What's Happening with Dimensional Reduction?

KITP workshop on Stochastic Geometry and Field Theory, August 2006

In this talk I will review the dimensional reduction story and discuss recent exact results on dimensional reduction for branched polymers (BP) and directed branched polymers (DBP) ${ }^{\mathrm{ab}}$

Outline:

1. Dimensional Reduction and the Random Field Ising Model
2. Dimensional Reduction and Branched Polymers
3. Exact results on BP and DBP

- Identities between models in different dimensions
- How it works: Forest-Root formulas and supersymmetry
- Airy function crossover to the mean field limit

[^0]
Random Field Ising Model

- Parisi-Sourlas argue ${ }^{\text {a }}$ that correlations and exponents of the RFIM can be deduced from the pure Ising model in 2 dimensions less.
- Seems to imply no long-range order in 3 dimensions (equivalence with 1-d Ising model)
- Imry-Ma argumentb For a contour with diameter L, the random-field fluctuations inside are of order $L^{d / 2}$.
- The contour energy L^{d-1} dominates if $d>2$.
- Implies there is long-range order in 3 dimensions

Loopholes in both arguments

- Multiple extrema wreck the dimensional reduction argument
- Contours may adjust to the random field configuration and wreck the Imry-Ma argument

[^1]Rigorous work goes against dimensional reduction for RFIM

- How to make Imry-Ma argument simultaneously for all contours surrounding a site ${ }^{\text {a }}$
- Proof of long-range order at $T=0$ in $d=3$ (going beyond the single-contour approximation $)^{b}$
- Proof of long-range order at low $\mathrm{T}^{\text {c }}$

Recent work attempts to understand the breakdown of dimensional reduction

- Bound states de
- Functional Renormalization Group ${ }^{f}$

[^2]
Branched Polymers

Parisi and Sourlas predicted in 1981 that BP falls into the universality class of the Yang-Lee edge in two fewer dimensions ${ }^{\text {a }}$

But can we trust the argument, given the failure of dimensional reduction for the RFIM?

Numerics ${ }^{\text {b }}$ support dimensional reduction, but is it exact?

We prove an equivalence between BP and the Hard-Core gas at negative activity in two fewer dimensions (which is in the Yang-Lee class).

Also between DBP and the Hard-Core gas at negative activity in one fewer dimension.

[^3]
Branched Polymers

On the lattice:

A lattice BP is a finite connected set of nearest-neighbor bonds with no cycles.

The generating function can be written as

$$
Z_{\mathrm{BP}}(z)=\sum_{N=1}^{\infty} \frac{z^{N}}{(N-1)!} \sum_{T} \sum_{y_{2}, \ldots, y_{N}} \prod_{j i \in T} V_{j i} \prod_{j i \notin T} U_{j i}
$$

where $V_{j i}:=\delta_{\left|y_{j}-y_{i}\right|, 1}$ and $U_{j i}:=1-\delta_{y_{j}, y_{i}}$ enforce the adjacency and loop-free conditions, respectively. Here T is a tree graph on $\{1, \ldots, N\}$ and y_{i} is the position of the $i^{\text {th }}$ vertex.

Branched Polymers in \mathbb{R}^{D+2}

A branched polymer consists of

1. A tree graph T on $1, \ldots, N$ and
2. An embedding $\mathbf{y}=\left\{y_{i}\right\}_{i=1, \ldots, N}$ into \mathbb{R}^{D+2} such that

- if $i j \in T$ then $\left|y_{i j}\right|=1$ and
- if $i j \notin T$ then $\left|y_{i j}\right| \geq 1$.

The generating function for (rooted) branched polymers is

$$
Z_{\mathrm{BP}}(z)=\sum_{N=1}^{\infty} \frac{z^{N}}{(N-1)!} \sum_{T} \int d y_{2} \cdots d y_{N} \prod_{j i \in T} V_{j i} \prod_{j i \notin T} U_{j i}
$$

where

$$
\begin{aligned}
U_{j i} & :=U\left(\left|y_{j}-y_{i}\right|^{2}\right) \\
V_{j i} & :=2 U^{\prime}\left(\left|y_{j}-y_{i}\right|^{2}\right)
\end{aligned}
$$

