Functional RG for disordered elastic systems:

what is it? what is it useful for?

tests and applications

- model: elastic manifolds
- statics
 - Functional RG
 - measuring R(u)
- depinning transition
- activated dynamics (creep)

Elastic manifolds in a random potential

$$H = \int d^d x \ \frac{c}{2} (\nabla u)^2$$

Elastic manifolds in a random potential

• directed line

V(x, u)

$$H = \int d^d x \frac{c}{2} (\nabla u)^2 + V(x, u(x))$$

$$\overline{(u(x) - u(0))^2} \sim |x|^{2\zeta}$$
 critic

critical object

directed polymer d=1

 V_i random variables on each bond

$$E_{\Gamma} = \sum_{i \in \Gamma} V_i$$
 energy of path Γ

find optimal path $\ \Gamma_{min}$ of minimal energy $\overline{E_{min}}$

$$\frac{\overline{(E_{min} - \overline{E_{min}})^2} \sim x^{2\theta}}{\overline{\langle (u(x) - u(0))^2 \rangle} \sim |x|^{2\zeta}}$$

Exact results for N=1 $\zeta = 2/3$ $\theta = 1/3$

Elastic Manifold in Random Potential
$$u(x) \in \mathbb{R}^N$$
 $x \in \mathbb{R}^d$

$$H = \int d^d x \frac{c}{2} (\nabla u)^2 + V(x, u(x))$$

$$\overline{V(x, u)V(x', u')} = \delta^d(x - x') \overline{R(u - u')}$$

the function

$$R(u)$$
 is

- magnetic DW short range random bond
- long range interfaces random field
- periodic vortex lattice (Bragg glass)

$$P[u] \sim e^{-H[u]/T}$$
 $\overline{\langle (u(x) - u(0))^2 \rangle} \sim |x|^{2\zeta}$ $T_l \sim L^{-\theta}$ few univ class $\theta = d-2+2\zeta$ Pinned T=0 $\zeta(N,d,...)$

Periodic object + weak disorder Abrikosov vortex lattice

Bragg Glass: No dislocation

decoration

No translational order

$$B(r) = \overline{(u(r) - u(0))^2}$$
$$B(r) \sim |r|^{2\zeta} \ll a_0^2$$

$$d = 3, N = 2$$

$$B(r) \sim A_d \ln |r| \ge a_0^2$$

Neutron diffraction

divergent Bragg peaks

$$\rho_K(x) = \rho_0 e^{iKu(x)}$$

$$\overline{\rho_K(x)\rho_K^*(0)} \sim |x|^{-\eta}$$

T. Klein, TG,PLD Nature 2001

How to treat the problem

- replicas
- dynamics

$$Z_V = \int Du e^{-\beta H_V[u]} \quad H_V[u] = \int d^d x \frac{c}{2} (\nabla u)^2 + V(x, u(x))$$
$$\beta = 1/T \qquad \overline{V(x, u)V(x', u')} = \delta^d(x - x')R(u - u')$$

$$\overline{\ln Z_V} = \lim_{n \to 0} \frac{1}{n} (\overline{Z_V^n} - 1) = Tre^{-\beta H_{rep}}$$

$$H_{rep} = \int d^d x \, \frac{1}{2} \sum_{a} (\nabla u_a)^2 - \frac{1}{2T} \sum_{ab} R(u_a(x) - u_b(x))$$

starting model: interacting field theory

How to average over disorder

$$H[u] = \int d^d x \left[\frac{c}{2} (\nabla u)^2 + V(x, u(x)) \right]$$

Replica Field Theory

$$R(u_a - u_b)$$

dynamics

$$\eta \partial_t u(x,t) = c \nabla^2 u(x,t) + F(x,u(x,t)) + \xi(x,t) + f$$
friction elastic force random thermal external pinning force noise force $F(x,u) = \partial_u V(x,u)$

$$\overline{F(x,u)F(x',u')} = \delta^d(x-x')\Delta(u-u')$$
 $\overline{\Delta(u)} = -R''(u)$

