Biomimetic 4D Printing

Sabetta Matsumoto
KITP 22 January 2016

Biomimetic 4D Printing

Sabetta Matsumoto
KITP 22 January 2016

Shape-morphing Systems

Shape-morphing Systems

Shape-morphing Systems

Shape-morphing Systems

4D Printing

4D Printing

4D Printing

Shape-morphing Systems

Mechanical Hinges

Tibbits, Arch. Design 84 | 6 (20|4)

Shape-morphing Systems

Mechanical Hinges

Tibbits, Arch. Design 84 | 6 (2014)

Origami

Na, et al. Adv. Mat. 2779 (2015)

Shape-morphing Systems

Mechanical Hinges

Tibbits, Arch. Design 84 | 16 (2014)
Swelling Hydrogels

Sharon \& Efrati, Soft Matter 65693 (2010)

Shape-morphing Systems

Mechanical Hinges

Tibbits, Arch. Design 84 || 6 (2014)
Swelling Hydrogels

Sharon \& Efrati, Soft Matter 65693 (20IO)

Origami

Na, et al. Adv. Mat. 2779 (2015)

Liquid Crystal Elastomers

de Haan, et al. Angew. Chem. 5I I2469 (20I2)

Mechanical Hinges

Origami

Tibbits, Arch. Design 84 || 6 (2014)

Liquid Crystal Elastomers

de Haan, et al. Angew. Chem. 5I I2469 (20I2)

Hygroscopic Motion

Pine Cone

Erodium Awn

Hygroscopic Motion

Pine Cone

Erodium Awn

Burgert \& Fratz, Phil. Trans. R. Soc.A 367 I54। (2009)

Hygroscopic Motion

Pine Cone

Burgert \& Fratzl, Phil. Trans. R. Soc. A 367 I54I (2009)

Erodium Awn

Abraham, et al. J. R. Soc. Interface 9640 (20| 2)

3D Printing

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Our Ink

Cellulose Nanofibrils + Acrylamide Monomers + Clay = Composite Ink

Elastic Anisotropy leads to swelling anisotropy

Encoding Local Anisotropy

Encoding Local Anisotropy

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Bi-Metallic Strips

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

Stress from

$$
\sigma=\frac{\mathrm{P}^{\mathrm{eff}}}{h}
$$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

Bi-Metallic Strips

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

Stress from
fictitious force

$$
\sigma=\frac{\mathrm{P}^{\mathrm{eff}}}{h}
$$

Bending Moment from stress

$$
M^{\mathrm{tot}}=\int z \sigma d z=\frac{\mathrm{P}^{\mathrm{eff}} h}{2}
$$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

Bi-Metallic Strips

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

Stress from
fictitious force

$$
\sigma=\frac{\mathrm{P}^{\mathrm{eff}}}{h}
$$

Bending Moment from stress

$$
M^{\mathrm{tot}}=\int z \sigma d z=\frac{\mathrm{P}^{\mathrm{eff}} h}{2}
$$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

$$
\begin{aligned}
M^{\text {tot }} & =\int_{-a_{2}}^{a_{1}} z \mathrm{E}(z) \varepsilon d z \\
& =\kappa \mathrm{E}_{1} \int_{0}^{a_{1}} z^{2} d z+\kappa \mathrm{E}_{2} \int_{-a_{2}}^{0} z^{2} d z \\
& =\frac{\kappa}{3}\left(\mathrm{E}_{1} a_{1}^{3}+\mathrm{E}_{2} a_{2}^{3}\right)
\end{aligned}
$$

Bi-Metallic Strips

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

Stress from
fictitious force

$$
\sigma=\frac{\mathrm{P}^{\mathrm{eff}}}{h}
$$

Bending Moment from stress

$$
M^{\mathrm{tot}}=\int z \sigma d z=\frac{\mathrm{P}^{\mathrm{eff}} h}{2}
$$

ANALYSIS OF BI-METAL THERMOSTATS

By S. Timoshenko

$$
\begin{aligned}
M^{\text {tot }} & =\int_{-a_{2}}^{a_{1}} z \mathrm{E}(z) \varepsilon d z \\
& =\kappa \mathrm{E}_{1} \int_{0}^{a_{1}} z^{2} d z+\kappa \mathrm{E}_{2} \int_{-a_{2}}^{0} z^{2} d z \\
& =\frac{\kappa}{3}\left(\mathrm{E}_{1} a_{1}^{3}+\mathrm{E}_{2} a_{2}^{3}\right)
\end{aligned}
$$