Directed Branched Polymers in $\mathbb{R}_{+} \times \mathbb{R}^{D}$
$Z_{\mathrm{DBP}}(z)$ is given by the same formula but with

$$
\begin{gathered}
y_{i}=\left(t_{i}, x_{i}\right) \in \mathbb{R}_{+} \times \mathbb{R}^{D} \\
t_{j}>t_{i} \text { for } j i \in T \\
U_{j i}=U\left(\left|t_{j}-t_{i}\right|, x_{j}-x_{i}\right) \\
V_{j i}=U_{j i}^{\prime} \text { where } U^{\prime}(t, x)=\frac{\partial}{\partial t} U(t, x)
\end{gathered}
$$

Examples

Figure 1: A branched polymer in \mathbb{R}^{2} (left) and a directed branched polymer in \mathbb{Z}^{2} (right).

For the BP model on the left, take $U_{i j}=\vartheta\left(t_{i j}-1\right)$.
For the DBP model on the right, take $U_{i j}=1-I\left(x_{i j}\right) \vartheta\left(1-t_{i j}\right)$, where $I(x)$ is the indicator function of a set of "neighbors" in the lattice.

Theorem 1

For all z such that the right-hand side converges absolutely,

$$
\rho_{\mathrm{HC}}(z)=\left\{\begin{array}{l}
-2 \pi Z_{\mathrm{BP}}\left(-\frac{z}{2 \pi}\right) \\
-Z_{\mathrm{DBP}}(-z)
\end{array}\right.
$$

Here

$$
\begin{gathered}
Z_{\mathrm{HC}}(z)=\sum_{N=0}^{\infty} \frac{z^{N}}{N!} \int_{\Lambda^{N}} d x_{1} \cdots d x_{N} \prod_{1 \leq i<j \leq N} U_{i j} \\
p(z)=\lim _{\Lambda \nearrow S} \frac{1}{|\Lambda|} \log Z_{\mathrm{HC}}(z) ; \quad \rho_{\mathrm{HC}}(z)=z \frac{d}{d z} p(z) .
\end{gathered}
$$

S is \mathbb{R}^{D} or (for some models of DBP) \mathbb{Z}^{D}.

Exact calculations in low dimension:
LHS is computable for $D=0,1$ so in dimension $D+2=2$,

$$
Z_{\mathrm{BP}}(z)=\frac{z}{1-2 \pi z}
$$

For continuous space, dimension $D+2=3$ (BP), $D+1=2$ (DBP)

$$
2 \pi Z_{\mathrm{BP}}\left(\frac{z}{2 \pi}\right)=z \frac{d}{d z} T(z)=\sum_{N=1}^{\infty} \frac{N^{N} z^{N}}{N!}=Z_{\mathrm{DBP}}(z)
$$

On the lattice, $D+1=2$ (DBP)

$$
Z_{\mathrm{DBP}}(z)=\frac{1}{2}\left(\frac{1}{\sqrt{1-4 z}}-1\right)=\sum_{N=1}^{\infty} \frac{[2 N-1]!!2^{N-1} z^{N}}{N!}
$$

Consequences for Critical Exponents

Theorem 1 implies that

$$
\alpha_{\mathrm{HC}}=\gamma_{\mathrm{BP}}
$$

because

singularity of $Z_{\mathrm{BP}} \sim$ singularity of $\rho_{\mathrm{HC}} \sim$ singularity of Z_{DBP}

$$
\left(z-\tilde{z}_{c}\right)^{1-\gamma_{\mathrm{BP}}} \quad \sim\left(z-z_{c}\right)^{1-\alpha_{\mathrm{HC}}} \sim\left(z-\bar{z}_{c}\right)^{1-\gamma_{\mathrm{DBP}}} .
$$

Theorem 2

$G_{\mathrm{HC}}(0, x ; z)= \begin{cases}-2 \pi \int d^{2} w G_{\mathrm{BP}}\left(0, y ; \frac{-z}{2 \pi}\right), & y=(w, x) \in \mathbb{C} \times \mathbb{R}^{D} \\ -\int_{0}^{\infty} d t G_{\mathrm{DBP}}(0, y ;-z), & y=(t, x) \in \mathbb{R}_{+} \times S\end{cases}$
Theorem 2 implies that