Dynamical Field Theory (MSR,DJ)

$$\Delta(u(t) - u(t'))$$

Peculiar features of field theory for glass

 coupling constant is a function of the field infinity of relevant operators d<4: Functional RG

$$\frac{R(u)}{\Delta(u)} \leftrightarrow g \phi^4$$

• since $T_l=L^{-\theta}\to 0$ there should be a T=0 fixed point theory, indeed $\Delta_l(u)\to\Delta^*(u)=O(\epsilon)$ BUT $\Delta^*(u)$ is non-analytic at u=0 $L>L_c$ $\epsilon=4-\epsilon$ why? mode minimization instead of integration : shocks

needs rescaling: yields (

Physics of the Cusp: metastability

• "Toy RG"
$$H = \frac{q^2}{2}u^2 + \frac{\Lambda^2}{2}|u_f|^2 + V(u + u_f)$$

$$H_{eff}[u] = \operatorname{Min}_{u_f} H[u, u_f]$$

Balents, Bouchaud, Mezard

F(u) - F(u') finite if shock between u and u' proba $p \sim |u - u'|$

$$\Delta(u) - \Delta(0) \sim \overline{(F(u) - F(u'))^2} \sim p \sim |u - u'|$$
 (uniform density)

Burgers d=1

v(u,t)

Functional RG

$$T=0$$

$$S = \frac{H_{rep}}{T} = \int_{x} \frac{1}{2T} \sum_{a} (\nabla u_{a})^{2} + m^{2} u_{a}^{2} - \frac{1}{2T^{2}} \sum_{ab} R(u_{a}(x) - u_{b}(x))$$

$$\Gamma[u] = \frac{1}{T} \sum_{a} \Gamma_{1}[u_{a}] - \frac{1}{2T^{2}} \sum_{ab} \Gamma_{2}[u_{a}, u_{b}] + \dots$$

$$\Gamma_{1}[u_{a}] = \int_{q} c(q^{2} + m^{2}) u_{q}^{a} u_{-q}^{a}$$

$$R(u_{a} - u_{b}) = \Gamma_{2}[u_{a}(x) = u_{a}, u_{b}(x) = u_{b}]$$

$$\tilde{R}_{l}(u) = m^{-\epsilon + 4\zeta} R(um^{-\zeta})$$

$$-m\partial_{m}\tilde{R}(u) = (\epsilon - 4\zeta)\tilde{R}(u) + \zeta u\tilde{R}'(u)$$

$$= \frac{\partial_{l}\tilde{R}(u)}{\partial_{l} = \ln(1/m)} + \frac{1}{2}\tilde{R}''(u)^{2} - \tilde{R}''(u)\tilde{R}''(0) + O(R^{3})$$

Analysis of one loop FRG equation T=0

D.Fisher 86

$$\partial_l \tilde{R}(u) = (\epsilon - 4\zeta)\tilde{R} + \zeta u \tilde{R}' + \frac{1}{2}\tilde{R}''(u)^2 - \tilde{R}''(u)\tilde{R}''(0)$$

start with R(u) analytic

$$\partial_l \tilde{R}''''(0) = \epsilon \tilde{R}''''(0) + \tilde{R}''''(0)^2 \qquad \tilde{R}''''(0) \to \infty \qquad m = m_c^+$$

R(u) becomes non-analytic at u=0 beyond Larkin scale

cusp → difficulties at two loop

renormalizable theory for statics at T=0

PLD, Wiese, Chauve 2000

procedure (2 loop): • one loop counterterms are non-ambiguous

• ask for renormalizability cancellation of $1/\epsilon$ poles \Longrightarrow lift ambiguities

$$\partial_l \Delta(u) = (-\frac{\Delta^2}{2} + \Delta \Delta(0))'' + \frac{1}{2} (\Delta'^2 (\Delta - \Delta(0))''$$
$$\lambda_{stat} = -1$$
$$+ \frac{\lambda}{2} \Delta'(O^+)^2 \Delta''(u)$$

- preserves linear cusp $\Delta(u) = -R''(u)$ $\zeta_{RF} = \epsilon/3$

$$\zeta_{RB} = 0.20829804\epsilon + 0.006858\epsilon^2$$

$$\overline{d}=1$$
 one loop two loop exact $\epsilon=3$ 0.625 0.687 0.666

• needs testing!