Moment-stress relationship

$$
\sigma^{\mathrm{tot}}=\frac{M^{\mathrm{tot}}}{2 h}
$$

Bi-Metallic Strips

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (I) and (2) must be equal.'

$$
\varepsilon^{(1)}=\varepsilon^{(2)}
$$

Strain from swelling $\quad \varepsilon^{s}=\alpha$
Strain from curvature $\quad \varepsilon^{\mathrm{s}}=z \kappa$
Strain from stress $\quad \varepsilon=\mathrm{E}^{-1} \sigma^{\text {tot }}=\frac{1}{\mathrm{E}} \frac{M^{\text {tot }}}{2 h}$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

[^0]
Bi-Metallic Strips

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (I) and (2) must be equal."

$$
\varepsilon^{(1)}=\varepsilon^{(2)}
$$

Strain from swelling $\quad \varepsilon^{\mathrm{s}}=\alpha$
Strain from curvature $\quad \varepsilon^{\mathrm{s}}=z \kappa$
Strain from stress $\quad \varepsilon=\mathrm{E}^{-1} \sigma^{\text {tot }}=\frac{1}{\mathrm{E}} \frac{M^{\mathrm{tot}}}{2 h}$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

Fig. 1. Deflection of a bi-metal strip while uniformly heated.

$$
\frac{1}{a_{1}} \int_{0}^{a_{1}}\left(\varepsilon^{\mathrm{s}(1)}+\varepsilon^{\mathrm{e}(1)}(z)+\frac{\sigma^{\text {tot }}}{\mathrm{E}_{1}}\right) d z=\frac{1}{a_{2}} \int_{-a_{2}}^{0}\left(\varepsilon^{\mathrm{s}(2)}+\varepsilon^{\mathrm{e}(2)}(z)+\frac{\sigma^{\text {tot }}}{\mathrm{E}_{2}}\right) d z
$$

Bi-Metallic Strips

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (I) and (2) must be equal.'

$$
\varepsilon^{(1)}=\varepsilon^{(2)}
$$

Strain from swelling $\quad \varepsilon^{\mathbf{s}}=\alpha$
Strain from curvature $\quad \varepsilon^{\mathrm{s}}=z \kappa$
Strain from stress $\quad \varepsilon=\mathrm{E}^{-1} \sigma^{\text {tot }}=\frac{1}{\mathrm{E}} \frac{M^{\mathrm{tot}}}{2 h}$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

Fig. 1. Deflection of a bi-metal strip while uniformly heated.

$$
\begin{aligned}
& \frac{1}{a_{1}} \int_{0}^{a_{1}}\left(\varepsilon^{\mathrm{s}(1)}+\varepsilon^{\mathrm{e}(1)}(z)+\frac{\sigma^{\mathrm{tot}}}{\mathrm{E}_{1}}\right) d z=\frac{1}{a_{2}} \int_{-a_{2}}^{0}\left(\varepsilon^{\mathrm{s}(2)}+\varepsilon^{\mathrm{e}(2)}(z)+\frac{\sigma^{\mathrm{tot}}}{\mathrm{E}_{2}}\right) d z \\
& \alpha_{1}+\frac{a_{1} \kappa}{2}+\frac{1}{\mathrm{E}_{1} a_{1}} \frac{M^{\mathrm{tot}}}{2 h}=\alpha_{2}-\frac{a_{2} \kappa}{2}-\frac{1}{\mathrm{E}_{2} a_{2}} \frac{M^{\mathrm{tot}}}{2 h}, \quad M^{\mathrm{tot}}=\frac{\kappa}{3}\left(\mathrm{E}_{1} a_{1}^{3}+\mathrm{E}_{2} a_{2}^{3}\right)
\end{aligned}
$$

