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In this talk I will review the dimensional reduction story and discuss

recent exact results on dimensional reduction for branched polymers

(BP) and directed branched polymers (DBP).a b

Outline:
1. Dimensional Reduction and the Random Field Ising Model

2. Dimensional Reduction and Branched Polymers

3. Exact results on BP and DBP

• Identities between models in different dimensions

• How it works: Forest-Root formulas and supersymmetry

• Airy function crossover to the mean field limit

a D. Brydges and J. Imbrie, Ann. Math. 158, 1019 (2003) and J. Statist. Phys. 110, 503

(2003).
b J. Imbrie, Annales Henri Poincare 4, S445 (2003) and J. Phys. A: Math. Gen. 37,

L137 (2004).



Random Field Ising Model
• Parisi-Sourlas arguea that correlations and exponents of the RFIM

can be deduced from the pure Ising model in 2 dimensions less.

• Seems to imply no long-range order in 3 dimensions (equivalence

with 1-d Ising model)

• Imry-Ma argumentb: For a contour with diameter L, the random-field

fluctuations inside are of order Ld/2.

• The contour energy Ld−1 dominates if d > 2.

• Implies there is long-range order in 3 dimensions

Loopholes in both arguments

• Multiple extrema wreck the dimensional reduction argument

• Contours may adjust to the random field configuration and wreck the

Imry-Ma argument

aG. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)
bY. Imry and S. Ma, Phys. Rev. Lett. 39, 1399 (1975)



Rigorous work goes against dimensional reduction for RFIM

• How to make Imry-Ma argument simultaneously for all contours

surrounding a site a

• Proof of long-range order at T = 0 in d = 3 (going beyond the

single-contour approximation)b

• Proof of long-range order at low T c

Recent work attempts to understand the breakdown of dimensional

reduction

• Bound states d e

• Functional Renormalization Group f

aD. Fisher, J. Froehlich, T. Spencer, Jour. Stat. Phys. 34, 863 (1984)
bJ. Imbrie, Commun. Math. Phys. 98, 145 (1985)
cJ. Bricmont and A. Kupiainen, Commun. Math. Phys. 116, 539 (1988)
dE. Brezin and C. de Dominicus, Europhys. Lett. 44 13 (1998)
eG. Parisi and N. Sourlas, Phys. Rev. Lett. 89 257204 (2002)
fP. Le Doussal, K. Wiese, and P. Chauve, Phys. Rev. E69 026112 (2004) and references

therein



Branched Polymers
Parisi and Sourlas predicted in 1981 that BP falls into the universality

class of the Yang-Lee edge in two fewer dimensions.a

But can we trust the argument, given the failure of dimensional reduction

for the RFIM?

Numericsb support dimensional reduction, but is it exact?

We prove an equivalence between BP and the Hard-Core gas at

negative activity in two fewer dimensions (which is in the Yang-Lee

class).

Also between DBP and the Hard-Core gas at negative activity in one

fewer dimension.

aG. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981)
bU. Glaus, J. Phys. A: Math. Gen. 18, L609 (1985)



Branched Polymers
On the lattice:

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

A lattice BP is a finite connected set of nearest-neighbor bonds with no

cycles.

The generating function can be written as

ZBP(z) =
∞∑

N=1

zN

(N − 1)!

∑
T

∑
y2,...,yN

∏
ji∈T

Vji

∏
ji/∈T

Uji,

where Vji := δ|yj−yi|,1 and Uji := 1− δyj ,yi
enforce the adjacency

and loop-free conditions, respectively. Here T is a tree graph on

{1, . . . , N} and yi is the position of the ith vertex.



Branched Polymers in RD+2

A branched polymer consists of

1. A tree graph T on 1, . . . , N and

2. An embedding y = {yi}i=1,...,N into RD+2 such that

• if ij ∈ T then |yij | = 1 and

• if ij /∈ T then |yij | ≥ 1.

The generating function for (rooted) branched polymers is

ZBP(z) =
∞∑

N=1

zN

(N − 1)!

∑
T

∫
dy2 · · · dyN

∏
ji∈T

Vji

∏
ji/∈T

Uji,

where

Uji := U(|yj − yi|2)

Vji := 2U ′(|yj − yi|2).

