons are invariably present in
graphene at room temperature. Signatures of such flexural
phonons have been observed in transmission electron microscopy
imaging of graphene21. Similarly, uncontrolled stress and hence
static wrinkling is always present in experimentally available
free-standing graphene specimens22. To understand intuitively
how crumpling due to flexural phonons or wrinkles can affect
mechanics of graphene, one only has to consider a simple
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(black line). Inset: Raw centre-point deflection, h, versus pressure, P, data
used for calculation of stress and strain (red: loading cycle, blue: unloading
cycle) along with a fit to the bulge-test equation (black line). (b) Histogram
of E2D for all measured CVD graphene devices. (c) A non-linear stress-
strain curve seen in a minority of devices. The dashed line is a guide to the
eye. (d) A cartoon view of a crumpled membrane.
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analogy—a sheet of paper. When flat, such a sheet is very stiff.
However, once the same sheet is crumpled, it becomes very easy
to stretch. The reason for this behaviour is that stretching of a
crumpled sheet mostly flattens and bends it. In contrast,
stretching of a flat sheet strains it locally. In a thin sheet of
paper, similar to graphene, the energy cost of straining is much
greater than that of bending. While this simple reasoning is very
crude, it makes it obvious that crumpling of a membrane should
lead to its softening. Furthermore, the increase of in-plane
stiffness with strain seen in some devices (Fig. 2c) is also a
behaviour expected for a crumpled membrane since the applied
stress is expected to gradually flatten the membrane and suppress
crumpling (this is further confirmed via FEM, see Supplementary
Fig. 2).

Next, we explore the relative contribution of static wrinkles
and flexural phonons to the observed softening of the effective
in-plane stiffness. To study the effect of flexural phonons, we
examined changes of graphene’s E2D with temperature. Since the
amplitude of flexural phonons causing crumpling scales with
temperature T as kBT (kB is the Boltzmann constant), we would
expect strong stiffening of graphene at low temperature if this
were the dominant effect. We measured two different devices
in the range of temperatures between 400 and 10 K (Fig. 3).
While we observed moderate stiffening of graphene from
E2DB20 N m! 1 at 300 K to E2DB85 N m! 1 at 10 K, all of the
measured devices are much softer compared with 340 N m! 1

throughout the range of temperatures. This suggests that the
contribution due to flexural phonons does not dominate the
mechanics of graphene at room temperature.

To isolate the contribution due to static wrinkles, we analysed
changes in E2D of patterned graphene membranes. In general,
there is a concentration of stress along the wrinkles in a crumpled
sheet23. The stress can be relieved by cutting the membrane
across such wrinkles. The reduction in stress, in turn, leads to a
decrease in wrinkle amplitudes. In particular, for very narrow
ribbons we expect fully suppressed wrinkles. This behaviour is
also seen in our molecular dynamics simulations (Supplementary
Fig. 6). We also considered possible changes in induced strain due
to chemical modification of graphene’s edges and found it to be
negligible for the ribbon sizes used in our study. Experimentally,
our suspended graphene devices were cut using focused ion beam
(FIB) lithography. The FIB beam was rastered to carve
sequentially thinner ribbons out of the same circular graphene
membrane. The initial circular membrane with diameter 12.5 mm

was first cut into a ribbon with width of w¼ 5 mm. The width of
this ribbon was then reduced to w¼ 2.7 mm (Fig. 4a, bottom).
Using SEM, we confirmed that the process of cutting reorients
wrinkles along the cut direction and suppresses their amplitude
(Supplementary Fig. 4), this behaviour is also seen in molecular
dynamics (Supplementary Fig. 6). We extracted the effective
mechanical constants of such devices by measuring their deflection
versus applied electrostatic force, similar to the analysis above.
For near-rectangular ribbons, uniaxial stress, uniaxial strain
and in-plane stiffness were computed from known pressure P
and centre-point deflection h as: s¼ Pa2/2h, e¼ 2h2/3a2 and
E2D¼s/e (ref. 24). We observed that the devices stiffen with each
subsequent cut (Fig. 4a). The in-plane stiffness increased from
E2D¼ 36 N m! 1 for initial circular membrane to 138 N m! 1 for
5 mm wide ribbon, and to 300 N m! 1 for 2.7 mm wide ribbon. The
in-plane stiffness of flat graphene, 340 N m! 1, is within the
uncertainty of the last value. We also explored an alternative
approach to relieve crumpling of graphene by puncturing a series
of B100 nm diameter holes near the edge of the membrane using
FIB lithography. Similarly, we observe a significant increase in the
measured in-plane stiffness after perforations (Fig. 4b). Overall,
we see that once crumpling associated with static wrinkles is
relieved, the stiffness of graphene increases to almost 340 N m! 1.
This suggests that static wrinkles have the dominant contribution
to softening of the effective in-plane stiffness of circular graphene
membranes.

Normally, the presence of defects lowers the mechanical
stiffness of any material, including graphene25. However, recently
it has been reported that vacancy type defects at sufficient density
can lead to mechanical stiffening of graphene26. To confirm that
the stiffening seen in Fig. 4 stems from changes in device’s
geometry rather than from the induction of defects in graphene
that can occur during FIB cutting, we performed an additional
test. To accomplish this, we induced defects in suspended
graphene membranes similar to the ones used elsewhere in the
manuscript using irradiation with controlled dosage inside an FIB
setup (see Supplementary Fig. 7 for details). We then took 14
devices through several successive steps of irradiation gradually
increasing the defect concentration (see Supplementary Fig. 7 for
details) from 0 to B5# 1013 cm! 2, comparable to that of ref. 26.
The mechanical response of each device at each defect density
was determined at room temperature using the techniques
described earlier in the paper. Figure 5 summarizes our data by
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analogy—a sheet of paper. When flat, such a sheet is very stiff.
However, once the same sheet is crumpled, it becomes very easy
to stretch. The reason for this behaviour is that stretching of a
crumpled sheet mostly flattens and bends it. In contrast,
stretching of a flat sheet strains it locally. In a thin sheet of
paper, similar to graphene, the energy cost of straining is much
greater than that of bending. While this simple reasoning is very
crude, it makes it obvious that crumpling of a membrane should
lead to its softening. Furthermore, the increase of in-plane
stiffness with strain seen in some devices (Fig. 2c) is also a
behaviour expected for a crumpled membrane since the applied
stress is expected to gradually flatten the membrane and suppress
crumpling (this is further confirmed via FEM, see Supplementary
Fig. 2).

Next, we explore the relative contribution of static wrinkles
and flexural phonons to the observed softening of the effective
in-plane stiffness. To study the effect of flexural phonons, we
examined changes of graphene’s E2D with temperature. Since the
amplitude of flexural phonons causing crumpling scales with
temperature T as kBT (kB is the Boltzmann constant), we would
expect strong stiffening of graphene at low temperature if this
were the dominant effect. We measured two different devices
in the range of temperatures between 400 and 10 K (Fig. 3).
While we observed moderate stiffening of graphene from
E2DB20 N m! 1 at 300 K to E2DB85 N m! 1 at 10 K, all of the
measured devices are much softer compared with 340 N m! 1

throughout the range of temperatures. This suggests that the
contribution due to flexural phonons does not dominate the
mechanics of graphene at room temperature.

To isolate the contribution due to static wrinkles, we analysed
changes in E2D of patterned graphene membranes. In general,
there is a concentration of stress along the wrinkles in a crumpled
sheet23. The stress can be relieved by cutting the membrane
across such wrinkles. The reduction in stress, in turn, leads to a
decrease in wrinkle amplitudes. In particular, for very narrow
ribbons we expect fully suppressed wrinkles. This behaviour is
also seen in our molecular dynamics simulations (Supplementary
Fig. 6). We also considered possible changes in induced strain due
to chemical modification of graphene’s edges and found it to be
negligible for the ribbon sizes used in our study. Experimentally,
our suspended graphene devices were cut using focused ion beam
(FIB) lithography. The FIB beam was rastered to carve
sequentially thinner ribbons out of the same circular graphene
membrane. The initial circular membrane with diameter 12.5 mm

was first cut into a ribbon with width of w¼ 5 mm. The width of
this ribbon was then reduced to w¼ 2.7 mm (Fig. 4a, bottom).
Using SEM, we confirmed that the process of cutting reorients
wrinkles along the cut direction and suppresses their amplitude
(Supplementary Fig. 4), this behaviour is also seen in molecular
dynamics (Supplementary Fig. 6). We extracted the effective
mechanical constants of such devices by measuring their deflection
versus applied electrostatic force, similar to the analysis above.
For near-rectangular ribbons, uniaxial stress, uniaxial strain
and in-plane stiffness were computed from known pressure P
and centre-point deflection h as: s¼ Pa2/2h, e¼ 2h2/3a2 and
E2D¼s/e (ref. 24). We observed that the devices stiffen with each
subsequent cut (Fig. 4a). The in-plane stiffness increased from
E2D¼ 36 N m! 1 for initial circular membrane to 138 N m! 1 for
5 mm wide ribbon, and to 300 N m! 1 for 2.7 mm wide ribbon. The
in-plane stiffness of flat graphene, 340 N m! 1, is within the
uncertainty of the last value. We also explored an alternative
approach to relieve crumpling of graphene by puncturing a series
of B100 nm diameter holes near the edge of the membrane using
FIB lithography. Similarly, we observe a significant increase in the
measured in-plane stiffness after perforations (Fig. 4b). Overall,
we see that once crumpling associated with static wrinkles is
relieved, the stiffness of graphene increases to almost 340 N m! 1.
This suggests that static wrinkles have the dominant contribution
to softening of the effective in-plane stiffness of circular graphene
membranes.