Bi-Metallic Strips

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (I) and (2) must be equal.'

$$
\varepsilon^{(1)}=\varepsilon^{(2)}
$$

Strain from swelling $\quad \varepsilon^{\mathbf{s}}=\alpha$
Strain from curvature $\quad \varepsilon^{\mathrm{s}}=z \kappa$
Strain from stress $\quad \varepsilon=\mathrm{E}^{-1} \sigma^{\text {tot }}=\frac{1}{\mathrm{E}} \frac{M^{\mathrm{tot}}}{2 h}$

ANALYSIS OF BI-METAL THERMOSTATS
By S. Timoshenko

Fig. 1. Deflection of a bi-metal strip while uniformly heated.

$$
\begin{gathered}
\frac{1}{a_{1}} \int_{0}^{a_{1}}\left(\varepsilon^{\mathrm{s}(1)}+\varepsilon^{\mathrm{e}(1)}(z)+\frac{\sigma^{\mathrm{tot}}}{\mathrm{E}_{1}}\right) d z=\frac{1}{a_{2}} \int_{-a_{2}}^{0}\left(\varepsilon^{\mathrm{s}(2)}+\varepsilon^{\mathrm{e}(2)}(z)+\frac{\sigma^{\mathrm{tot}}}{\mathrm{E}_{2}}\right) d z \\
\alpha_{1}+\frac{a_{1} \kappa}{2}+\frac{1}{\mathrm{E}_{1} a_{1}} \frac{M^{\mathrm{tot}}}{2 h}=\alpha_{2}-\frac{a_{2} \kappa}{2}-\frac{1}{\mathrm{E}_{2} a_{2}} \frac{M^{\mathrm{tot}}}{2 h}, \quad M^{\mathrm{tot}}=\frac{\kappa}{3}\left(\mathrm{E}_{1} a_{1}^{3}+\mathrm{E}_{2} a_{2}^{3}\right) \\
\kappa=\frac{6\left(\alpha_{2}-\alpha_{1}\right)(1+m)^{2}}{h\left(3(1+m)^{2}+(1+m n)\left(m^{2}+\frac{1}{m n}\right)\right)}, \quad m=\frac{a_{1}}{a_{2}}, n=\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}
\end{gathered}
$$

A Brief Primer on Curvature

A Brief Primer on Curvature

A Brief Primer on Curvature

$$
k_{2}=-\frac{1}{R_{2}}
$$

Mean (Extrinsic) Curvature: $\quad H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)$
Bending energy

$$
\mathrm{H}=0
$$

$$
H<0
$$

Gaussian (Intrinsic) Curvature: $\quad K=\kappa_{1} \kappa_{2}$ Stretching energy

$$
K<0
$$

$$
K>0
$$

A Geometric Model

$$
g(x, y)=R[\theta(x, y)]\left[\begin{array}{cc}
\alpha_{\|} & 0 \\
0 & \alpha_{\perp}
\end{array}\right] R^{T}[\theta(x, y)]
$$

Gauss's Theorema Egregium
GENERAL INVESTIGATIONS

CURVED SURFACES

$B Y$
KARL FRIEDRICH GAUSS
PRESENTED TO THE ROYAL SOCIETY, OCTOBER 8, 1827
Thus the formula of the preceding article leads of itself to the remarkable
Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.

$$
K(x, y)=K\left(g, \partial_{x} g, \partial_{y} g, \partial_{x x} g, \partial_{x y} g, \partial_{y y} g\right)
$$

A Geometric Model

$$
g(x, y)=R[\theta(x, y)]\left[\begin{array}{cc}
\alpha_{\|} & 0 \\
0 & \alpha_{\perp}
\end{array}\right] R^{T}[\theta(x, y)]
$$

Gauss's Theorema Egregium

GENERAL INVESTIGATIONS

OF
CURVED SURFACES
$B Y$
KARL FRIEDRICH GAUSS
PRESENTED TO THE ROYAL SOCIETY, OCTOBER 8, 1827

Thus the formula of the preceding article leads of itself to the remarkable
 Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.