$$
\nu_{\mathrm{BP}}=\nu_{\mathrm{HC}}=\nu_{\mathrm{DBP}}^{\perp}
$$

and for $D \geq 1$ that $\eta_{\mathrm{BP}}=\eta_{\mathrm{HC}}$.
Define $\theta_{\mathrm{BP}}, \theta_{\mathrm{DBP}}$ from

$$
Z_{\mathrm{BP}}(z)=z \frac{d}{d z} \sum_{N=1}^{\infty} c_{N} z^{N}, \quad Z_{\mathrm{DBP}}(z)=\sum_{N=1}^{\infty} d_{N} z^{N}
$$

with

$$
c_{N} \sim \tilde{z}_{c}^{-N} N^{-\theta_{\mathrm{BP}}}, \quad d_{N} \sim \bar{z}_{c}^{-N} N^{-\theta_{\mathrm{DBP}}}
$$

Then $\theta_{\mathrm{BP}}=3-\gamma_{\mathrm{BP}}$, and $\theta_{\mathrm{DBP}}=2-\gamma_{\mathrm{DBP}}$.

Critical Exponent Results

$\begin{gathered} \mathrm{HC} \\ \operatorname{dim} D \end{gathered}$	$\begin{gathered} \text { DBP } \\ \operatorname{dim} D+1 \end{gathered}$	$\begin{gathered} \mathrm{BP} \\ \operatorname{dim} D+2 \end{gathered}$	$\begin{aligned} & \alpha_{\mathrm{HC}} \\ = & \gamma_{\mathrm{BP}} \\ = & \gamma_{\mathrm{DBP}} \end{aligned}$	$\theta_{\text {DBP }}$	$\theta_{\text {BP }}$	$\begin{array}{\|c} \nu_{\mathrm{HC}} \\ =\nu_{\mathrm{BP}} \\ =\nu_{\mathrm{DBP}}^{\perp} \end{array}$	$\begin{aligned} & \eta_{\mathrm{HC}} \\ = & \eta_{\mathrm{BP}}\end{aligned}$
0	1	2	2	0	1		
1	2	3	$\frac{3}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	-1
2	3	4	$\frac{7}{6}$	$\frac{5}{6}$	$\frac{11}{6}$	$\frac{5}{12}$	$-\frac{4}{5}$
MFT $D>6$	$D>7$	$D>8$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{1}{4}$	0

Now rigorous
ν_{HC} can be obtained from α_{HC} by hyperscaling $D \nu=2-\alpha$
$\alpha_{\mathrm{HC}}(2)$ from Baxter's solution to Hard Hexagon Model
$\eta_{\mathrm{HC}}(2)$ from CFT or $\alpha_{\mathrm{HC}}=\left(2-\eta_{\mathrm{HC}}\right) \nu_{\mathrm{HC}}$

Note: the Yang-Lee edge exponent σ equals $1-\alpha_{\mathrm{HC}}$. When combined with the relations above, this leads to the Parisi-Sourlas relation

$$
\theta_{\mathrm{BP}}(D+2)=2+\sigma(D)
$$

and its analogue for DBP:

$$
\theta_{\mathrm{DBP}}(D+1)=1+\sigma(D)
$$

Relation with the Yang-Lee Edge

Repulsive gases at negative activity are described by an $i \varphi^{3}$ or Yang-Lee edge field theory.
(same universality class) ${ }^{\text {a }}$
To see this, consider the repulsive weight

$$
U\left(\left|x_{i j}\right|^{2}\right)=e^{-v\left(\left|x_{i j}\right|^{2}\right)}=e^{-u\left(x_{i j}\right)} \text { with } \hat{u}(k)>0
$$

u is a repulsive, smooth, decaying two-body potential
By the Sine-Gordon transformation, the repulsive gas
$Z_{\mathrm{HC}}(z)=\sum_{N=0}^{\infty} \frac{z^{N}}{N!} \int_{\Lambda^{N}} d x_{1} \cdots d x_{N} \exp \left[-\beta \sum_{1 \leq i<j \leq N} u\left(x_{i j}\right)\right]$
can be written as a $-\tilde{z} e^{i \varphi}$ field theory. With $\tilde{z}=z e^{v(0) / 2}$, we have

$$
Z_{\mathrm{HC}}(z)=\int \exp \left[\int_{\Lambda} d x \tilde{z} e^{i \varphi(x)}\right] \frac{e^{-\frac{1}{2}\left\langle\varphi, u^{-1} \varphi\right\rangle}}{\mathcal{N}}[d \varphi]
$$