Normally, the presence of defects lowers the mechanical
stiffness of any material, including graphene25. However, recently
it has been reported that vacancy type defects at sufficient density
can lead to mechanical stiffening of graphene26. To confirm that
the stiffening seen in Fig. 4 stems from changes in device’s
geometry rather than from the induction of defects in graphene
that can occur during FIB cutting, we performed an additional
test. To accomplish this, we induced defects in suspended
graphene membranes similar to the ones used elsewhere in the
manuscript using irradiation with controlled dosage inside an FIB
setup (see Supplementary Fig. 7 for details). We then took 14
devices through several successive steps of irradiation gradually
increasing the defect concentration (see Supplementary Fig. 7 for
details) from 0 to B5# 1013 cm! 2, comparable to that of ref. 26.
The mechanical response of each device at each defect density
was determined at room temperature using the techniques
described earlier in the paper. Figure 5 summarizes our data by

400

400

200

200
Temperature (K)

0

E
2D

 (
N

 m
–1

)

E2D =340 N m–1

Fit !0=0.02 N m–1

17.5 µm device

13.7 µm device

0

Figure 3 | Temperature-dependent stiffness of graphene. The in-plane
stiffness E2D measured for two circular membranes (diameters 17.5 and
13.7mm) as a function of temperature. The dotted line is fit to an analytical
model discussed in Supplementary Fig. 5. The dashed line shows the
stiffness of a flat graphene, E2D¼ 340 N m! 1. The error bars are obtained
by estimating the standard deviation of E2D measurements.

0.3

a b 0.6

0.4

0.2

0

E2D=300±50 N m–1 E2D=129±35 N m–1

E2D=138±9 N m–1

E2D=36±6 N m–1

E2D=22±15 N m–1

0.2

0.1

0

gr gr

0 0

! 
(N

 m
–1

)

! 
(N

 m
–1

)

0.05 0.25 0.50
" (%) " (%)

0.10

Figure 4 | Probing changes of stiffness in devices with varying geometry.
(a) Stress (s) versus strain (e) curves for a single graphene device as its
aspect ratio is changed via FIB lithography. SEM images of the device at
each step of cutting are shown in bottom panels (cut directions are white
dashed lines). (b) Stress-strain curves for another device as it is perforated
near the edge of the membrane. SEM image of the device before and after
perforations is shown in bottom panels. Scale bar, 5 mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9789

4 NATURE COMMUNICATIONS | 6:8789 | DOI: 10.1038/ncomms9789 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

Y
e↵
(N

/m
)

Ye↵ ⇠ Y

✓
`th
R

◆⌘u

/ T�⌘u/2



Bending experiments with
graphene membranes at room temperature

19

xg 

L
W

hg

xth 
hth

kBT = khh2
thi

10µm

M. K. Blees et al., Nature 524, 204 (2015)

mg = khg

k =
3RW

L3



We move the graphene along the surface or peel it up entirely by
pushing a sharp probe tip into the gold pads or against the graphene
itself (Fig. 1b–d and Supplementary Video 1). The graphene’s elastic
behaviour is reminiscent of that of thin paper: it folds and crumples out
of plane, but does not notably stretch in plane (Fig. 1b). The process is
almost entirely reversible in the presence of surfactants, even after
considerable crumpling of the graphene.
Themechanical properties relevant for kirigami are captured by the

Föppl–von Kármán number7,8 for a square sheet of side length L and
thickness t: c5Y2DL

2/k< (L/t)2, that is, the ratio between the two-
dimensional Young’s modulus Y2D and the out-of-plane bending stiff-
ness k, multiplied by the length squared. To determine c, we measure
k by using the photon pressure from an infrared laser to apply a known
force to a pad attached to a graphene cantilever and measuring the
resulting displacement (Fig. 2a).We alsomeasure thermal fluctuations
of cantilevers to determine their spring constants (Fig. 2b and
Extended Data Fig. 4), which, according to the equipartition theorem,
are k~kBT=hx2thi, where T is temperature, kB is Boltzmann’s constant,
and hx2thi is the time-averaged square of the cantilever thermal fluc-
tuation amplitude. Although the presence of water (the aqueous solu-
tion in which the device is immersed) slows down the fluctuations, it
does not change the spring constant15,16. Cantilevers with lengths of
8–80 mm and widths of 2–15mm have spring constants of 1025–
1028 Nm21. These are astonishingly soft springs, as many as eight
orders of magnitude softer than a typical atomic force microscope
cantilever. The bending stiffness k is inferred from the measured
spring constant using k5 3kW/L3, where W and L are the width

and length of the cantilevers, respectively. The values obtained from
these thermalmeasurements and the lasermeasurements are shown in
Fig. 2c, and are seen to be orders ofmagnitude higher thank05 1.2 eV,
which is the value that is predicted from the microscopic bending
stiffness of graphene (known from simulations17 and measurements
of the phonon modes in graphite18).
Both thermal fluctuations and static ripples are predicted to notably

stiffen ultrathin crystalline membranes9–13,19,20 by effectively thick-
ening themembrane, similar to how a crumpled sheet of paper ismore
rigid than a flat one. For static ripples, the effective bending stiffness is
predicted to be9 kef f=k0<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2Dhz2ef f i=k0

p
, where hz2ef f i is the space-

averaged square of the effective amplitude of the static ripples and
Y2D5 340Nm21 is the two-dimensional Young’s modulus3. For an
initially flat membrane with thermal fluctuations, the stiffness is pre-
dicted to be keff <k0(W/lc)

g , where lc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p3k20= 3Y2DkBTð Þ

p
is the

Ginzburg length19, and g is a scaling exponent.
We look for static ripples in graphene cantilevers using interference

microscopy21 (inset of Fig. 2c). The black bands in such images are
regions of constant elevation, with the spacing between black and
white bands corresponding to changes in z of l/4< 100 nm (where
l is the wavelength, corrected for the refractive index of water).With a
typical hz2eff i value from these measurements of about (100nm)2, we
obtain an effective bending stiffness of keff=k0 < 4; 000.
Static ripples are present only after releasing graphene from the

surface (Extended Data Fig. 2), and likely to be sample specific and
influenced by growth, fabrication details, and so on. Developing
growth and fabrication protocols that can change the amplitude of
the static ripples or eliminate them altogether is of great interest.
Other groups have observed ripples in suspended (strained) graphene
membranes5,22, although they occur at a much smaller scale and their
origin remains a subject of debate. Moreover, the thermal theory
outlined above predicts a bending stiffness at room temperature due
to thermal fluctuations of keff=k0 < 1; 000 for an initially flat mem-
brane. These contradictory findings call for future experiments to
firmly establish the relative contribution to bending stiffness of
thermal fluctuations and static ripples23. But irrespective of cause,
the high bending stiffness notably changes the effective c value,
ceff5YeffL

2/keff. With the predicted renormalization9,11 of Yeff, we
find that ceff is of the order of 105–107 for a sheet of graphene
10 mm3 10mm in size, close to that of a standard sheet of paper.
The mechanical similarity between graphene and paper makes it

easy to translate ideas and intuition directly from paper models to
graphene devices. For example, the highly stretchable graphene tran-
sistors in Fig. 3b, c and Supplementary Video 2 are based on a simple
kirigami pattern of alternating, offset cuts and are created using photo-
lithography.Here, the elasticity of the kirigami spring is determined by
the pattern of cuts and the bending stiffness (rather than the Young’s
modulus) of the graphene. As the reconstruction of the three-dimen-
sional shape of a stretched and lifted device in Fig. 3e shows, the
graphene strips pop up and bend out of plane as the spring is stretched.
We measure the electrical response of these stretchable transistors

by gating them with an approximately 10mM KCl solution24

(see Methods for details). Figure 3d plots the liquid-gate dependence
of the conductance at a source–drain bias of 100mV for a device in its
initial unstretched state (blue) and when stretched by 240% (orange).
The normalized change in conductancewith gate voltage per graphene
square is 0.7mSV21 and the resistance per graphene square at the
Dirac point is 12 kV, comparable to what has been reported for elec-
trolyte-gated graphene transistors24. Because the graphene lattice itself
is not much strained when the kirigami spring is extended, we do not
expect or observe a notable change in the conductance curves between
the unstretched and stretched states, which is highly desirable for
stretchable electronics25. Furthermore, stretching and unstretching a
similar device more than 1,000 times did not substantially change its
electrical properties.
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Figure 2 | Measuring the bending stiffness of monolayer graphene.
a, Applying controlled forces to a gold pad using an infrared laser. The grey
triangle represents the probe tip that holds the device up off the surface; the red
triangle represents the focused laser beam. The cantilever displacement gives
the spring constant. b, Tracking the motion of a rotated device under thermal
fluctuations provides an independent measurement of the spring constant
(Extended Data Fig. 3). c, Stacked histogram of bending stiffness, and
interference micrographs of devices whose aluminium release layer has been
etched away, showing the structure of static ripples (inset). The spring constant
relates to the bending stiffness as k5 3kW/L3. The red arrow points to the
microscopic bending stiffness, k05 1.2 eV. Scale bars are 10mm. Interference
images were averaged over 180 frames at 90 frames per second.
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Bending by 
laser pressure