$$
K(x, y)=K\left(g, \partial_{x} g, \partial_{y} g, \partial_{x x} g, \partial_{x y} g, \partial_{y y} g\right)
$$

$$
K(x, y)=\left(\alpha_{\|}-\alpha_{\perp}\right)\left[\frac{\left(\phi^{2}-1\right) \phi_{x y}-\phi\left(\phi_{x x}-\phi_{v v}\right)}{\left(\phi^{2}+1\right)^{2}}+\frac{\left(3 \phi^{2}-1\right)\left(\phi_{x}^{2}-\phi_{y}^{2}\right)-2 \phi\left(\phi^{2}-3\right) \phi_{x} \phi_{y}}{\left(\phi^{2}+1\right)^{3}}\right]
$$

The Model

Theory of Anisotropic Plates and Shells

Curvature in Monge Gauge $\kappa_{i j}=\partial_{i} \partial_{j} H(x, y)$
Swelling Strain $\quad \varepsilon^{s}=\left[\begin{array}{cc}\alpha_{\|} & 0 \\ 0 & \alpha_{\perp}\end{array}\right]$
Elastic Strain $\quad \varepsilon_{i j}^{\mathrm{e}}=-z \kappa_{i j}$
Strain Tensor

$$
\varepsilon=\varepsilon^{\mathrm{s}}+\varepsilon^{\mathrm{e}} \quad \varepsilon_{i j}(\theta)=R_{i m}(\theta) \varepsilon_{m n} R_{j n}^{T}(\theta)
$$

Elastic Modulus Tensor

$$
\mathrm{E}_{i j k l}(\theta)=R_{i m}(\theta) R_{k p}(\theta) \mathrm{E}_{m n p q} R_{j n}^{T}(\theta) R_{l q}^{T}(\theta)
$$

Stress-Strain Relation $\quad \sigma_{i j}=\mathrm{E}_{i j k l} \varepsilon_{k l}^{\mathrm{e}}$

The Model

Theory of Anisotropic Plates and Shells

Curvature in Monge Gauge $\kappa_{i j}=\partial_{i} \partial_{j} H(x, y)$
Swelling Strain $\quad \varepsilon^{s}=\left[\begin{array}{cc}\alpha_{\|} & 0 \\ 0 & \alpha_{\perp}\end{array}\right]$
Elastic Strain $\quad \varepsilon_{i j}^{\mathrm{e}}=-z \kappa_{i j}$
Strain Tensor

$$
\varepsilon=\varepsilon^{\mathrm{s}}+\varepsilon^{\mathrm{e}}
$$

$$
\varepsilon_{i j}(\theta)=R_{i m}(\theta) \varepsilon_{m n} R_{j n}^{T}(\theta)
$$

Elastic Modulus Tensor

$$
\mathrm{E}_{i j k l}(\theta)=R_{i m}(\theta) R_{k p}(\theta) \mathrm{E}_{m n p q} R_{j n}^{T}(\theta) R_{l q}^{T}(\theta)
$$

Stress-Strain Relation $\quad \sigma_{i j}=\mathrm{E}_{i j k l} \varepsilon_{k l}^{\mathrm{e}}$
Bending Moments $M_{i j}=\int_{-a_{2}}^{a_{1}} z \sigma_{i j} d z=-\int_{-a_{2}}^{a_{1}} z^{2} \mathrm{E}_{i j k l} \kappa_{k l} d z$

$$
=-\int_{0}^{a_{1}} \mathrm{E}_{i j k l}(0) \kappa_{k l} z^{2} d z-\int_{-a_{2}}^{0} \mathrm{E}_{i j k l}(\theta) \kappa_{k l} z^{2} d z
$$

I. Equilibrium Condition

"Due to the fact that there are not external forces acting on the strip, all forces acting over any crosssection of the strip must be in equilibrium"

2. Compatibility Condition

"On the bearing surface of both metals the unit elongation occurring in the longitudinal fibres of metals (I) and (2) must be equal."