If \tilde{z} is negative enough, this action looks critical.
Lowest order term in action is $i \varphi^{3}$.
(Compare with Ising model in sufficiently large imaginary field)

[^4]
Crossover to Mean-Field BP ${ }^{\text {ª }}$

Take the mean field limit for two-dimensional BP by letting $v=v(0)$ be small and z be large so that a redefined $\tilde{z}=z v e^{v / 2}$ is fixed. Then

$$
\log \int_{-\infty}^{\infty} \exp \left[-\frac{1}{v}\left(\tilde{z} e^{i \varphi}+\frac{1}{2} \varphi^{2}\right)\right] \frac{d \varphi}{\sqrt{2 \pi v}}=-2 \pi Z_{\mathrm{BP}, v}\left(\frac{z}{2 \pi}\right)
$$

Using the method of steepest descent, the integral is

$$
\log \int \exp \left[\frac{1}{v}\left(\frac{i \varphi^{3}}{6}+i t \varphi+t-\frac{1}{2}\right)\right] \frac{d \varphi}{\sqrt{2 \pi v}}
$$

where $t=\frac{\tilde{z}_{c}-\tilde{z}}{\tilde{z}_{c}}$ (neglecting terms that are unimportant in the crossover regime $t \sim v^{2 / 3}$). The singular part is an Airy function, the same as in Cardy's analysis of the crossover from area-weighted SAL to SAL $\left.\right|^{\text {b }}$

[^5]
Forest-Root Formula

Let $f(\mathbf{t})$ depend on $\mathbf{t}=\left(t_{i j}\right),\left(t_{i}\right)$ for $1 \leq i<j \leq N$.
Assume $f \rightarrow 0$ as $t_{i} \nearrow \infty$.
Let $t_{i j}=\left|w_{i}-w_{j}\right|^{2}, t_{i}=\left|w_{i}\right|^{2}$ with $w_{i} \in \mathbb{C}$.
Then

$$
f(\mathbf{0})=\sum_{(F, R)} \int_{\mathbb{C}^{N}} f^{(F, R)}(\mathbf{t})\left(\frac{d^{2} w}{-\pi}\right)^{N}
$$

The sum is over forests F and roots R (collections of bonds $i j$, and vertices i, respectively) such that each tree of F has exactly one root R.

Example: $N=1, F=\emptyset, R=\{1\}$.

$$
f(0)=\int_{\mathbb{C}} f^{\prime}(t) \frac{d^{2} w}{-\pi}=-\int_{0}^{\infty} f^{\prime}(t) d t
$$

Supersymmetry

Replace

$$
t_{i} \text { with } \tau_{i}=w_{i} \bar{w}_{i}+\frac{d w_{i} \wedge d \bar{w}_{i}}{2 \pi i}
$$

and

$$
t_{i j} \text { with } \tau_{i j}=w_{i j} \bar{w}_{i j}+\frac{d w_{i j} \wedge d \bar{w}_{i j}}{2 \pi i}
$$

(Recall that $w_{i j}=w_{i}-w_{j}$).
$f(\underline{\tau})$ is defined by its Taylor series.
Then I claim that a "localization" formula holds:

$$
\int_{\mathbb{C}^{N}} f(\underline{\tau})=f(\mathbf{0})
$$

This formula becomes the Forest-Root formula when expanded out.
The absence of loops comes from the fact that $(d w \wedge d \bar{w})^{G}=0$ if G has a loop.

This can be proven by deforming the problem to the independent case ($N=1$), using ideas from ${ }^{\text {a }}$

[^6]
Decoupling in Two Extra Dimensions

Use the Forest-Root formula to decouple the spheres in the HC gas by moving them apart in two extra dimensions.