We move the graphene along the surface or peel it up entirely by
pushing a sharp probe tip into the gold pads or against the graphene
itself (Fig. 1b–d and Supplementary Video 1). The graphene’s elastic
behaviour is reminiscent of that of thin paper: it folds and crumples out
of plane, but does not notably stretch in plane (Fig. 1b). The process is
almost entirely reversible in the presence of surfactants, even after
considerable crumpling of the graphene.
Themechanical properties relevant for kirigami are captured by the

Föppl–von Kármán number7,8 for a square sheet of side length L and
thickness t: c5Y2DL

2/k< (L/t)2, that is, the ratio between the two-
dimensional Young’s modulus Y2D and the out-of-plane bending stiff-
ness k, multiplied by the length squared. To determine c, we measure
k by using the photon pressure from an infrared laser to apply a known
force to a pad attached to a graphene cantilever and measuring the
resulting displacement (Fig. 2a).We alsomeasure thermal fluctuations
of cantilevers to determine their spring constants (Fig. 2b and
Extended Data Fig. 4), which, according to the equipartition theorem,
are k~kBT=hx2thi, where T is temperature, kB is Boltzmann’s constant,
and hx2thi is the time-averaged square of the cantilever thermal fluc-
tuation amplitude. Although the presence of water (the aqueous solu-
tion in which the device is immersed) slows down the fluctuations, it
does not change the spring constant15,16. Cantilevers with lengths of
8–80 mm and widths of 2–15mm have spring constants of 1025–
1028 Nm21. These are astonishingly soft springs, as many as eight
orders of magnitude softer than a typical atomic force microscope
cantilever. The bending stiffness k is inferred from the measured
spring constant using k5 3kW/L3, where W and L are the width

and length of the cantilevers, respectively. The values obtained from
these thermalmeasurements and the lasermeasurements are shown in
Fig. 2c, and are seen to be orders ofmagnitude higher thank05 1.2 eV,
which is the value that is predicted from the microscopic bending
stiffness of graphene (known from simulations17 and measurements
of the phonon modes in graphite18).
Both thermal fluctuations and static ripples are predicted to notably

stiffen ultrathin crystalline membranes9–13,19,20 by effectively thick-
ening themembrane, similar to how a crumpled sheet of paper ismore
rigid than a flat one. For static ripples, the effective bending stiffness is
predicted to be9 kef f=k0<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2Dhz2ef f i=k0

p
, where hz2ef f i is the space-

averaged square of the effective amplitude of the static ripples and
Y2D5 340Nm21 is the two-dimensional Young’s modulus3. For an
initially flat membrane with thermal fluctuations, the stiffness is pre-
dicted to be keff <k0(W/lc)

g , where lc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p3k20= 3Y2DkBTð Þ

p
is the

Ginzburg length19, and g is a scaling exponent.
We look for static ripples in graphene cantilevers using interference

microscopy21 (inset of Fig. 2c). The black bands in such images are
regions of constant elevation, with the spacing between black and
white bands corresponding to changes in z of l/4< 100 nm (where
l is the wavelength, corrected for the refractive index of water).With a
typical hz2eff i value from these measurements of about (100nm)2, we
obtain an effective bending stiffness of keff=k0 < 4; 000.
Static ripples are present only after releasing graphene from the

surface (Extended Data Fig. 2), and likely to be sample specific and
influenced by growth, fabrication details, and so on. Developing
growth and fabrication protocols that can change the amplitude of
the static ripples or eliminate them altogether is of great interest.
Other groups have observed ripples in suspended (strained) graphene
membranes5,22, although they occur at a much smaller scale and their
origin remains a subject of debate. Moreover, the thermal theory
outlined above predicts a bending stiffness at room temperature due
to thermal fluctuations of keff=k0 < 1; 000 for an initially flat mem-
brane. These contradictory findings call for future experiments to
firmly establish the relative contribution to bending stiffness of
thermal fluctuations and static ripples23. But irrespective of cause,
the high bending stiffness notably changes the effective c value,
ceff5YeffL

2/keff. With the predicted renormalization9,11 of Yeff, we
find that ceff is of the order of 105–107 for a sheet of graphene
10 mm3 10mm in size, close to that of a standard sheet of paper.
The mechanical similarity between graphene and paper makes it

easy to translate ideas and intuition directly from paper models to
graphene devices. For example, the highly stretchable graphene tran-
sistors in Fig. 3b, c and Supplementary Video 2 are based on a simple
kirigami pattern of alternating, offset cuts and are created using photo-
lithography.Here, the elasticity of the kirigami spring is determined by
the pattern of cuts and the bending stiffness (rather than the Young’s
modulus) of the graphene. As the reconstruction of the three-dimen-
sional shape of a stretched and lifted device in Fig. 3e shows, the
graphene strips pop up and bend out of plane as the spring is stretched.
We measure the electrical response of these stretchable transistors

by gating them with an approximately 10mM KCl solution24

(see Methods for details). Figure 3d plots the liquid-gate dependence
of the conductance at a source–drain bias of 100mV for a device in its
initial unstretched state (blue) and when stretched by 240% (orange).
The normalized change in conductancewith gate voltage per graphene
square is 0.7mSV21 and the resistance per graphene square at the
Dirac point is 12 kV, comparable to what has been reported for elec-
trolyte-gated graphene transistors24. Because the graphene lattice itself
is not much strained when the kirigami spring is extended, we do not
expect or observe a notable change in the conductance curves between
the unstretched and stretched states, which is highly desirable for
stretchable electronics25. Furthermore, stretching and unstretching a
similar device more than 1,000 times did not substantially change its
electrical properties.

b Thermal methoda Laser pressure method
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Figure 2 | Measuring the bending stiffness of monolayer graphene.
a, Applying controlled forces to a gold pad using an infrared laser. The grey
triangle represents the probe tip that holds the device up off the surface; the red
triangle represents the focused laser beam. The cantilever displacement gives
the spring constant. b, Tracking the motion of a rotated device under thermal
fluctuations provides an independent measurement of the spring constant
(Extended Data Fig. 3). c, Stacked histogram of bending stiffness, and
interference micrographs of devices whose aluminium release layer has been
etched away, showing the structure of static ripples (inset). The spring constant
relates to the bending stiffness as k5 3kW/L3. The red arrow points to the
microscopic bending stiffness, k05 1.2 eV. Scale bars are 10mm. Interference
images were averaged over 180 frames at 90 frames per second.
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We move the graphene along the surface or peel it up entirely by
pushing a sharp probe tip into the gold pads or against the graphene
itself (Fig. 1b–d and Supplementary Video 1). The graphene’s elastic
behaviour is reminiscent of that of thin paper: it folds and crumples out
of plane, but does not notably stretch in plane (Fig. 1b). The process is
almost entirely reversible in the presence of surfactants, even after
considerable crumpling of the graphene.
Themechanical properties relevant for kirigami are captured by the

Föppl–von Kármán number7,8 for a square sheet of side length L and
thickness t: c5Y2DL