·what is R(u)?

$$\frac{R''(u)}{R''(0)} = Y(u/\xi) \qquad \int dz Y(z) = 1 \qquad \text{random field disorder}$$

$$d = 4 - \epsilon$$

$$Y = Y(z) \leftrightarrow z = \frac{\sqrt{Y - 1 - \ln Y - \frac{\epsilon}{3} F(y)}}{\int_0^1 dy \sqrt{y - 1 - \ln y - \frac{\epsilon}{3} F(y)}}$$

$$F(y) = 2y - 1 + \frac{y \ln y}{1 - y} - \frac{1}{2} \ln y + \text{Li}_2(1 - y)$$

are there exactly solvable examples?

How to measure R(u)

PLD

cond-mat/0605490

$$\exp(-\frac{1}{T}\widehat{V}(v)) = \int Du \ e^{\frac{1}{T}} \int d^dx \frac{1}{2} m^2 (u(x) - v)^2 + \frac{1}{2} (\nabla u)^2 + V(x, u(x))$$

$$\overline{\widehat{V}(v)}\widehat{V}(v') = L^d \widehat{R}(v - v')$$

one shows that: $\widehat{R}(v) = R(v) \longleftrightarrow$ defined from $\Gamma[u]$

$$T=0$$
 minimum energy configuration $u_0(x;v)$

$$u(v) = L^{-d} \int d^d x \ u_0(x;v)$$
 $v - u(v)$ exhibits shocks $\Delta(u) = -R''(u)$

$$\overline{(v - u(v))(v' - u(v'))} = L^{-d}m^{-4}\Delta(v - v')$$

Alan Middleton PLD, KW

$$Y = \Delta/\Delta(0)$$

$$\overline{(v - u(v))(v' - u(v'))} = L^{-d}m^{-4}\Delta(v - v')$$

$$\Delta(u) = -R''(u)$$

Deviations from one loop: random field disorder

Deviations from one loop: random bond disorder

$$Y(z) = Y_1(z) + \epsilon Y_2(z) + ...$$

Decaying Burgers equation and shocks

•
$$d=0$$
 $\exp(-\frac{1}{T}\hat{V}_m(v)) = \int du \ e^{\frac{1}{T}[\frac{1}{2}m^2(u-v)^2+V(u)]}$ particle in a random potential $\overline{V(u)V(0)} = R_0(u)$

Force
$$F(v)=\hat{V}'(v)$$
 obeys Burgers equation $F\leftrightarrow \mathbf{u}$ $\mathbf{u}(x,t)$ any N $\mathbf{u}''\in \mathbf{v}$ $\mathbf{v}''\in \mathbf{v}$ \mathbf{u}'' $\mathbf{v}''\in \mathbf{v}$ \mathbf{u}'' \mathbf{v}'' \mathbf{v}''

shocks form then merge (N=1: ballistic aggregation)

• d>0

Functional Decaying Burgers $\mathcal{F}_x = \hat{V}_x'[v] \equiv \delta \hat{V}[v]/\delta v_x$

$$-2m\partial_m \mathcal{F}_x[v] = \int_{uz} \partial g_{yz} (T\mathcal{F}''_{xyz}[v] - \mathcal{F}'_{xy}[v]\mathcal{F}_z[v])$$

Sequence of m^2 in a single sample

Sequence of m^2 in a single sample

Sequence of m^2 in a single sample

Chaos

Solution for Sinai model: particle in Brownian energy lansdcape

random field disorder d=0

$$\overline{(V(u) - V(0))^2} \sim 2|u|$$

$$R_0(u) \sim -|u|$$

$$R_{T=0}^{*}(0) - R_{T=0}^{*}(v) = 2\sqrt{\pi v}e^{-\frac{1}{48}v^{3}} \int_{-\infty}^{+\infty} \frac{dz_{1}}{2\pi i} \int_{-\infty}^{+\infty} \frac{dz_{2}}{2\pi i} [v + 2(z_{2} - z_{1})^{2}]$$

$$\times e^{\frac{v}{2b}(z_{1} + z_{2}) + \frac{(z_{2} - z_{1})^{2}}{v}} \left[\frac{1}{vAi(z_{1})Ai(z_{2})} + \frac{\int_{0}^{\infty} dV e^{\frac{v}{2}V} Ai(V + z_{1})Ai(V + z_{2})}{Ai(z_{1})^{2}Ai(z_{2})^{2}} \right]$$