At fixed N we have an integral over $x \in \mathbb{R}^{D}$ of

$$
f(\mathbf{0})=\prod_{1 \leq i<j \leq N} U\left(\left|x_{i j}\right|^{2}\right)
$$

where $t_{i}=\left|w_{i}\right|^{2}=0$.
Extend this to $w \neq 0$ by writing

$$
f(\mathbf{t})=\prod_{1 \leq i<j \leq N} U\left(\left|x_{i j}\right|^{2}+t_{i j}\right) \times(\text { large } t \text { cutoff })
$$

Apply the Forest-Root formula,

$$
f(\mathbf{0})=\sum_{(F, R)} \int_{\mathbb{C}^{N}} f^{(F, R)}(\mathbf{t})\left(\frac{d^{2} w}{-\pi}\right)^{N}
$$

- Each $\frac{d}{d t_{i j}}$, when applied to one of the U 's, becomes $\frac{1}{2}$ surface measure for the combined integrals over $y_{i j}=\left(x_{i j}, w_{i j}\right)$.
- Spheres are stuck together according to the forest F.
- The trees of the forest decouple in the limit as the large t cutoff is removed. All but one cancel the normalization $Z_{\mathrm{HC}}(z)$.
- ρ_{HC} is evaluated as a sum/integral over branched polymers.

A Forest-Root Formula on \mathbb{R}_{+}^{N}

The following one-dimensional Forest-Root formula does the same job for DBP ${ }^{\text {a }}$

Let $t_{i} \in \mathbb{R}_{+}, i=1, \ldots, N$. and put $t_{i j}=\left|t_{i}-t_{j}\right|$
For any $f(\mathbf{t})$ which vanishes as $t_{i} \nearrow \infty$,

$$
f(\mathbf{0})=\sum_{(F, R)} \int_{\mathbb{R}_{+}^{N}} \prod_{r \in R}\left[-d t_{r}\right] \prod_{j i \in F}\left[-d\left(t_{j}-t_{i}\right)\right] f^{(F, R)}(\mathbf{t})
$$

Each link of T connects a vertex j to a vertex i which is one step closer than j to the root along T.
The integration region is $\left\{t_{r} \geq 0, r \in R\right.$ and $\left.t_{j}-t_{i} \geq 0, j i \in F\right\}$ $N=1: f(0)=-\int_{0}^{\infty} f^{\prime}(t) d t . N=2:$ chevron interpolation in \mathbb{R}_{+}^{2} Theorems 1 and 2 for DBP follow as in the BP case.
${ }^{\text {a }}$ J. Imbrie, J. Phys. A: Math. Gen. 37, L137 (2004)

[^0]: ${ }^{\text {a }}$ D. Brydges and J. Imbrie, Ann. Math. 158, 1019 (2003) and J. Statist. Phys. 110, 503 (2003).
 b J. Imbrie, Annales Henri Poincare 4, S445 (2003) and J. Phys. A: Math. Gen. 37, L137 (2004).

[^1]: ${ }^{\text {a }}$ G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)
 ${ }^{\text {b }}$ Y. Imry and S. Ma, Phys. Rev. Lett. 39, 1399 (1975)

[^2]: ${ }^{\text {a }}$ D. Fisher, J. Froehlich, T. Spencer, Jour. Stat. Phys. 34, 863 (1984)
 ${ }^{\text {b }}$ J. Imbrie, Commun. Math. Phys. 98, 145 (1985)
 ${ }^{\text {c J J. Bricmont and A. Kupiainen, Commun. Math. Phys. 116, } 539 \text { (1988) }}$
 ${ }^{\text {d}}$ E. Brezin and C. de Dominicus, Europhys. Lett. 4413 (1998)
 ${ }^{e}$ G. Parisi and N. Sourlas, Phys. Rev. Lett. 89257204 (2002)
 ${ }^{\text {f }}$ P. Le Doussal, K. Wiese, and P. Chauve, Phys. Rev. E69 026112 (2004) and references therein

[^3]: ${ }^{\text {a }}$ G. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981)
 ${ }^{\mathrm{b}}$ U. Glaus, J. Phys. A: Math. Gen. 18, L609 (1985)

[^4]: ${ }^{\text {a}}$ S.-N. Lai and M. E. Fisher, J. Chem. Phys. 103, 8144 (1995); Y. Park and M. E. Fisher, Phys. Rev. E60, 6323 (1999), cond-mat/9907429.

[^5]: ${ }^{\text {a J J. Z. Imbrie, Ann. Henri Poincaré 4, } 421 \text { (2003), math-ph/0303015. }}$
 bJ. L. Cardy, J. Phys. A34, L665 (2001), cond-mat/0107223.

[^6]: ${ }^{\text {a}}$ E. Witten, J. Geom. Phys. 9, 303 (1992), hep-th/9204083.