2/k< (L/t)2, that is, the ratio between the two-
dimensional Young’s modulus Y2D and the out-of-plane bending stiff-
ness k, multiplied by the length squared. To determine c, we measure
k by using the photon pressure from an infrared laser to apply a known
force to a pad attached to a graphene cantilever and measuring the
resulting displacement (Fig. 2a).We alsomeasure thermal fluctuations
of cantilevers to determine their spring constants (Fig. 2b and
Extended Data Fig. 4), which, according to the equipartition theorem,
are k~kBT=hx2thi, where T is temperature, kB is Boltzmann’s constant,
and hx2thi is the time-averaged square of the cantilever thermal fluc-
tuation amplitude. Although the presence of water (the aqueous solu-
tion in which the device is immersed) slows down the fluctuations, it
does not change the spring constant15,16. Cantilevers with lengths of
8–80 mm and widths of 2–15mm have spring constants of 1025–
1028 Nm21. These are astonishingly soft springs, as many as eight
orders of magnitude softer than a typical atomic force microscope
cantilever. The bending stiffness k is inferred from the measured
spring constant using k5 3kW/L3, where W and L are the width

and length of the cantilevers, respectively. The values obtained from
these thermalmeasurements and the lasermeasurements are shown in
Fig. 2c, and are seen to be orders ofmagnitude higher thank05 1.2 eV,
which is the value that is predicted from the microscopic bending
stiffness of graphene (known from simulations17 and measurements
of the phonon modes in graphite18).
Both thermal fluctuations and static ripples are predicted to notably

stiffen ultrathin crystalline membranes9–13,19,20 by effectively thick-
ening themembrane, similar to how a crumpled sheet of paper ismore
rigid than a flat one. For static ripples, the effective bending stiffness is
predicted to be9 kef f=k0<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2Dhz2ef f i=k0

p
, where hz2ef f i is the space-

averaged square of the effective amplitude of the static ripples and
Y2D5 340Nm21 is the two-dimensional Young’s modulus3. For an
initially flat membrane with thermal fluctuations, the stiffness is pre-
dicted to be keff <k0(W/lc)

g , where lc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p3k20= 3Y2DkBTð Þ

p
is the

Ginzburg length19, and g is a scaling exponent.
We look for static ripples in graphene cantilevers using interference

microscopy21 (inset of Fig. 2c). The black bands in such images are
regions of constant elevation, with the spacing between black and
white bands corresponding to changes in z of l/4< 100 nm (where
l is the wavelength, corrected for the refractive index of water).With a
typical hz2eff i value from these measurements of about (100nm)2, we
obtain an effective bending stiffness of keff=k0 < 4; 000.
Static ripples are present only after releasing graphene from the

surface (Extended Data Fig. 2), and likely to be sample specific and
influenced by growth, fabrication details, and so on. Developing
growth and fabrication protocols that can change the amplitude of
the static ripples or eliminate them altogether is of great interest.
Other groups have observed ripples in suspended (strained) graphene
membranes5,22, although they occur at a much smaller scale and their
origin remains a subject of debate. Moreover, the thermal theory
outlined above predicts a bending stiffness at room temperature due
to thermal fluctuations of keff=k0 < 1; 000 for an initially flat mem-
brane. These contradictory findings call for future experiments to
firmly establish the relative contribution to bending stiffness of
thermal fluctuations and static ripples23. But irrespective of cause,
the high bending stiffness notably changes the effective c value,
ceff5YeffL

2/keff. With the predicted renormalization9,11 of Yeff, we
find that ceff is of the order of 105–107 for a sheet of graphene
10 mm3 10mm in size, close to that of a standard sheet of paper.
The mechanical similarity between graphene and paper makes it

easy to translate ideas and intuition directly from paper models to
graphene devices. For example, the highly stretchable graphene tran-
sistors in Fig. 3b, c and Supplementary Video 2 are based on a simple
kirigami pattern of alternating, offset cuts and are created using photo-
lithography.Here, the elasticity of the kirigami spring is determined by
the pattern of cuts and the bending stiffness (rather than the Young’s
modulus) of the graphene. As the reconstruction of the three-dimen-
sional shape of a stretched and lifted device in Fig. 3e shows, the
graphene strips pop up and bend out of plane as the spring is stretched.
We measure the electrical response of these stretchable transistors

by gating them with an approximately 10mM KCl solution24

(see Methods for details). Figure 3d plots the liquid-gate dependence
of the conductance at a source–drain bias of 100mV for a device in its
initial unstretched state (blue) and when stretched by 240% (orange).
The normalized change in conductancewith gate voltage per graphene
square is 0.7mSV21 and the resistance per graphene square at the
Dirac point is 12 kV, comparable to what has been reported for elec-
trolyte-gated graphene transistors24. Because the graphene lattice itself
is not much strained when the kirigami spring is extended, we do not
expect or observe a notable change in the conductance curves between
the unstretched and stretched states, which is highly desirable for
stretchable electronics25. Furthermore, stretching and unstretching a
similar device more than 1,000 times did not substantially change its
electrical properties.

b Thermal methoda Laser pressure method
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Figure 2 | Measuring the bending stiffness of monolayer graphene.
a, Applying controlled forces to a gold pad using an infrared laser. The grey
triangle represents the probe tip that holds the device up off the surface; the red
triangle represents the focused laser beam. The cantilever displacement gives
the spring constant. b, Tracking the motion of a rotated device under thermal
fluctuations provides an independent measurement of the spring constant
(Extended Data Fig. 3). c, Stacked histogram of bending stiffness, and
interference micrographs of devices whose aluminium release layer has been
etched away, showing the structure of static ripples (inset). The spring constant
relates to the bending stiffness as k5 3kW/L3. The red arrow points to the
microscopic bending stiffness, k05 1.2 eV. Scale bars are 10mm. Interference
images were averaged over 180 frames at 90 frames per second.
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Bending by 
laser pressure

We move the graphene along the surface or peel it up entirely by
pushing a sharp probe tip into the gold pads or against the graphene
itself (Fig. 1b–d and Supplementary Video 1). The graphene’s elastic
behaviour is reminiscent of that of thin paper: it folds and crumples out
of plane, but does not notably stretch in plane (Fig. 1b). The process is
almost entirely reversible in the presence of surfactants, even after
considerable crumpling of the graphene.
Themechanical properties relevant for kirigami are captured by the

Föppl–von Kármán number7,8 for a square sheet of side length L and
thickness t: c5Y2DL

2/k< (L/t)2, that is, the ratio between the two-
dimensional Young’s modulus Y2D and the out-of-plane bending stiff-
ness k, multiplied by the length squared. To determine c, we measure
k by using the photon pressure from an infrared laser to apply a known
force to a pad attached to a graphene cantilever and measuring the
resulting displacement (Fig. 2a).We alsomeasure thermal fluctuations
of cantilevers to determine their spring constants (Fig. 2b and
Extended Data Fig. 4), which, according to the equipartition theorem,
are k~kBT=hx2thi, where T is temperature, kB is Boltzmann’s constant,
and hx2thi is the time-averaged square of the cantilever thermal fluc-
tuation amplitude. Although the presence of water (the aqueous solu-
tion in which the device is immersed) slows down the fluctuations, it
does not change the spring constant15,16. Cantilevers with lengths of
8–80 mm and widths of 2–15mm have spring constants of 1025–
1028 Nm21. These are astonishingly soft springs, as many as eight
orders of magnitude softer than a typical atomic force microscope
cantilever. The bending stiffness k is inferred from the measured
spring constant using k5 3kW/L3, where W and L are the width

and length of the cantilevers, respectively. The values obtained from
these thermalmeasurements and the lasermeasurements are shown in
Fig. 2c, and are seen to be orders ofmagnitude higher thank05 1.2 eV,
which is the value that is predicted from the microscopic bending
stiffness of graphene (known from simulations17 and measurements
of the phonon modes in graphite18).
Both thermal fluctuations and static ripples are predicted to notably

stiffen ultrathin crystalline membranes9–13,19,20 by effectively thick-
ening themembrane, similar to how a crumpled sheet of paper ismore
rigid than a flat one. For static ripples, the effective bending stiffness is
predicted to be9 kef f=k0<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2Dhz2ef f i=k0

p
, where hz2ef f i is the space-

averaged square of the effective amplitude of the static ripples and
Y2D5 340Nm21 is the two-dimensional Young’s modulus3. For an
initially flat membrane with thermal fluctuations, the stiffness is pre-
dicted to be keff <k0(W/lc)

g , where lc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p3k20= 3Y2DkBTð Þ

p
is the

Ginzburg length19, and g is a scaling exponent.
We look for static ripples in graphene cantilevers using interference

microscopy21 (inset of Fig. 2c). The black bands in such images are
regions of constant elevation, with the spacing between black and
white bands corresponding to changes in z of l/4< 100 nm (where
l is the wavelength, corrected for the refractive index of water).With a
typical hz2eff i value from these measurements of about (100nm)2, we
obtain an effective bending stiffness of keff=k0 < 4; 000.
Static ripples are present only after releasing graphene from the

surface (Extended Data Fig. 2), and likely to be sample specific and
influenced by growth, fabrication details, and so on. Developing
growth and fabrication protocols that can change the amplitude of
the static ripples or eliminate them altogether is of great interest.
Other groups have observed ripples in suspended (strained) graphene
membranes5,22, although they occur at a much smaller scale and their
origin remains a subject of debate. Moreover, the thermal theory
outlined above predicts a bending stiffness at room temperature due
to thermal fluctuations of keff=k0 < 1; 000 for an initially flat mem-
brane. These contradictory findings call for future experiments to
firmly establish the relative contribution to bending stiffness of
thermal fluctuations and static ripples23. But irrespective of cause,
the high bending stiffness notably changes the effective c value,
ceff5YeffL