The Model

Theory of Anisotropic Plates and Shells

Curvature in Monge Gauge $\kappa_{i j}=\partial_{i} \partial_{j} H(x, y)$
Swelling Strain $\quad \varepsilon^{s}=\left[\begin{array}{cc}\alpha_{\|} & 0 \\ 0 & \alpha_{\perp}\end{array}\right]$
Elastic Strain $\quad \varepsilon_{i j}^{\mathrm{e}}=-z \kappa_{i j}$
Strain Tensor

$$
\varepsilon=\varepsilon^{\mathrm{s}}+\varepsilon^{\mathrm{e}} \quad \varepsilon_{i j}(\theta)=R_{i m}(\theta) \varepsilon_{m n} R_{j n}^{T}(\theta)
$$

Elastic Modulus Tensor

$$
\mathrm{E}_{i j k l}(\theta)=R_{i m}(\theta) R_{k p}(\theta) \mathrm{E}_{m n p q} R_{j n}^{T}(\theta) R_{l q}^{T}(\theta)
$$

Stress-Strain Relation $\quad \sigma_{i j}=\mathrm{E}_{i j k l} \varepsilon_{k l}^{\mathrm{e}}$
Bending Moments $M_{i j}=\int_{-a_{2}}^{a_{1}} z \sigma_{i j} d z=-\int_{-a_{2}}^{a_{1}} z^{2} \mathrm{E}_{i j k l} \kappa_{k l} d z$

$$
=-\int_{0}^{a_{1}} \mathrm{E}_{i j k l}(0) \kappa_{k l} z^{2} d z-\int_{-a_{2}}^{0} \mathrm{E}_{i j k l}(\theta) \kappa_{k l} z^{2} d z
$$

$$
\frac{1}{\alpha_{1}} \int_{0}^{a_{1}}\left(\varepsilon_{i j}^{(1)}+\frac{\mathrm{E}_{i j k l}^{-1}}{a_{1}} M_{k l}(\theta)\right) d z=\frac{1}{\alpha_{2}} \int_{-a_{2}}^{0}\left(\varepsilon_{i j}^{(2)}(\theta)+\frac{\mathrm{E}_{i j k l}^{-1}(\theta)}{a_{2}} M_{k l}(\theta)\right) d z
$$

The Model

$$
\begin{aligned}
& \frac{1}{\alpha_{1}} \int_{0}^{a_{1}}\left(\varepsilon_{i j}^{(1)}+\frac{\mathrm{E}_{i j k l}^{-1}}{a_{1}} M_{k l}(\theta)\right) d z=\frac{1}{\alpha_{2}} \int_{-a_{2}}^{0}\left(\varepsilon_{i j}^{(2)}(\theta)+\frac{\mathrm{E}_{i j k l}^{-1}(\theta)}{a_{2}} M_{k l}(\theta)\right) d z \\
& \text { Given: } \quad \alpha_{\|}, \alpha_{\perp}, \mathrm{E}_{i j k l}, a_{1}, a_{2}, \theta \quad \text { Solve for: } \kappa_{i j}
\end{aligned}
$$

The Model

$$
\begin{aligned}
& \quad \frac{1}{\alpha_{1}} \int_{0}^{a_{1}}\left(\varepsilon_{i j}^{(1)}+\frac{\mathrm{E}_{i j k l}^{-1}}{a_{1}} M_{k l}(\theta)\right) d z=\frac{1}{\alpha_{2}} \int_{-a_{2}}^{0}\left(\varepsilon_{i j}^{(2)}(\theta)+\frac{\mathrm{E}_{i j k l}^{-1}(\theta)}{a_{2}} M_{k l}(\theta)\right) d z \\
& H= \\
& \quad \text { Given: } \alpha_{\|}, \alpha_{\perp}, \mathrm{E}_{i j k l}, a_{1}, a_{2}, \theta \quad \text { Solve for: } \kappa_{i j} \\
& K=-\frac{\alpha_{\|}}{c_{2}-c_{3} \cos (2 \theta)+m^{2}(\theta) \cos (4 \theta)} \quad, \quad c_{i}=c_{i}\left(\mathrm{E}^{(1)}, \mathrm{E}^{(2)}, \mathrm{m}=\mathrm{a}_{1} / \mathrm{a}_{2}\right) \\
& h^{2}
\end{aligned} \frac{c_{4} \sin ^{2}(\theta)}{c_{5}-c_{6} \cos (2 \theta)+m^{4} \cos (4 \theta)} \quad . \quad .
$$