Directed Branched Polymers in R+ × RD

ZDBP(z) is given by the same formula but with

yi = (ti, xi) ∈ R+ × RD

tj > ti for ji ∈ T

Uji = U(|tj − ti|, xj − xi)

Vji = U ′
ji where U ′(t, x) =

∂

∂t
U(t, x)



Examples

Figure 1: A branched polymer in R2 (left) and a directed branched poly-

mer in Z2 (right).

For the BP model on the left, take Uij = ϑ(tij − 1).

For the DBP model on the right, take Uij = 1− I(xij)ϑ(1− tij),

where I(x) is the indicator function of a set of “neighbors” in the lattice.



Theorem 1
For all z such that the right-hand side converges absolutely,

ρHC(z) =

 −2πZBP

(
− z

2π

)
,

−ZDBP(−z).

Here

ZHC(z) =
∞∑

N=0

zN

N !

∫
ΛN

dx1 · · · dxN

∏
1≤i<j≤N

Uij .

p(z) = lim
Λ↗S

1
|Λ|

log ZHC(z); ρHC(z) = z
d

dz
p(z).

S is RD or (for some models of DBP) ZD .

Exact calculations in low dimension:

LHS is computable for D = 0, 1 so in dimension D + 2 = 2,

ZBP(z) =
z

1− 2πz
.

For continuous space, dimension D + 2 = 3 (BP), D + 1 = 2 (DBP)

2πZBP

(
z
2π

)
= z

d

dz
T (z) =

∞∑
N=1

NNzN

N !
= ZDBP(z)

On the lattice, D + 1 = 2 (DBP)

ZDBP(z) =
1
2

(
1√

1− 4z
− 1

)
=

∞∑
N=1

[2N − 1]!!2N−1zN

N !



Consequences for Critical Exponents

Theorem 1 implies that

αHC = γBP

because

singularity of ZBP ∼ singularity of ρHC ∼ singularity of ZDBP

(z − z̃c)1−γBP ∼ (z − zc)1−αHC ∼ (z − z̄c)1−γDBP .

Theorem 2

GHC(0, x; z) =

 −2π
R

d2wGBP

`
0, y; −z

2π

´
, y = (w, x) ∈ C× RD

−
R∞
0

dtGDBP(0, y;−z), y = (t, x) ∈ R+ × S

Theorem 2 implies that

νBP = νHC = ν⊥DBP

and for D ≥ 1 that ηBP = ηHC.

Define θBP, θDBP from

ZBP(z) = z
d

dz

∞∑
N=1

cNzN , ZDBP(z) =
∞∑

N=1

dNzN

with

cN ∼ z̃−N
c N−θBP , dN ∼ z̄−N

c N−θDBP

Then θBP = 3− γBP, and θDBP = 2− γDBP.



Critical Exponent Results

αHC νHC ηHC

HC DBP BP = γBP = νBP = ηBP

dimD dimD+1 dimD+2 = γDBP θDBP θBP = ν⊥DBP
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Now rigorous

νHC can be obtained from αHC by hyperscaling Dν = 2− α

αHC(2) from Baxter’s solution to Hard Hexagon Model

ηHC(2) from CFT or αHC = (2− ηHC)νHC

Note: the Yang-Lee edge exponent σ equals 1−αHC. When combined

with the relations above, this leads to the Parisi-Sourlas relation

θBP(D + 2) = 2 + σ(D)

and its analogue for DBP:

θDBP(D + 1) = 1 + σ(D)



Relation with the Yang-Lee Edge

Repulsive gases at negative activity are described by an iϕ3 or

Yang-Lee edge field theory.

(same universality class)a

To see this, consider the repulsive weight

U(|xij |2) = e−v(|xij |2) = e−u(xij) with û(k) > 0

u is a repulsive, smooth, decaying two-body potential

By the Sine-Gordon transformation, the repulsive gas

ZHC(z) =
∞∑

N=0

zN

N !

∫
ΛN

dx1 · · · dxN exp

−β
∑

1≤i<j≤N

u(xij)


can be written as a −z̃eiϕ field theory. With z̃ = zev(0)/2, we have

ZHC(z) =
∫

exp
[∫

Λ

dx z̃eiϕ(x)

]
e−

1
2 〈ϕ,u−1ϕ〉

N
[dϕ].

If z̃ is negative enough, this action looks critical.

Lowest order term in action is iϕ3.

(Compare with Ising model in sufficiently large imaginary field)

aS.-N. Lai and M. E. Fisher, J. Chem. Phys. 103, 8144 (1995); Y. Park and M. E. Fisher,

Phys. Rev. E60, 6323 (1999), cond-mat/9907429.



