## Experiments on ribbons with a twist



Arshad Kudrolli Julien Chopin (ESPCI)<br>Department of Physics, Clark University<br>Worcester, Massachusetts<br>Supported by National Science Foundation

## Twisted ribbons and novel materials

Yarn fabrication


Lima et al. Science 331, 51 (2011)

Graphene nanotube fabrication

S. Cranford and M. Buehler, Mod. Simul. Mater. Sci. Eng., 19, 054003 (2011)

## Geometry and Loading

Thin elastic ribbon where the short edge is clamped and twisted through an angle $\eta$ under a tension $T$


Control parameters

Tension :

$$
\begin{aligned}
& \mathrm{T}=\mathrm{F} /(\mathrm{E} \mathrm{~h} \mathrm{~W}) \\
& \eta=\alpha /(\mathrm{L} / \mathrm{W})
\end{aligned}
$$

## Typical values :

Thickness:
Anisotropy :
Slenderness:
Young's modulus :
Tension :
Twist angle :

$$
\begin{aligned}
& \mathrm{h}=100 \mu \mathrm{~m} \\
& \mathrm{t}=\mathrm{h} / \mathrm{W}<0.02 \\
& \mathrm{~L} / \mathrm{W}>10 \\
& \mathrm{E}=3.4 \mathrm{GPa}, \\
& \mathrm{~T} \sim 10^{-3} \\
& \eta \sim 0.5
\end{aligned}
$$

Depending on:
1- the loading parameters $\eta$ and $T$
2- the geometric parameters h/W and L/W
What are the equilibrium configurations of the ribbon?

First addressed by A.E. Green (1936):


Fig. 2.

- Ribbon will buckle longitudinally
A.E. Green (1936, 1937) Coman \& Bassom (2008)


## Triangular buckling patterns of twisted inextensible strips

A. P. Korte, E. L. Starostin, G. H. M. van der Heijden, Proc. Roy. Soc. A (2010)


- Twisted strip of acetate or paper
- Constructed solution assuming isometric deformation


## Buckling Modes of Twisted Ribbons

Helicoid


## Buckling Modes of Twisted Ribbons

Longitudinal
Helicoid
buckling


## Buckling Modes of Twisted Ribbons

Longitudinal Transverse buckling buckling


## Buckling Modes of Twisted Ribbons



## Buckling Modes of Twisted Ribbons



## Phase diagram



## Phase diagram



## Xray computed tomography



## Xray computed tomography

Mean curvature map (H)

Gaussian curvature map (K)

## Helicoid




## Longitudinal buckling




$$
\begin{array}{rlll}
\mathrm{H}\left(\mathrm{~cm}^{-1}\right) & & \\
-0.5 & 0 & 0.5
\end{array}
$$

## Mechanical Equilibrium (Small-Slope)



Mechanical equilibrium of the ribbon using the Föppl - von Kàrmàn (FvK) equations

$$
\begin{aligned}
\sigma^{s s} \partial_{s s} z+\sigma^{r r} \partial_{r r} z+2 \sigma^{r s} \partial_{r s} z & =B \Delta^{2} z, \\
\partial_{s} \sigma^{s s}+\partial_{r} \sigma^{s r} & =0, \\
\partial_{s} \sigma^{r s}+\partial_{r} \sigma^{r r} & =0 .
\end{aligned}
$$

where $B=t^{2} /\left[12\left(1-\nu^{2}\right)\right]$ is the bending modulus.

## Mechanical Equilibrium (Small-Slope) <br> $z(s, r)=\eta s r$



$$
\begin{aligned}
\eta \sigma^{s r} & =0, \\
\partial_{s} \sigma^{s s} & =0, \\
\partial_{r} \sigma^{r r} & =0 .
\end{aligned}
$$

## Mechanical Equilibrium (Small-Slope) <br> $z(s, r)=\eta s r$



$$
\begin{aligned}
\eta \sigma^{s r} & =0, \\
\partial_{s} \sigma^{s s} & =0, \\
\partial_{r} \sigma^{r r} & =0 .
\end{aligned}
$$

$$
\text { Atr }= \pm \mathrm{W} / 2: \quad \sigma^{r r}=0
$$

$$
\sigma^{s r}(r)=0
$$

Constant tension : $\quad T=\int \sigma^{s s} d r$

$$
\begin{aligned}
\sigma^{s s}(r) & =T+\frac{\eta^{2}}{2}\left(r^{2}-\frac{1}{12}\right), \longleftarrow \\
\sigma^{r r}(r) & =0 .
\end{aligned}
$$

$$
\sigma^{s s}=\left[T-\frac{1}{24} \eta^{2}\right]+\frac{1}{2} \eta^{2} r^{2}
$$



## Scaling of wavelength

The change in the elastic energy density due to longitudinal buckling $\Delta \mathrm{U}_{\mathrm{L}}$ is the sum of three contributions :

$$
\begin{array}{rlrl}
\text { Stretching : } & \Delta U_{S} & \sim \sigma^{s s}\left(\frac{A}{\lambda}\right)^{2} \\
\text { Bending(longitudinal) }: & \Delta U_{B}^{\|} \sim B\left(\frac{A}{\lambda^{2}}\right)^{2} \\
\text { Bending(orthogonal) : } & \Delta U_{B}^{\perp} \sim B\left(\frac{A}{r_{w r}^{2}}\right)^{2} .
\end{array}
$$

Using $\Delta U_{S} \sim \Delta U_{B}^{\|} \sim \Delta U_{B}^{\perp}$, we have at threshold :

$$
\left.\begin{array}{rlrl}
\lambda_{l o n} & \sim r_{w r} & & \lambda_{l o n}
\end{array}\right) \frac{\sqrt{t}}{T^{1 / 4}}
$$