2/keff. With the predicted renormalization9,11 of Yeff, we
find that ceff is of the order of 105–107 for a sheet of graphene
10 mm3 10mm in size, close to that of a standard sheet of paper.
The mechanical similarity between graphene and paper makes it

easy to translate ideas and intuition directly from paper models to
graphene devices. For example, the highly stretchable graphene tran-
sistors in Fig. 3b, c and Supplementary Video 2 are based on a simple
kirigami pattern of alternating, offset cuts and are created using photo-
lithography.Here, the elasticity of the kirigami spring is determined by
the pattern of cuts and the bending stiffness (rather than the Young’s
modulus) of the graphene. As the reconstruction of the three-dimen-
sional shape of a stretched and lifted device in Fig. 3e shows, the
graphene strips pop up and bend out of plane as the spring is stretched.
We measure the electrical response of these stretchable transistors

by gating them with an approximately 10mM KCl solution24

(see Methods for details). Figure 3d plots the liquid-gate dependence
of the conductance at a source–drain bias of 100mV for a device in its
initial unstretched state (blue) and when stretched by 240% (orange).
The normalized change in conductancewith gate voltage per graphene
square is 0.7mSV21 and the resistance per graphene square at the
Dirac point is 12 kV, comparable to what has been reported for elec-
trolyte-gated graphene transistors24. Because the graphene lattice itself
is not much strained when the kirigami spring is extended, we do not
expect or observe a notable change in the conductance curves between
the unstretched and stretched states, which is highly desirable for
stretchable electronics25. Furthermore, stretching and unstretching a
similar device more than 1,000 times did not substantially change its
electrical properties.

b Thermal methoda Laser pressure method
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Figure 2 | Measuring the bending stiffness of monolayer graphene.
a, Applying controlled forces to a gold pad using an infrared laser. The grey
triangle represents the probe tip that holds the device up off the surface; the red
triangle represents the focused laser beam. The cantilever displacement gives
the spring constant. b, Tracking the motion of a rotated device under thermal
fluctuations provides an independent measurement of the spring constant
(Extended Data Fig. 3). c, Stacked histogram of bending stiffness, and
interference micrographs of devices whose aluminium release layer has been
etched away, showing the structure of static ripples (inset). The spring constant
relates to the bending stiffness as k5 3kW/L3. The red arrow points to the
microscopic bending stiffness, k05 1.2 eV. Scale bars are 10mm. Interference
images were averaged over 180 frames at 90 frames per second.
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Frozen fluctuations in nearly flat membranes 21
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We move the graphene along the surface or peel it up entirely by
pushing a sharp probe tip into the gold pads or against the graphene
itself (Fig. 1b–d and Supplementary Video 1). The graphene’s elastic
behaviour is reminiscent of that of thin paper: it folds and crumples out
of plane, but does not notably stretch in plane (Fig. 1b). The process is
almost entirely reversible in the presence of surfactants, even after
considerable crumpling of the graphene.
Themechanical properties relevant for kirigami are captured by the

Föppl–von Kármán number7,8 for a square sheet of side length L and
thickness t: c5Y2DL

2/k< (L/t)2, that is, the ratio between the two-
dimensional Young’s modulus Y2D and the out-of-plane bending stiff-
ness k, multiplied by the length squared. To determine c, we measure
k by using the photon pressure from an infrared laser to apply a known
force to a pad attached to a graphene cantilever and measuring the
resulting displacement (Fig. 2a).We alsomeasure thermal fluctuations
of cantilevers to determine their spring constants (Fig. 2b and
Extended Data Fig. 4), which, according to the equipartition theorem,
are k~kBT=hx2thi, where T is temperature, kB is Boltzmann’s constant,
and hx2thi is the time-averaged square of the cantilever thermal fluc-
tuation amplitude. Although the presence of water (the aqueous solu-
tion in which the device is immersed) slows down the fluctuations, it
does not change the spring constant15,16. Cantilevers with lengths of
8–80 mm and widths of 2–15mm have spring constants of 1025–
1028 Nm21. These are astonishingly soft springs, as many as eight
orders of magnitude softer than a typical atomic force microscope
cantilever. The bending stiffness k is inferred from the measured
spring constant using k5 3kW/L3, where W and L are the width

and length of the cantilevers, respectively. The values obtained from
these thermalmeasurements and the lasermeasurements are shown in
Fig. 2c, and are seen to be orders ofmagnitude higher thank05 1.2 eV,
which is the value that is predicted from the microscopic bending
stiffness of graphene (known from simulations17 and measurements
of the phonon modes in graphite18).
Both thermal fluctuations and static ripples are predicted to notably

stiffen ultrathin crystalline membranes9–13,19,20 by effectively thick-
ening themembrane, similar to how a crumpled sheet of paper ismore
rigid than a flat one. For static ripples, the effective bending stiffness is
predicted to be9 kef f=k0<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2Dhz2ef f i=k0

p
, where hz2ef f i is the space-

averaged square of the effective amplitude of the static ripples and
Y2D5 340Nm21 is the two-dimensional Young’s modulus3. For an
initially flat membrane with thermal fluctuations, the stiffness is pre-
dicted to be keff <k0(W/lc)

g , where lc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p3k20= 3Y2DkBTð Þ

p
is the

Ginzburg length19, and g is a scaling exponent.
We look for static ripples in graphene cantilevers using interference

microscopy21 (inset of Fig. 2c). The black bands in such images are
regions of constant elevation, with the spacing between black and
white bands corresponding to changes in z of l/4< 100 nm (where
l is the wavelength, corrected for the refractive index of water).With a
typical hz2eff i value from these measurements of about (100nm)2, we
obtain an effective bending stiffness of keff=k0 < 4; 000.
Static ripples are present only after releasing graphene from the

surface (Extended Data Fig. 2), and likely to be sample specific and
influenced by growth, fabrication details, and so on. Developing
growth and fabrication protocols that can change the amplitude of
the static ripples or eliminate them altogether is of great interest.
Other groups have observed ripples in suspended (strained) graphene
membranes5,22, although they occur at a much smaller scale and their
origin remains a subject of debate. Moreover, the thermal theory
outlined above predicts a bending stiffness at room temperature due
to thermal fluctuations of keff=k0 < 1; 000 for an initially flat mem-
brane. These contradictory findings call for future experiments to
firmly establish the relative contribution to bending stiffness of
thermal fluctuations and static ripples23. But irrespective of cause,
the high bending stiffness notably changes the effective c value,
ceff5YeffL

2/keff. With the predicted renormalization9,11 of Yeff, we
find that ceff is of the order of 105–107 for a sheet of graphene
10 mm3 10mm in size, close to that of a standard sheet of paper.
The mechanical similarity between graphene and paper makes it

easy to translate ideas and intuition directly from paper models to
graphene devices. For example, the highly stretchable graphene tran-
sistors in Fig. 3b, c and Supplementary Video 2 are based on a simple
kirigami pattern of alternating, offset cuts and are created using photo-
lithography.Here, the elasticity of the kirigami spring is determined by
the pattern of cuts and the bending stiffness (rather than the Young’s
modulus) of the graphene. As the reconstruction of the three-dimen-
sional shape of a stretched and lifted device in Fig. 3e shows, the
graphene strips pop up and bend out of plane as the spring is stretched.
We measure the electrical response of these stretchable transistors

by gating them with an approximately 10mM KCl solution24

(see Methods for details). Figure 3d plots the liquid-gate dependence
of the conductance at a source–drain bias of 100mV for a device in its
initial unstretched state (blue) and when stretched by 240% (orange).
The normalized change in conductancewith gate voltage per graphene
square is 0.7mSV21 and the resistance per graphene square at the
Dirac point is 12 kV, comparable to what has been reported for elec-
trolyte-gated graphene transistors24. Because the graphene lattice itself
is not much strained when the kirigami spring is extended, we do not
expect or observe a notable change in the conductance curves between
the unstretched and stretched states, which is highly desirable for
stretchable electronics25. Furthermore, stretching and unstretching a
similar device more than 1,000 times did not substantially change its
electrical properties.

b Thermal methoda Laser pressure method
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Figure 2 | Measuring the bending stiffness of monolayer graphene.
a, Applying controlled forces to a gold pad using an infrared laser. The grey
triangle represents the probe tip that holds the device up off the surface; the red
triangle represents the focused laser beam. The cantilever displacement gives
the spring constant. b, Tracking the motion of a rotated device under thermal
fluctuations provides an independent measurement of the spring constant
(Extended Data Fig. 3). c, Stacked histogram of bending stiffness, and
interference micrographs of devices whose aluminium release layer has been
etched away, showing the structure of static ripples (inset). The spring constant
relates to the bending stiffness as k5 3kW/L3. The red arrow points to the
microscopic bending stiffness, k05 1.2 eV. Scale bars are 10mm. Interference
images were averaged over 180 frames at 90 frames per second.
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10µm

paper model of soft spring

graphene model of soft spring

APPLICATIONS:  
microscale flexible electronics 
sensitive force sensors (10-15 N) 

micro-actuators

stretching of soft springs 
comes from bending of 

graphene and does not affect 
the electronic properties

M. K. Blees et al., Nature 524, 204 (2015)
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Future directions: Study how thermal fluctuations 
and disorder affect the mechanics of such structures

M. K. Blees et al., Nature 524, 204 (2015)



25How thermal fluctuations affect
the mechanics of long ribbons?
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Mechanics of ribbons at T>0 27

R2 = ⌦�1
2

p = 2⇡⌦�1
3

bending around bending around e2e1

Thermal fluctuations renormalize elastic constants for each block 

Construct a ribbon with                  square blocks of size L/W � 1 W

R1 = ⌦�1
1

Effective elastic constants for a ribbon thus become
twisting around e3

R ⇠  (W/`th)⌘
YR ⇠ Y (W/`th)�⌘u `th ⇠ /

p
kBTY

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)

A1 ⇠ RW C ⇠ RWA2 ⇠ YRW
3 � A1, C
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Coupling between bending and twisting 28
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material frame

bending and twisting modes are coupled!
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Persistence length for ribbons 29

he3(s + `) · e3(s)i = e�`/`p

`p =
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kBT
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2

��1

S. Panyukov and Y. Rabin, 
PRE 62, 7136 (2000)
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Pulling of long ribbons 30
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Energy cost of deformations
rotation rate of
material frame

Partition function
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It is very hard to calculate the partition function directly!