The Model

$$
\frac{1}{\alpha_{1}} \int_{0}^{a_{1}}\left(\varepsilon_{i j}^{(1)}+\frac{\mathrm{E}_{i j k l}^{-1}}{a_{1}} M_{k l}(\theta)\right) d z=\frac{1}{\alpha_{2}} \int_{-a_{2}}^{0}\left(\varepsilon_{i j}^{(2)}(\theta)+\frac{\mathrm{E}_{i j k l}^{-1}(\theta)}{a_{2}} M_{k l}(\theta)\right) d z
$$

Given: $\alpha_{\|}, \alpha_{\perp}, \mathrm{E}_{i j k l}, a_{1}, a_{2}, \theta \quad$ Solve for: $\kappa_{i j}$

$$
H=\frac{\alpha_{\perp}-\alpha_{\|}}{h} \frac{c_{1} \sin ^{2}(\theta)}{c_{2}-c_{3} \cos (2 \theta)+m^{4} \cos (4 \theta)}
$$

$$
K=-\frac{\left(\alpha_{\perp}-\alpha_{\|}\right)^{2}}{h^{2}} \frac{c_{4} \sin ^{2}(\theta)}{c_{5}-c_{6} \cos (2 \theta)+m^{4} \cos (4 \theta)}
$$

$$
, \quad c_{i}=c_{i}\left(\mathrm{E}^{(1)}, \mathrm{E}^{(2)}, \mathrm{m}=\mathrm{a}_{1} / \mathrm{a}_{2}\right)
$$

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Controlling Gaussian Curvature

Controlling Gaussian Curvature

Controlling Gaussian Curvature

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Controlling Gaussian Curvature

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Controlling Gaussian Curvature

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Controlling Gaussian Curvature

$$
\theta=52^{\circ}
$$

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Controlling Mean Curvature

$$
\begin{aligned}
k=3 / 2\left(a_{1}-a_{2}\right) / h & =0.45 / h_{\mathrm{mm}^{-1}} \\
\mathrm{~h}=1.25 \mathrm{~mm} \quad \mathrm{~h}=0.75 \mathrm{~mm} \quad \mathrm{~h} & =0.5 \mathrm{~mm}
\end{aligned}
$$

2.5 mm
$\mathrm{K}=0.36 \mathrm{~mm}^{-1}$

predicted
$\mathrm{K}=0.6 \mathrm{~mm}^{-1}$

$$
k=0.9 \mathrm{~mm}^{-1}
$$

Controlling Mean Curvature

$$
\mathrm{K}^{\mathrm{K}}=3 / 2\left(\mathrm{a}_{1}-a_{2}\right) / \mathrm{h}=0.45 / \mathrm{hmm}
$$

$$
h-105 \mathrm{~mm} h-07 \mathrm{~mm}^{2} \mathrm{~h}-05 \mathrm{~mm}
$$

$$
h=1.25 \mathrm{~mm} \quad \mathrm{~h}=0.75 \mathrm{~mm} \quad \mathrm{~h}=0.5 \mathrm{~mm}
$$