Thermal boundary layer $\,u \sim T_l = T m^{ heta}$

is probability density of 2 degen. minima distant of u=y

$$D(y) = 2 \int \frac{d\lambda}{2\pi} e^{i\lambda y} \frac{Ai'(i\lambda)}{Ai(i\lambda)} \int \frac{d\mu}{2\pi} e^{-i\mu y} \frac{1}{Ai(i\mu)^2}$$

$$\tilde{R}''(u) - \tilde{R}''(0) = T_l \int dy D(y) y^2 \frac{yu}{4T_l} \left(\coth \frac{yu}{2T_l} - \frac{1}{2} \right)$$

Driven elastic manifolds in random potential

Scaling picture of depinning

$$v \sim u/\tau \sim \xi^{\zeta-z} \sim (f - f_c)^{\beta}$$

Puzzle with one loop FRG for depinning

One loop: Nattermann et al. 92 Narayan Fisher 92

$$\partial_l \Delta(u) = -\frac{d^2}{du^2} \partial_l R(u)$$

$$\longrightarrow \Delta_l(u) = -R_l''(u)$$

$$\longrightarrow \Delta_l(u) = -R_l''(u)$$

depinning fixed point same as statics?

$$v \rightarrow 0^+$$

where is irreversibility?

 $\zeta_{dep} = \epsilon/3$ Narayan-Fisher conjecture

numerics?

one loop theory is NOT consistent!

Two loop depinning

PLD, K. Wiese, P. Chauve 2001

$$\partial_l \Delta(u) = (\epsilon - 2\zeta)\Delta + \zeta \Delta' - (\frac{\Delta^2}{2} + \Delta \Delta(0))'' + \frac{1}{2}(\Delta'^2(\Delta - \Delta(0))'' + \frac{\lambda}{2}\Delta'(O^+)^2\Delta''(u)$$

$$\lambda_{dep} = 1$$
 $\lambda_{stat} = -1$

• different from statics: irreversibility recovered

$$\lambda_{stat} = -1$$

$$\zeta_{dep} = \frac{\epsilon}{3}(1 + 0.1433\epsilon + ...) > \zeta_{NF}$$

single universality class

Numerics new high precision algorithm by Rosso and Krauth Find exact critical string configuration on cylinder $\,L^d imes M\,$ Analytic

_ (d One-loop	Two-loop	ζ_{Δ^2}	
	1 1	1.44	1.26 ± 0.01	
2	2 2/3	0.86	0.753 ± 0.002	
3	3 1/3	0.38	0.355 ± 0.01	
1.5 1 \$\ssp\	# ************************************			
0.5	*	×		
0	4 0	2 4		
	$\frac{1}{d}$	3 4		

Numerical calculation of FRG fixed point at depinning

Alberto Rosso PLD,KW condmat/0610821

+ quadratic well driven quasi-statically

FIG. 3: Universal scaling form Y(z) for $\Delta(u)$ for RB and RF disorder.

Deviations from one loop

Contact line depinning

Moulinet, Guthmann, Rolley 2002

$$\zeta = 0.51 \pm 0.03$$

Fig. 2. Sketch of the experimental setup. Inset: photograph of the disordered substrate, the chromium defects appear as white square spots.