Analogy with the quantum 
mechanical rotating top

31

H. Yamakawa, Pure Appl. Chem. 46, 135 (1976)

ẑ
x̂

ŷ =)Fe3
e1e2

ẑ

x̂

ŷ

e3
e1e2

=)

F

Statistical mechanics Quantum mechanics

ribbon backbone coordinate time
s t

bending and twisting rigidities moments of inertia
A1(T ), A2(T ), C(T ) I1, I2, I3

pulling force gravitational force
F F

Use tools from quantum mechanics!

Note: in classical mechanics this corresponds to the Kirchhoff kinetic analogy



Pulling and bending of ribbons
32
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Pulling and bending can be described with the 
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material frame orientation.
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Pulling and bending of ribbons of varying lengths 33

FA1

(kBT )2
= 0.01

`p ⇡
2A1

kBT
⇠ W 1+⌘

kBT `⌘
th

Fixed force, temperature
and ribbon width

C = A1

A2/A1 !1

For long ribbons direction of pulling force is irrelevant!
A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)



10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

T /T0

⟨h
/
L
⟩

kBT/

classical 
cantilever

thermalized 
cantilever

random 
walking 
ribbon

⇠ const ⇠ T�⌘/2 ⇠ T�0.4

⇠ T�(2�⌘/2)

⇠ T�1.6

W � `th(T )W ⌧ `th(T )
L⌧ `p(T ) L� `p(T )

Bending of ribbons at varying temperature
34

Fixed force and
ribbon dimensions =)

F

h
L

`p ⇠
W 1+⌘

kBT `⌘
th

`th ⇠
p

kBTY

T
=

T
p

T
=

T
W

`p /
1

(kBT )1�⌘/2

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)



Pulling of long ribbons
35
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Small pulling force
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Non-linear response is reflecting
the 2D nature of ribbons!

A. Košmrlj and D. Nelson, arXiv:1508.01528 (2015)



Potential experimental tests
36

xg 

L
W

bending

Prepare nano-ribbons 
W ⇠ 10nm

pulling (gravity)
twisting (magnetic field)

L & `p ⇠ 10µm

10µm

10µm

M. K. Blees et al., Nature 524, 204 (2015)



Molecular dynamics simulations of ribbons
37

Rastko Sknepnek (Dundee) 
Mark Bowick (Syracuse)
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Molecular dynamics simulations of ribbons
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Rastko Sknepnek (Dundee) 
Mark Bowick (Syracuse)
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Measure height fluctuations
along the ribbon backbone
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Data collapse without adjustable parameters!
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bending rigidity κ and Lamé coefficients μ and λ reads (details in
SI Text)

G=
Z ​

d2x
!
κ
2
"
∇2f

#2
+ μu2ij +

λ
2
u2kk − pf

$
; [1]

where the nonlinear strain tensor is

uijðxÞ=
1
2
"
∂iuj + ∂jui + ∂if∂jf

#
− δij

f
R
: [2]

Here, d2x ≡ ffiffiffi
g

p
dx1dx2, where g is the determinant of the metric

tensor associated with the spherical background metric. Within
shallow shell theory, g≈ 1 (SI Text).
If we represent the normal displacements in the form f ðxÞ=

f0 + f ′ðxÞ, where f0 represents the uniform contraction of the
sphere in response to the external pressure, and f ′ is the defor-
mation with reference to this contracted state so that

R ​d2x  f ′= 0,
then the energy is quadratic in fields u1, u2, and f0. These variables
can be eliminated in a functional integral of expð−G½ f ′; f0;
u1; u2$=kBTÞ by Gaussian integration (details in SI Text). The ef-
fective free energy Geff that results is the sum of a harmonic part
G0 and an anharmonic part G1 in the remaining variable f ′ðxÞ,

G0 =
1
2

Z ​

d2x
!
κ
"
∇2f ′

#2 − pR
2
j∇f ′j2 + Y

R2f ′
2
$
; [3]

G1 =
Y
2

Z ​

d2x
!&

1
2
PT
ij ∂if ′∂jf ′

'2
−

f ′
R
PT
ij ∂if ′∂jf ′

$
;

where Y = 4μðμ+ λÞ=ð2μ+ λÞ is the 2D Young’s modulus and
PT
ij = δij −∂i∂j=∇2 is the transverse projection operator. The

“mass” term Y ðf ′=RÞ2 in the harmonic energy functional reflects
the coupling between out-of-plane deformation and in-plane
stretching due to curvature, absent in the harmonic theory of
flat membranes (plates). The cubic interaction term with a cou-
pling constant −Y=2R is also unique to curved membranes and
is prohibited by symmetry for flat membranes. These terms are
unusual because they have system-size–dependent coupling
constants. Note that an inward pressure (p> 0) acts like a nega-
tive R-dependent surface tension in the harmonic term. As re-
quired, the effective elastic energy of fluctuating flat mem-
branes is retrieved for R→∞ and p= 0. In the following, we
exclusively use the field f ′ðxÞ and thus drop the prime without
ambiguity.

When only the harmonic contributions are considered, the
equipartition result for the thermally generated Fourier com-
ponents fq =

R
d2x  f ðxÞexpðiq · xÞ with 2D wavevector q are

D
fq fq′

E

0
=

AkBTδq;−q′

κq4 −
pR
2
q2 +

Y
R2

; [4]

where A is the area of integration in the ðx1; x2Þ plane. Long-
wavelength modes are restricted by the finite size of the sphere;
i.e., q ≳ 1=R. In contrast to flat membranes for which the ampli-
tude of long-wavelength (q→ 0) modes diverges as kBT=ðκq4Þ,
the coupling between in-plane and out-of-plane deformations
of curved membranes cuts off fluctuations with wave vectors
smaller than a characteristic inverse length scale (26),

q*= ðℓ*Þ−1 =
&

Y
κR2

'1=4
≡

γ1=4

R
;

where we have introduced the dimensionless Föppl-von Kármán
number γ =YR2=κ (11). We focus here on the case γ % 1, so
ℓ* & R. As p approaches pc ≡ 4

ffiffiffiffiffiffi
κY

p
=R2, the modes with q= q*

become unstable and their amplitude diverges. This corresponds
to the well-known buckling transition of spherical shells under
external pressure (27). When p> pc, the shape of the deformed
shell is no longer described by small deformations from a sphere,
and the shallow shell approximation breaks down.

Anharmonic Corrections to Elastic Moduli. The anharmonic part of
the elastic energy, neglected in the analysis described above,
modifies the fluctuation spectrum by coupling Fourier modes at
different wave vectors. Upon rescaling all lengths by ℓ*, it can be
shown that the size of anharmonic contributions to hjfqj2i is set
by the dimensionless quantities kBT

ffiffiffi
γ

p
=κ and p=pc. The corre-

lation function including the anharmonic terms in Eq. 3 is given
by the Dyson equation,

D((fq
((2
E
=

1
D((fq

((2
E−1
0
−ΣðqÞ

; [5]

where ΣðqÞ is the self-energy, which we evaluate to one-loop
order, using perturbation theory. Whereas hjfqj2i can be numer-
ically evaluated at any q, an approximate but concise description
of the fluctuation spectrum is obtained by expanding the self-
energy up to order q4 and defining renormalized values YR, κR,
and pR of the Young’s modulus, bending rigidity, and pressure,
from the coefficients of the expansion:

AkBT
D((fq→ 0

((2
E−1

≡ κRq4 −
pRR
2

q2 +
YR

R2 +O
"
q6
#
: [6]

To lowest order in kBT=κ and p=pc we obtain the approximate
expressions (details in SI Text)

YR ≈Y
!
1−

3
256

kBT
κ

ffiffiffi
γ

p
&
1+

4
π
p
pc

'$
; [7]

pR ≈ p+
1

24π
kBT
κ

pc
ffiffiffi
γ

p
&
1+

63π
128

p
pc

'
; [8]

and

κR ≈ κ

!
1+

61
4; 096

kBT
κ

ffiffiffi
γ

p
&
1−

1; 568
915π

p
pc

'$
: [9]

Fig. 1. Simulated thermally fluctuating shells. (A) Triangulated shell with
5,530 points separated by average nearest-neighbor distance r0 with Young’s
modulus Y = 577e=r20 and bending rigidity κ = 50e at temperature kBT = 20e,
where e is theenergy scale of the Lennard-Jones potential used to generate the
disordered mesh. (B) Same as in Awith external pressure p= 0:5pc, where pc is
the classical buckling pressure. The thermally excited shell has already buckled
under pressure to a shape with a much smaller enclosed volume than in A.