2.5 mm

predicted
$\mathrm{K}=0.36 \mathrm{~mm}^{-1}$
$\mathrm{K}=0.6 \mathrm{~mm}^{-1}$
measured
$\mathrm{K}=0.34 \mathrm{~mm}^{-1}$
$\mathrm{K}=0.61 \mathrm{~mm}^{-1}$
$\mathrm{K}=0.85 \mathrm{~mm}^{-1}$
A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Controlling Mean Curvature

$$
k=3 / 2\left(a_{1}-a_{2}\right) / h=0.45 / \mathrm{hmm}^{-1}
$$

To Twist or Not To Twist, That is the Question

Bottom Layer: 0°
Top Layer: 90°
Bottom Layer: -45°
Top Layer: 45°

To Twist or Not To Twist, That is the Question

 .
To Twist or Not To Twist, That is the Question

 גנונונקנשmirror

rotation by 180°

To Twist or Not To Twist, That is the Question

 आMKMK यातालता

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Forty 4D Folding Flowers

Forty 4D Folding Flowers

PNIPA undergoes a hydrophilic-hydrophobic transition at $40^{\circ} \mathrm{C}$.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Forty 4D Folding Flowers

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Left-handed or Right-handed?

Left-handed or Right-handed?

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Left-handed or Right-handed?

Right-handed

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

The Inverse Problem

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

The Inverse Problem

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

The Inverse Problem

Programming Local Curvatures

$$
H=\frac{\alpha_{\perp}-\alpha_{\|}}{h} \frac{c_{1} \sin ^{2}(\theta)}{c_{2}-c_{3} \cos (2 \theta)+m^{4} \cos (4 \theta)}, \quad K=-\frac{\left(\alpha_{\perp}-\alpha_{\|}\right)^{2}}{h^{2}} \frac{c_{4} \sin ^{2}(\theta)}{c_{5}-c_{6} \cos (2 \theta)+m^{4} \cos (4 \theta)}
$$

$$
\text { Given: } H, K, \alpha_{\|}, \alpha_{\perp}, \mathrm{E}^{(1)}, \mathrm{E}^{(2)} \quad \text { Solve for: } \quad \theta, m=a_{1} / a_{2}
$$

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Programming Local Curvatures

$$
H=\frac{\alpha_{\perp}-\alpha_{\|}}{h} \frac{c_{1} \sin ^{2}(\theta)}{c_{2}-c_{3} \cos (2 \theta)+m^{4} \cos (4 \theta)}, \quad K=-\frac{\left(\alpha_{\perp}-\alpha_{\|}\right)^{2}}{h^{2}} \frac{c_{4} \sin ^{2}(\theta)}{c_{5}-c_{6} \cos (2 \theta)+m^{4} \cos (4 \theta)}
$$

$$
\text { Given: } H, K, \alpha_{\|}, \alpha_{\perp}, \mathrm{E}^{(1)}, \mathrm{E}^{(2)} \quad \text { Solve for: } \quad \theta, m=a_{1} / a_{2}
$$

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Programming Local Curvatures

Programming Local Curvatures

Programming Local Curvatures

Programming Local Curvatures

bottom

A. S. Gladman, EAM, R. Nuzzo, L. Mahadevan, and J. Lewis, Nature Materials (advanced online publication) 2016.

Conclusions and Future Directions

- 3D printing hydrogel ink + cellulose nanofibrils simultaneously encodes anisotropy in swelling and elastic modulus. Complexity is free with additive manufacturing techniques.
- Local swelling anisotropy in a bilayer system generates curvature.
- Elasticity theory of anisotropic plates and shells allows us to predict mean and Gaussian curvatures.
- The inverse problem: How may we design print paths associated with specific target surfaces?
- Platform technology can be used with multi-stimuli responsive inks: light, temperature, electric field, hydration.

Acknowledgements

- Ms. A. Sydney Gladman - Harvard SEAS
- Prof. L. Mahadevan - Harvard SEAS
- Prof. Jennifer Lewis - Harvard SEAS
- NSF MRSEC DMR I4-20570
- NSF DMREF I5-33985
- Army Research Office Award W9 | INF-I 3-0489

Acknowledgements

- Ms. A. Sydney Gladman - Harvard SEAS
- Prof. L. Mahadevan - Harvard SEAS
- Prof. Jennifer Lewis - Harvard SEAS
- NSF MRSEC DMR I4-20570
- NSF DMREF I5-33985
- Army Research Office Award W9 I I NF- I 3-0489

[^0]: Fig. 1. Deflection of a bi-metal strip while uniformly heated.