Crossover to Mean-Field BPa

Take the mean field limit for two-dimensional BP by letting v = v(0) be

small and z be large so that a redefined z̃ = zvev/2 is fixed. Then

log
∫ ∞

−∞
exp

[
−1

v

(
z̃eiϕ +

1
2
ϕ2

)]
dϕ√
2πv

= −2πZBP,v

( z

2π

)
Using the method of steepest descent, the integral is

log
∫

exp
[
1
v

(
iϕ3

6
+ itϕ + t− 1

2

)]
dϕ√
2πv

,

where t = z̃c−z̃
z̃c

(neglecting terms that are unimportant in the crossover

regime t ∼ v2/3). The singular part is an Airy function, the same as in

Cardy’s analysis of the crossover from area-weighted SAL to SAL.b

aJ. Z. Imbrie, Ann. Henri Poincaré 4, 421 (2003), math-ph/0303015.
bJ. L. Cardy, J. Phys. A34, L665 (2001), cond-mat/0107223.



Forest-Root Formula

Let f(t) depend on t = (tij), (ti) for 1 ≤ i < j ≤ N .

Assume f → 0 as ti ↗∞.

Let tij = |wi − wj |2, ti = |wi|2 with wi ∈ C.

Then

f(0) =
∑

(F,R)

∫
CN

f (F,R)(t)
(

d2w

−π

)N

.

The sum is over forests F and roots R (collections of bonds ij, and

vertices i, respectively) such that each tree of F has exactly one root

R.

1

2

tree

tree

forest

tree

tree N

Example: N = 1, F = ∅, R = {1}.

f(0) =
∫

C
f ′(t)

d2w

−π
= −

∫ ∞

0

f ′(t)dt



Supersymmetry

Replace

ti with τi = wiw̄i +
dwi ∧ dw̄i

2πi
and

tij with τij = wijw̄ij +
dwij ∧ dw̄ij

2πi
.

(Recall that wij = wi − wj ).

f(τ) is defined by its Taylor series.

Then I claim that a “localization” formula holds:∫
CN

f(τ) = f(0).

This formula becomes the Forest-Root formula when expanded out.

The absence of loops comes from the fact that (dw ∧ dw̄)G = 0 if G

has a loop.

This can be proven by deforming the problem to the independent case

(N = 1), using ideas from a.

aE. Witten, J. Geom. Phys. 9, 303 (1992), hep-th/9204083.



Decoupling in Two Extra Dimensions

Use the Forest-Root formula to decouple the spheres in the HC gas by

moving them apart in two extra dimensions.

At fixed N we have an integral over x ∈ RD of

f(0) =
∏

1≤i<j≤N

U(|xij |2)

where ti = |wi|2 = 0.

Extend this to w 6= 0 by writing

f(t) =
∏

1≤i<j≤N

U(|xij |2 + tij)× ( large t cutoff)

Apply the Forest-Root formula,

f(0) =
∑

(F,R)

∫
CN

f (F,R)(t)
(

d2w

−π

)N

.

• Each
d

dtij
, when applied to one of the U ’s, becomes 1

2 surface

measure for the combined integrals over yij = (xij , wij).

• Spheres are stuck together according to the forest F .

• The trees of the forest decouple in the limit as the large t cutoff is

removed. All but one cancel the normalization ZHC(z).

• ρHC is evaluated as a sum/integral over branched polymers.



A Forest-Root Formula on RN
+

The following one-dimensional Forest-Root formula does the same job

for DBP a:

Let ti ∈ R+, i = 1, . . . , N. and put tij = |ti − tj |
For any f(t) which vanishes as ti ↗∞,

f(0) =
∑

(F,R)

∫
RN

+

∏
r∈R

[−dtr]
∏

ji∈F

[−d(tj − ti)]f (F,R)(t).

Each link of T connects a vertex j to a vertex i which is one step closer

than j to the root along T .

The integration region is {tr ≥ 0, r ∈ R and tj − ti ≥ 0, ji ∈ F}
N = 1: f(0) = −

∫∞
0

f ′(t)dt. N = 2: chevron interpolation in R2
+

Theorems 1 and 2 for DBP follow as in the BP case.

aJ. Imbrie, J. Phys. A: Math. Gen. 37, L137 (2004)


