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In this talk | will review the dimensional reduction story and discuss
recent exact results on dimensional reduction for branched polymers
(BP) and directed branched polymers (DBP)2[°

Outline:
1. Dimensional Reduction and the Random Field Ising Model
2. Dimensional Reduction and Branched Polymers

3. Exact results on BP and DBP
e |dentities between models in different dimensions
e How it works: Forest-Root formulas and supersymmetry

e Airy function crossover to the mean field limit

2 D. Brydges and J. Imbrie, Ann. Math. 158, 1019 (2003) and J. Statist. Phys. 110, 503

(2003).
© J. Imbrie, Annales Henri Poincare 4, S445 (2003) and J. Phys. A: Math. Gen. 37,

L137 (2004).



Random Field Ising Model

e Parisi-Sourlas argue?|that correlations and exponents of the RFIM
can be deduced from the pure Ising model in 2 dimensions less.

e Seems to imply no long-range order in 3 dimensions (equivalence

with 1-d Ising model)

e Imry-Ma argumenﬂ For a contour with diameter L, the random-field
fluctuations inside are of order L%/2.

e The contour energy L4~ ! dominates if d > 2.

e |Implies there is long-range order in 3 dimensions

Loopholes in both arguments
e Multiple extrema wreck the dimensional reduction argument

e Contours may adjust to the random field configuration and wreck the

Imry-Ma argument

4@G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)
°Y. Imry and S. Ma, Phys. Rev. Lett. 39, 1399 (1975)



Rigorous work goes against dimensional reduction for RFIM

e How to make Imry-Ma argument simultaneously for all contours

surrounding a site [

e Proof of long-range order at 7' = 0 in d = 3 (going beyond the

single-contour approximationﬂ

e Proof of long-range order at low T[°]

Recent work attempts to understand the breakdown of dimensional

reduction

e Bound states

e Functional Renormalization Group

aD. Fisher, J. Froehlich, T. Spencer, Jour. Stat. Phys. 34, 863 (1984)

°J. Imbrie, Commun. Math. Phys. 98, 145 (1985)
¢J. Bricmont and A. Kupiainen, Commun. Math. Phys. 116, 539 (1988)

dE. Brezin and C. de Dominicus, Europhys. Lett. 44 13 (1998)
®G. Parisi and N. Sourlas, Phys. Rev. Lett. 89 257204 (2002)

'P. Le Doussal, K. Wiese, and P. Chauve, Phys. Rev. E69 026112 (2004) and references

therein



Branched Polymers

Parisi and Sourlas predicted in 1981 that BP falls into the universality

class of the Yang-Lee edge in two fewer dimensionsﬂ

But can we trust the argument, given the failure of dimensional reduction
for the RFIM?

Numericsﬁ support dimensional reduction, but is it exact?

We prove an equivalence between BP and the Hard-Core gas at
negative activity in two fewer dimensions (which is in the Yang-Lee

class).

Also between DBP and the Hard-Core gas at negative activity in one

fewer dimension.

a@G. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981)
Y. Glaus, J. Phys. A: Math. Gen. 18, L609 (1985)



Branched Polymers

On the lattice:

A lattice BP is a finite connected set of nearest-neighbor bonds with no
cycles.

The generating function can be written as

o

Zpp(2) = N1 Y > M wvillu

:1 T Yy2,.- YN ]ZET j’L%T

where V;; 1= 5|yj—yi|,1 and Uj; == 1 — 5%,% enforce the adjacency
and loop-free conditions, respectively. Here I’ is a tree graph on
{1,..., N} and y; is the position of the i*" vertex.



Branched Polymers in R”+?
A branched polymer consists of
1. AtreegraphT'on1,..., N and
2. An embedding y = {y; }i=1.... n into RPT2 such that
o ifij € T then |y;;| = 1 and
o ifij ¢ T then |y;;| > 1.