19552 | www.pnas.org/cgi/doi/10.1073/pnas.1212268109 Paulose et al.

How thermal fluctuations affect
the mechanics of spherical shells?

J. Paulose et al., PNAS 
109, 19551 (2012)
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Buckling of spherical shells
by external pressure

43

Buckling and folding in thin shells (kBT << κ/γ1/2)

[1] C. Gao et al, EPJ E 5, 21 (2001), Mohwald group;   [2] E. Katifori et al, PNAS 107, 7635 (2010) (SI)

Pollen grain of Lilium longiflorum [2]

p > pc

Polyelectrolyte capsules [1]

Electron microscopy images

p < pc

24 /cp Y RN 

R. L. Carlson et al., Exp. Mech. 7, 281 (1967)
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Fig. 4--Air-system test 
with wax mandrel inside 
specimen 

before process modifications could be evaluated.  
A new testing procedure took advantage of the 

fact  that,  when the plated mandrel  was removed 
from the heated plating bath, the mandrel  con- 
tracted more upon cooling than the nickel shell. 
The difference in contraction produced a gap be- 
tween the mandrel and the shell (see Fig. 3). In  
this condition, the specimen could be air tested 
without  being destroyed. The effect of modifica- 

TABLE 3--EVALUATION OF SPHERE-TEST DATA 

Specimen Nominal  th i ckness , *  Percent of theoret ical  
no. 10-~ in. buckl ing pressure l  

5 4.0 4.5 
6 4.5 13 
7 4.5 13 
8 4.0 19 
9 4.5 10 

* For these specimens,  the variat ion of  th ickness  f rom the no- 
minal values was about  =t=15 percent.  

-[ Based on exper imenta l  results of Table 2 and theoret ica l  pres- 
sures computed for values of the nominal  shell th ickness.  

tions in specimen preparat ion could be quickly 
evaluated, and the location and the extent of buck- 
ling could be observed. Most  of the specimens pro- 
duced after No. 9 were tested first in air with the 
wax mandrel  inside. When possible, they were 
then tested in the rigid system* and finally in the 
soft system. 

During air tests conducted with the mandrel  in- 
side, it was generally found tha t  buckling at  a low 
pressure (less than 50 percent of theoretical) ap- 
peared as a single dimple whose size depended on a 
gap dimer_s~.on. The dimple was approximately 
circular and 0.8 in. or less in diameter. Examina-  
tion of the specimen revealed tha t  the dimple was 
at  a flaw. I f  the test was continued, additional 
dimples were observed to "pop in," usually singly, 
and at higher pressures.~ Usually, the subsequent  

* The hollow wax mandrel was removed by melting the wax and draining 
through a small hole in the shell (see Ref.  21 for additional details). 

Horton and Durham 2~ have presented results o f  interesting statistical 
studies in which the dimple formation process is followed in a mandrel- 
restricted, circular cylindrical shell under an increasing axial compression. 

Experimental Mechanics I 285 

`⇤

thin shell

mandrel

Macroscopic buckling instability 
arrested by a wax mandrelpc = 4

p
Y /R2 ⇠ Et2/R2

R = 10.8cm

R/t ⇡ 2000
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bending rigidity κ and Lamé coefficients μ and λ reads (details in
SI Text)

G=
Z ​

d2x
!
κ
2
"
∇2f

#2
+ μu2ij +

λ
2
u2kk − pf

$
; [1]

where the nonlinear strain tensor is

uijðxÞ=
1
2
"
∂iuj + ∂jui + ∂if∂jf

#
− δij

f
R
: [2]

Here, d2x ≡ ffiffiffi
g

p
dx1dx2, where g is the determinant of the metric

tensor associated with the spherical background metric. Within
shallow shell theory, g≈ 1 (SI Text).
If we represent the normal displacements in the form f ðxÞ=

f0 + f ′ðxÞ, where f0 represents the uniform contraction of the
sphere in response to the external pressure, and f ′ is the defor-
mation with reference to this contracted state so that

R ​d2x  f ′= 0,
then the energy is quadratic in fields u1, u2, and f0. These variables
can be eliminated in a functional integral of expð−G½ f ′; f0;
u1; u2$=kBTÞ by Gaussian integration (details in SI Text). The ef-
fective free energy Geff that results is the sum of a harmonic part
G0 and an anharmonic part G1 in the remaining variable f ′ðxÞ,
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where Y = 4μðμ+ λÞ=ð2μ+ λÞ is the 2D Young’s modulus and
PT
ij = δij −∂i∂j=∇2 is the transverse projection operator. The

“mass” term Y ðf ′=RÞ2 in the harmonic energy functional reflects
the coupling between out-of-plane deformation and in-plane
stretching due to curvature, absent in the harmonic theory of
flat membranes (plates). The cubic interaction term with a cou-
pling constant −Y=2R is also unique to curved membranes and
is prohibited by symmetry for flat membranes. These terms are
unusual because they have system-size–dependent coupling
constants. Note that an inward pressure (p> 0) acts like a nega-
tive R-dependent surface tension in the harmonic term. As re-
quired, the effective elastic energy of fluctuating flat mem-
branes is retrieved for R→∞ and p= 0. In the following, we
exclusively use the field f ′ðxÞ and thus drop the prime without
ambiguity.

When only the harmonic contributions are considered, the
equipartition result for the thermally generated Fourier com-
ponents fq =
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d2x  f ðxÞexpðiq · xÞ with 2D wavevector q are
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where A is the area of integration in the ðx1; x2Þ plane. Long-
wavelength modes are restricted by the finite size of the sphere;
i.e., q ≳ 1=R. In contrast to flat membranes for which the ampli-
tude of long-wavelength (q→ 0) modes diverges as kBT=ðκq4Þ,
the coupling between in-plane and out-of-plane deformations
of curved membranes cuts off fluctuations with wave vectors
smaller than a characteristic inverse length scale (26),
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where we have introduced the dimensionless Föppl-von Kármán
number γ =YR2=κ (11). We focus here on the case γ % 1, so
ℓ* & R. As p approaches pc ≡ 4
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p
=R2, the modes with q= q*

become unstable and their amplitude diverges. This corresponds
to the well-known buckling transition of spherical shells under
external pressure (27). When p> pc, the shape of the deformed
shell is no longer described by small deformations from a sphere,
and the shallow shell approximation breaks down.

Anharmonic Corrections to Elastic Moduli. The anharmonic part of
the elastic energy, neglected in the analysis described above,
modifies the fluctuation spectrum by coupling Fourier modes at
different wave vectors. Upon rescaling all lengths by ℓ*, it can be
shown that the size of anharmonic contributions to hjfqj2i is set
by the dimensionless quantities kBT
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lation function including the anharmonic terms in Eq. 3 is given
by the Dyson equation,
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where ΣðqÞ is the self-energy, which we evaluate to one-loop
order, using perturbation theory. Whereas hjfqj2i can be numer-
ically evaluated at any q, an approximate but concise description
of the fluctuation spectrum is obtained by expanding the self-
energy up to order q4 and defining renormalized values YR, κR,
and pR of the Young’s modulus, bending rigidity, and pressure,
from the coefficients of the expansion:
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To lowest order in kBT=κ and p=pc we obtain the approximate
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Fig. 1. Simulated thermally fluctuating shells. (A) Triangulated shell with
5,530 points separated by average nearest-neighbor distance r0 with Young’s
modulus Y = 577e=r20 and bending rigidity κ = 50e at temperature kBT = 20e,
where e is theenergy scale of the Lennard-Jones potential used to generate the
disordered mesh. (B) Same as in Awith external pressure p= 0:5pc, where pc is
the classical buckling pressure. The thermally excited shell has already buckled
under pressure to a shape with a much smaller enclosed volume than in A.
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Thermal fluctuations alone
crush large spherical shells
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46Potential experimental test with polymersomes

Shum et al., JACS 130, 9543 (2008)

Shum et al., JACS 2008, 130, 9543

Microfluidic 
fabrication of 
polymersomes

Polymersome Radius, R = 30 µm 
Thickness, h = 10 nm
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!Start with “double emulsion” of 
ampiphillic diblock copolymers 
(PEG-b-PLA).
!Tune wetting properties to eject 
thin *crystalline* bilayer shells.
!Result is a delivery vehicle for 
dugs, flavors, colorings and 
fragrances that can be crushed by  
osmotic pressure

Thermal fluctuations again matter…
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thermal fluctuations are 
important for graphene 
(and BN, MoS2, WS2 , ...)

