kitp sheets16 talk feb 1st 2016 narayanan menon

wrapping fluids with thin sheets

Typical von Karman number: $(Width/thickness)^2 \sim (2 \text{ cm/}50 \text{ nm})^2 \sim 10^{11}$

Range of vK: 10^9 to 10^{13}

theory Vincent Démery, B. Davidovitch, C. Santangelo experiments Joey Paulsen, Tom Russell

Molecules and particles are traditionally used as surfactants

These surfactant layers are typically <u>fluid</u>.

Goal: assemble the tools to use flexible sheets as *elastic* surfactants.

Advantages of solid films

impart mechanical rigidity
support arbitrary shapes
preserve spatial chemical/optical/electrical patterning
more impervious

Associated science problems

 Wrapped interface or drop Shapes, stability, mechanics

Dynamics of delivery
 Time-scales, barriers

Collective properties
 Rheology

Wrapping a drop

- Gain in surface energy ~γ area
- Cost in energy to bend and stretch the sheet

Capillary origami

₩____

Py, Reverdy, Baroud, Roman, Bico, 2008

 $vK \sim (W/t)^2 = (few mm/50 \mu m)^2 \sim 5.10^3$

- Bending torque balances capillary forces
- Shapes with flaps cut to allow pure bending

Now for something thinner....

(but why?)

wrinkles, crumples

Polygonal shapes

folds, crumples

How to understand this sequence of shapes?

Wrinkles, folds, crumples, all interacting on a curved surface

Maybe mechanics is unimportant?

Wrapping with thin sheets

Describe all shapes with a simple equation:

Energy, $U = \gamma A_{free}$

Constraint: free 'compression', but no stretching

Pure geometry, no material parameters!

Wrapping with thin sheets

Describe all shapes with a simple equation:

Energy,
$$U = \gamma A_{free}$$

Constraint: free 'compression', but no stretching

Explains axisymmetric shape

Not section of a sphere!

Section of mylar balloon (Paulsen 1994) or parachute (Taylor 1919)

This shape maximizes volume enclosed by two discs with no stretching along the radial direction

Simulation also finds broken-axisymmetry shape

Parachute/mylar balloon no longer the best for W/R > 1.4

Construct broken-axisymmetry shape

Construction predicts non-axisymmetric shapes

Predicts which polygonal shape is best

Anticipates 2-fold shapes

Samosa less efficient than empañada

Open issues

Don't know the axisymmetry breaking threshold

Open issues

Don't know whether folds first occur at finite W/R

Open issues

At near complete wrapping, surface energy vanishes, so mechanics must re-emerge.

How does this affect shape selection?

Properties near full-wrapping

Pressure peaks and then vanishes as you approach complete wrapping

Implications

 A 'thin' sheet spontaneously achieves the highest wrapping efficiency No need for careful design
 Wrinkles, crumples, folds provide many pathways for compression

- Doesn't rely on material parameters
 Robust platform on which you can overlay functionality
- A new optimization problem
 Maximal (incomplete) coverage of a fixed volume

Wrapping with a strip

For a given starting shape, what's the best wrapping possible?

For a fixed area, what the best starting shape?

Wrapping with a splash

Fluorinert drop into water

Impact wrapping

Where does energy go?

Sensitivity to initial velocity?

Wrapping with a splash - recapture

Thanks

Joey Paulsen
Deepak Kumar
Hunter King
Jooyoung Chang
Tom Russell

Vincent Demery
Benny Davidovitch
Chris Santangelo
Dominic Vella

WM Keck Foundation for financial support