The generating function for (rooted) branched polymers is

oo

ZBP(Z) _1 'Z/dyQ dyN H Vyz H sza

Nzl JjieT jigT

where
Uji = U(ly; — vil?)
Vi :=2U"(ly; — vil*)-

Directed Branched Polymers in R, x R”

ZpBp(2) is given by the same formula but with

yi = (ti, ;) € Ry x RP

t;>t; for jieT
Uji = U([t; — til, x5 — x;)
0

Vii = U where U'(t,z) = aU(t,x)



Examples

Figure 1: A branched polymer in R? (left) and a directed branched poly-
mer in Z? (right).

For the BP model on the left, take  U;; = ¥(t;; — 1).
For the DBP model on the right, take U;; = 1 — I(z;;)0(1 — t;5),

where I (x) is the indicator function of a set of “neighbors” in the lattice.



Theorem 1

For all z such that the right-hand side converges absolutely,
—27TZBP (—%) .
_ZDBP (—Z)

puc(z) =

Here

N=0 1<i<j<N
(2) = lim — log Zio(=): (2) = =L p(2)
p(2) = lim ryrlog Zno(z); - puo(2) = 2 -p(2);

S is RY or (for some models of DBP) Z%.

Exact calculations in low dimension:

LHS is computable for D = 0, 1 so in dimension D + 2 = 2,

z
A = :
Bp () 1 —27z
For continuous space, dimension D + 2 = 3 (BP), D + 1 = 2 (DBP)
; d = NN N
2 Zpp (5) = 2-T(2) = Nz_l ~— = Zpzp(2)

On the lattice, ) + 1 = 2 (DBP)

1 1 2N — 112N 1N
Z = — —_ 1 p—
pBP(2) 9 ( 1 1. ) 1\72:31 N




Consequences for Critical Exponents

Theorem 1 implies that
QHC = VBP

because

singularity of Zgp  ~ singularity of ppc ~  singularity of Zppp
(Z _ Zc)l TBP ~ (Z — Zc)l_O‘HC ~ (Z _ Zc)l YDBP
Theorem 2
—2m [ d*wGrp (O,y; ;—j), y = (w,z) € C x RY
Guc(0,x;2) =
o fooo dtGppp (07 Y, _2)7 Yy = (t, x) - R_|_ X S

Theorem 2 implies that

L
VBp = VHC = VpRp
and for D > 1 that 7pp = Nuc.

Define Opp, Oppp from

d < N
ZBP(Z) = Z@ Z CNZ ZDBP Z dNZ
N=1
with
CN ~ 5C_NN_9BP, dn ~ Z_NN Ypsp

Then gp = 3 — ygp, and ppp = 2 — VYpBP.



Critical Exponent Results

QHC VHC yiste
HC DBP BP = YBP — UVBP | = T7BP
dimD dmD+1|dimD-+2| = ~vpsp |pBP | OBP | = VDRP

0 1 2 2 0 | 1
1 2 |8 | d a3 s |
: 3 4 6 | s | % | 1 | s
MFTD>6| D>T7 | D>38 2 s 13 5 0

Now rigorous
Ve can be obtained from ¢ by hyperscaling Dv = 2 — «
apc(2) from Baxter’s solution to Hard Hexagon Model

nuc(2) from CFT or appc = (2 — e )vuc

Note: the Yang-Lee edge exponent o equals 1 — agc. When combined
with the relations above, this leads to the Parisi-Sourlas relation

and its analogue for DBP:

HDBP(D + 1) =1+ O'(D)



Relation with the Yang-Lee Edge

Repulsive gases at negative activity are described by an z'g03 or
Yang-Lee edge field theory.

(same universality class)]

To see this, consider the repulsive weight
U(|zi;|?) = e~V 1") = g=ulis) i u(k) >0
u Is a repulsive, smooth, decaying two-body potential

By the Sine-Gordon transformation, the repulsive gas

Zuc(z ZN'/ dry---dryexp | —0 Z u(i;)

can be written as a — Ze'? field theory. With 2 = ze?(9)/2 we have

Zuc(z) = /exp [/A dz éeiw(x)] e_%<i’;1¢> dp).

If Z is negative enough, this action looks critical.

Lowest order term in action is igpS.