non-linear response to stretching

long narrow ribbons behave like 
flexible 1D polymers, but retain 

features of 2D membranes

increased scale dependent 
bending and twisting rigidities

thermal fluctuations 
spontaneously crush large 

spherical shells

bending rigidity κ and Lamé coefficients μ and λ reads (details in
SI Text)
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Here, d2x ≡ ffiffiffi
g

p
dx1dx2, where g is the determinant of the metric

tensor associated with the spherical background metric. Within
shallow shell theory, g≈ 1 (SI Text).
If we represent the normal displacements in the form f ðxÞ=

f0 + f ′ðxÞ, where f0 represents the uniform contraction of the
sphere in response to the external pressure, and f ′ is the defor-
mation with reference to this contracted state so that

R ​d2x  f ′= 0,
then the energy is quadratic in fields u1, u2, and f0. These variables
can be eliminated in a functional integral of expð−G½ f ′; f0;
u1; u2$=kBTÞ by Gaussian integration (details in SI Text). The ef-
fective free energy Geff that results is the sum of a harmonic part
G0 and an anharmonic part G1 in the remaining variable f ′ðxÞ,
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where Y = 4μðμ+ λÞ=ð2μ+ λÞ is the 2D Young’s modulus and
PT
ij = δij −∂i∂j=∇2 is the transverse projection operator. The

“mass” term Y ðf ′=RÞ2 in the harmonic energy functional reflects
the coupling between out-of-plane deformation and in-plane
stretching due to curvature, absent in the harmonic theory of
flat membranes (plates). The cubic interaction term with a cou-
pling constant −Y=2R is also unique to curved membranes and
is prohibited by symmetry for flat membranes. These terms are
unusual because they have system-size–dependent coupling
constants. Note that an inward pressure (p> 0) acts like a nega-
tive R-dependent surface tension in the harmonic term. As re-
quired, the effective elastic energy of fluctuating flat mem-
branes is retrieved for R→∞ and p= 0. In the following, we
exclusively use the field f ′ðxÞ and thus drop the prime without
ambiguity.

When only the harmonic contributions are considered, the
equipartition result for the thermally generated Fourier com-
ponents fq =

R
d2x  f ðxÞexpðiq · xÞ with 2D wavevector q are
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; [4]

where A is the area of integration in the ðx1; x2Þ plane. Long-
wavelength modes are restricted by the finite size of the sphere;
i.e., q ≳ 1=R. In contrast to flat membranes for which the ampli-
tude of long-wavelength (q→ 0) modes diverges as kBT=ðκq4Þ,
the coupling between in-plane and out-of-plane deformations
of curved membranes cuts off fluctuations with wave vectors
smaller than a characteristic inverse length scale (26),
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≡
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;

where we have introduced the dimensionless Föppl-von Kármán
number γ =YR2=κ (11). We focus here on the case γ % 1, so
ℓ* & R. As p approaches pc ≡ 4

ffiffiffiffiffiffi
κY

p
=R2, the modes with q= q*

become unstable and their amplitude diverges. This corresponds
to the well-known buckling transition of spherical shells under
external pressure (27). When p> pc, the shape of the deformed
shell is no longer described by small deformations from a sphere,
and the shallow shell approximation breaks down.

Anharmonic Corrections to Elastic Moduli. The anharmonic part of
the elastic energy, neglected in the analysis described above,
modifies the fluctuation spectrum by coupling Fourier modes at
different wave vectors. Upon rescaling all lengths by ℓ*, it can be
shown that the size of anharmonic contributions to hjfqj2i is set
by the dimensionless quantities kBT

ffiffiffi
γ

p
=κ and p=pc. The corre-

lation function including the anharmonic terms in Eq. 3 is given
by the Dyson equation,
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; [5]

where ΣðqÞ is the self-energy, which we evaluate to one-loop
order, using perturbation theory. Whereas hjfqj2i can be numer-
ically evaluated at any q, an approximate but concise description
of the fluctuation spectrum is obtained by expanding the self-
energy up to order q4 and defining renormalized values YR, κR,
and pR of the Young’s modulus, bending rigidity, and pressure,
from the coefficients of the expansion:
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To lowest order in kBT=κ and p=pc we obtain the approximate
expressions (details in SI Text)
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Fig. 1. Simulated thermally fluctuating shells. (A) Triangulated shell with
5,530 points separated by average nearest-neighbor distance r0 with Young’s
modulus Y = 577e=r20 and bending rigidity κ = 50e at temperature kBT = 20e,
where e is theenergy scale of the Lennard-Jones potential used to generate the
disordered mesh. (B) Same as in Awith external pressure p= 0:5pc, where pc is
the classical buckling pressure. The thermally excited shell has already buckled
under pressure to a shape with a much smaller enclosed volume than in A.
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bending rigidity κ and Lamé coefficients μ and λ reads (details in
SI Text)
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Here, d2x ≡ ffiffiffi
g

p
dx1dx2, where g is the determinant of the metric

tensor associated with the spherical background metric. Within
shallow shell theory, g≈ 1 (SI Text).
If we represent the normal displacements in the form f ðxÞ=

f0 + f ′ðxÞ, where f0 represents the uniform contraction of the
sphere in response to the external pressure, and f ′ is the defor-
mation with reference to this contracted state so that

R ​d2x  f ′= 0,
then the energy is quadratic in fields u1, u2, and f0. These variables
can be eliminated in a functional integral of expð−G½ f ′; f0;
u1; u2$=kBTÞ by Gaussian integration (details in SI Text). The ef-
fective free energy Geff that results is the sum of a harmonic part
G0 and an anharmonic part G1 in the remaining variable f ′ðxÞ,
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where Y = 4μðμ+ λÞ=ð2μ+ λÞ is the 2D Young’s modulus and
PT
ij = δij −∂i∂j=∇2 is the transverse projection operator. The

“mass” term Y ðf ′=RÞ2 in the harmonic energy functional reflects
the coupling between out-of-plane deformation and in-plane
stretching due to curvature, absent in the harmonic theory of
flat membranes (plates). The cubic interaction term with a cou-
pling constant −Y=2R is also unique to curved membranes and
is prohibited by symmetry for flat membranes. These terms are
unusual because they have system-size–dependent coupling
constants. Note that an inward pressure (p> 0) acts like a nega-
tive R-dependent surface tension in the harmonic term. As re-
quired, the effective elastic energy of fluctuating flat mem-
branes is retrieved for R→∞ and p= 0. In the following, we
exclusively use the field f ′ðxÞ and thus drop the prime without
ambiguity.

When only the harmonic contributions are considered, the
equipartition result for the thermally generated Fourier com-
ponents fq =

R
d2x  f ðxÞexpðiq · xÞ with 2D wavevector q are
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where A is the area of integration in the ðx1; x2Þ plane. Long-
wavelength modes are restricted by the finite size of the sphere;
i.e., q ≳ 1=R. In contrast to flat membranes for which the ampli-
tude of long-wavelength (q→ 0) modes diverges as kBT=ðκq4Þ,
the coupling between in-plane and out-of-plane deformations
of curved membranes cuts off fluctuations with wave vectors
smaller than a characteristic inverse length scale (26),

q*= ðℓ*Þ−1 =
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where we have introduced the dimensionless Föppl-von Kármán
number γ =YR2=κ (11). We focus here on the case γ % 1, so
ℓ* & R. As p approaches pc ≡ 4
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=R2, the modes with q= q*

become unstable and their amplitude diverges. This corresponds
to the well-known buckling transition of spherical shells under
external pressure (27). When p> pc, the shape of the deformed
shell is no longer described by small deformations from a sphere,
and the shallow shell approximation breaks down.

Anharmonic Corrections to Elastic Moduli. The anharmonic part of
the elastic energy, neglected in the analysis described above,
modifies the fluctuation spectrum by coupling Fourier modes at
different wave vectors. Upon rescaling all lengths by ℓ*, it can be
shown that the size of anharmonic contributions to hjfqj2i is set
by the dimensionless quantities kBT

ffiffiffi
γ

p
=κ and p=pc. The corre-

lation function including the anharmonic terms in Eq. 3 is given
by the Dyson equation,
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where ΣðqÞ is the self-energy, which we evaluate to one-loop
order, using perturbation theory. Whereas hjfqj2i can be numer-
ically evaluated at any q, an approximate but concise description
of the fluctuation spectrum is obtained by expanding the self-
energy up to order q4 and defining renormalized values YR, κR,
and pR of the Young’s modulus, bending rigidity, and pressure,
from the coefficients of the expansion:
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Fig. 1. Simulated thermally fluctuating shells. (A) Triangulated shell with
5,530 points separated by average nearest-neighbor distance r0 with Young’s
modulus Y = 577e=r20 and bending rigidity κ = 50e at temperature kBT = 20e,
where e is theenergy scale of the Lennard-Jones potential used to generate the
disordered mesh. (B) Same as in Awith external pressure p= 0:5pc, where pc is
the classical buckling pressure. The thermally excited shell has already buckled
under pressure to a shape with a much smaller enclosed volume than in A.
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