Coman and Bassom, Acta Mechanica 200, 59 (2008)
Chopin and Kudrolli, PRL (2013)

## Comparison with experiments




- Excess twist is observed increase linearly with h/W
- The wavelength is observed to decrease consistent with scaling analysis


## Longitudinal buckling




## Creased helicoid



## Creased helicoid?

Twist angle increasing


## Far from threshold analysis

J. Chopin et al., J. Elasticity, 119, 137 (2015)
B. Davidovitch et al., PNAS 108,18227 (2011)

Longitudinal buckling:

Amplitude of the wrinkling mode $A(r)=\sqrt{\left\langle H^{2}\right\rangle_{s}}$


## Far from threshold analysis

J. Chopin et al., J. Elasticity, 119, 137 (2015)
B. Davidovitch et al., PNAS 108,18227 (2011)

Longitudinal buckling:


Compression free stress field

$$
\sigma_{\mathrm{FT}}^{s s}(r)=\left\{\begin{array}{lll}
0 & \text { for } & |r|<r_{\mathrm{wr}} \\
\frac{\eta^{2}}{2}\left(r^{2}-r_{\mathrm{wr}}^{2}\right) & \text { for } & |r|>r_{\mathrm{wr}}
\end{array}\right.
$$

## Far from threshold analysis

J. Chopin et al., J. Elasticity, 119, 137 (2015)
B. Davidovitch et al., PNAS 108,18227 (2011)

Longitudinal buckling:
Vertical mechanical equilibrium :

$$
\left(1-2 r_{\mathrm{wr}}\right)^{2}\left(1+4 r_{\mathrm{wr}}\right)=\frac{24}{\alpha} .
$$



Amplitude of the wrinkling mode $A(r)=\sqrt{\left\langle\dot{H}^{2}\right\rangle_{s}}$


## Creased Helicoid and Origami



## Conical defects and ridges



- Can one decompose the triangular pattern into minimal ridges?


## Ridges and Cones



## Magnified view



Developable cone

d-cone


M. M. Müller, M. Ben Amar, and J. Guven, PRL (2008)

Paper Model


## Paper Model



## Observed plastic deformation



## Extensible sheets

- Triangular lattice pattern in fact consists of ridges connecting e-cones

Disclinations, e-cones, and their interactions in extensible sheets J. Chopin and A. Kudrolli, arXiv:1601.00575

## Transverse buckling




## Transverse buckling

(central transverse cross section)

$h / W=1.5 \times 10^{-2}$
L/W $=6$
$h / W=1.5 \times 10^{-2}$
$L / W=1.5$
$h / W=7.5 \times 10^{-3}$
$\mathrm{L} / \mathrm{W}=0.5$

## Transverse buckling



Confinement pressure induced by the edges

## Covariant form of F-vK and Ribbon Buckling

J. Chopin et al., J. Elasticity, 119, 137 (2015)
B. Davidovitch et al., PNAS 108,18227 (2011)

$$
\begin{gathered}
\sigma^{s r}=0 \\
\partial_{s} \sigma^{s s}=0 \\
\partial_{r} \sigma^{r r}-\eta^{2} r \sigma^{s s}
\end{gathered}=0,
$$

## Scaling analysis for transverse buckling

J. Chopin et al., J. Elasticity, 119, 137 (2015)

| Stretching(orthogonal) : | $\Delta U_{S}^{\perp} \sim \sigma^{r r}\left(\frac{A}{\lambda}\right)^{2}$, |
| ---: | :--- |
| Stretching(longitudinal) : | $\Delta U_{B}^{\\|} \sim \sigma^{s s}\left(\frac{A}{L}\right)^{2}$, |
| Bending(orthogonal) : | $\Delta U_{B}^{\perp} \sim B\left(\frac{A}{\lambda^{2}}\right)^{2}$. |

The scalings for stresses are : $\quad \sigma^{s s} \sim T ; \sigma^{r r} \sim \eta^{2} T$

Using $\Delta U_{S}^{\perp} \sim \Delta U_{S}^{\|} \sim \Delta U_{B}^{\perp}$,
$\begin{array}{rlrl}\text { For } L \text { finite } & \eta_{t r} & \sim \sqrt{\frac{t}{L}} T^{-1 / 4} & \text { For } L \text { infinite } \\ & \eta_{t r} & \sim \frac{t}{\sqrt{T}} \\ \lambda_{t r} & \sim \sqrt{L t} T^{-1 / 4} & & \lambda_{t r}\end{array}$

## Anomalous loop transition




The critical angle decreases with the tension!

## Anomalous loop transition



- Loop transition interpreted as a combination of longitudinal and transverse buckling

Roadmap to the morphological instabilities of a stretched twisted ribbon J. Chopin*, V. Démery* and B. Davidovitch, J. Elasticity (2015)

## Conclusions

- A stretched twisted ribbon exhibits a rich set of morphologies
- Linear stability analysis explains wrinkling instability near threshold
- Far from threshold approach (compression free stress field) capture some aspect of the morphology an mechanics deep inside the post-buckling regime
- Continuous transition from smooth wrinkled helicoid to a faceted ribbon
- A faceted ribbon corresponds to the shape resulting from interacting econes/negative disclinations organized on a triangular lattice.


## References:

- Helicoids, Wrinkles, and Loops in Twisted Ribbons, J. Chopin and A. Kudrolli, PRL 111, 174302 (2013).
- Disclinations, e-cones, and their interactions in extensible sheets, J. Chopin and A. Kudrolli arXiv:1601.00575 (2016).