Fig. 1. Upper part: image of the contact line obtained with an ordinary CCD camera. Lower part: the position $\eta(x,t) \equiv y(x,t) - vt$ of the CL is defined with respect to its average position vt.

viscous fluid water, glycerol

overdamped quasi-static

checked

Fig. 3. Roughness W as a function of distance L for different drift velocities. The upper (respectively, lower) graph corresponds to data obtained with water (respectively, water-glycerol mixture). For both graphs, the data \circ have been obtained with a larger magnification (resolution 2.1 μ m) than the others (resolution 6.1 μ m).

contact line, cracks

$$\zeta_{exp} \approx 0.55$$

for long range elasticity

$$cq^2
ightarrow c|q|$$
 Joanny De Gennes

$$\epsilon = 2 - d$$
 $\zeta_{1loop} = \frac{\epsilon}{3} \approx 0.33$

• 2loop FRG we find $\zeta_{dep} = \frac{\epsilon}{3}(1 + 0.397\epsilon + ..)$

$$\longrightarrow \zeta_{2loop} \approx 0.47$$

BUT Rosso Krauth $\zeta = 0.390 \pm 0.002$

is this elastic overdamped model the correct one for these systems?

T>0 : creep

equilibrium dynamics

"near equilibrium" dynamics: creep

FIG. 3. Natural logarithm of MDW velocity as a function of $(1/H)^{1/4}$ (room temperature, $H \le 955$ Oe).

Ising magnetic film CoLemerle Ferre et al. 98

domain wall creep, d=1+1, RB

$$\mu = 1/4$$

$$v \sim e^{-1/Tf^{\mu}}$$

Zeldov et al. BSCCO Bragg glass
$$\mu=1/2$$

$$R \sim v \sim e^{-U(j)/T}$$

$$U(j) \sim j^{-\mu}$$

Qualitative argument for creep

- Assume: small f: limited by typical nucleation event
 - near equilibrium, activated dynamics over optimal barrier

$$\tau \sim e^{U_b/T} \quad U_b = R^{\psi} - f u R^d \sim_{sp} f^{-\mu} \qquad u \sim R^{\zeta}$$

$$R_T = R_{opt} \sim f^{-1/(2-\zeta)} \qquad \qquad \mu = \frac{\psi}{d+\zeta-\psi}$$

$$\psi = \theta = d-2 + 2\zeta_{eq}$$

$$\zeta = \zeta_{eq} \qquad \qquad \theta$$

$$\to \qquad \mu = \frac{\theta}{2-\zeta}$$

Q: What happens after jump?

but curvature is blowing up

$$\partial_l \tilde{\Delta}(u) = \epsilon \tilde{\Delta} - \tilde{\Delta}'^2 - \tilde{\Delta}''(\tilde{\Delta} - \tilde{\Delta}(0)) + T_l \tilde{\Delta}''(u)$$

$$T_l = T_0 e^{-\theta l}$$

$$\Delta_l(u)$$

$$\Delta(u)$$
 remains analytic

 $\partial_l \ln \eta = -\tilde{\Delta}''(0) \sim rac{1}{T_l} = rac{e^{ heta l}}{T_0} = rac{L^ heta}{T_0}$

exponential growth of time scale

$$\Rightarrow \tau_L = \eta_l = e^{L^{\theta}/T}$$

barriers grow as $\;U_L\sim L^\psi\;\;\psi=\theta\;\;$ CREEP LAW

one loop FRG, v>0 and T>0 : creep physics

Chauve, TG, PLD 98

 R_V

Larkin thermal saturation depinning Edwards-Wilkinson
$$l_c$$
 l_s l_T l_d l_V

follow RG flow of $\Delta_l(u), \eta_l, \tilde{T}_l, f_l$

- derive creep law
- new depinning regime

$$R_V \sim T^{-\sigma} f^{-\overline{\lambda}}$$
 $R_T < R < R_V$

suggest fast deterministic motion

- statistics of nucleation events
- which scales equilibrate?

Conclusion

- field theory of pinning: statics, depinning and creep Functional RG
- method to measure the fixed point function of the FRG in numerics for statics and depinning: confirms main features
 - experimental tests?
 - DW in magnetic film w/field gradient
 - contact line of fluid in partial wetting/capillarity

E. Rolley, S. Moulinet

- random field O(N) model
- chaos
- 2D connections to fermions, nearly conformal FT

chaos