(Compare with Ising model in sufficiently large imaginary field)

2S.-N. Lai and M. E. Fisher, J. Chem. Phys. 103, 8144 (1995); Y. Park and M. E. Fisher,
Phys. Rev. E60, 6323 (1999), cond-mat/9907429.



Crossover to Mean-Field BP?

Take the mean field limit for two-dimensional BP by letting v = v(0) be
small and z be large so that a redefined z = zve?/? s fixed. Then

> 1 - 1 dy 2z
1 L (zee Lo — 2 Zpp, ()
og/_OO exp[ - (ze + 5 )] \/% T4BP, o

Using the method of steepest descent, the integral is

1 [(ip> | 1 dp
log [ exp - ?+ztgp+t—§ Noromh

where t = ch—_g (neglecting terms that are unimportant in the crossover
2/3)

regime ¢ ~ v . The singular part is an Airy function, the same as in

Cardy’s analysis of the crossover from area-weighted SAL to SAL|E|

aJ. Z. Imbrie, Ann. Henri Poincaré 4, 421 (2003), math-ph/0303015.
°J. L. Cardy, J. Phys. A34, L665 (2001), cond-mat/0107223.



Forest-Root Formula

Let f(t) dependont = (t;;),(t;)for1 <i < j < N.
Assume f — Oast; ~ oo.
Let tz‘j == |’LUZ — wj|2, t; = "LUZ|2 with w; € C.
Then
R 2w\
0= % [ rrnw (2E)
CN —7T
(F,R)

The sum is over forests I and roots R (collections of bonds %7, and
vertices 1, respectively) such that each tree of F' has exactly one root

—_ —_— —_— —_— —_— —_— _— —_— —_— —_— _— e e e e e e — — = =

T T e
: tree _ . . N "
I tree ; N.
N PR ; ;
| o 5 5
| tree
I 2 X :
e L .
: tree
forest

Example: N =1, FF =0, R = {1}.
de o0
— ! _— = — ! d
1(0) /Cf<t) . / I (e



Supersymmetry

Replace
. _ dwz N\ d’U_JZ
t; with 7, = w;w; + :
271
and
. _ dwij N\ d’U_Jz'j
tij with Tij = Wi W;j + 9 .

(Recall that w;; = w; — w;).
f(7) is defined by its Taylor series.

Then | claim that a “localization” formula holds:
f(z) = f(0).
(CN
This formula becomes the Forest-Root formula when expanded out.

The absence of loops comes from the fact that (dw A dw)® = 0if G
has a loop.

This can be proven by deforming the problem to the independent case
(N = 1), using ideas from?]

aE. Witten, J. Geom. Phys. 9, 303 (1992), hep-th/9204083.



Decoupling in Two Extra Dimensions

Use the Forest-Root formula to decouple the spheres in the HC gas by

moving them apart in two extra dimensions.

At fixed N we have an integral over © € R of

where t; = |w;|* = 0.
Extend this to w # 0 by writing
f(t) = H U(|wi;|* +ti;) x (large t cutoff)
1<i<j<N
Apply the Forest-Root formula,

-5 [ (%)’

(F,R)

1
2

d
e Each a tz’j ,
measure for the combined integrals over y;; = (a:ij, ww)
e Spheres are stuck together according to the forest F'.

e The trees of the forest decouple in the limit as the large t cutoff is
removed. All but one cancel the normalization Zyc(2).

® ppc is evaluated as a sum/integral over branched polymers.



A Forest-Root Formula on RY

The following one-dimensional Forest-Root formula does the same job
for DBP 3]

Lett; € R+, 1=1,...,N.and puttij = ’tz —tj‘
For any f(t) which vanishes as t; ,/* 00,

Z/ [T1=dt.] T] [=d(t; — )] 55 ().

(F,R) RY rer JieF

Each link of 1" connects a vertex j to a vertex ¢ which is one step closer

than 5 to the root along 1.

The integration region is {t >0,r€ Randt; —t; > 0,71 € F'}
=1: f(0) = — fo t)dt. N = 2: chevron interpolation in R2

Theorems 1 and 2 for DBP foIIow as in the BP case.

aJ. Imbrie, J. Phys. A: Math. Gen. 37, L137 (2004)



