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(Directed) Polymers in a Random environment

Non-directed directed

Random bond energies: [SRBREONY

Find ground state — i.e. optimal path
From top node to a bottom nodes:
Dijkstras algorithm




Dijkstras algorithm
for shortest paths in general graphs

Start node: s

Minimal distance (energy)
from s to j: d(j)

Predecessor of j: pred(j)

algorithm Dijkstra
begin
S:={s}, S'=N\{s};
d(s):=0, pred(s):=0;
while |S|<|N| do
begin
choose (i,)):

d(j):=min_ {d(k)+c, |k in S, min S'};

S'=S\{j}; S=S+{j)
pred()):=i;
end
end

Performance O(N?),
with heap reshuffling O(N log(N))




Optimal paths with correlated disorder

Isotropically correlated disorder: <e;e;,> ~ r=°-1
Ovehangs relevant? - non-directed lattice
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[Schorr, HR, EPJB 33, 347 (03)]




From one line to many lines

Continuum model for N interacting elastic lines in
a random potential

j(#1)

+Vrand[ri (2)1 Z] + Z\/int[ri (Z) - ri (Z)]}

Strong disorder: V.4 >>V; V,, short ranged, hard core

ran int

= H= n _

Ground state of N-line problem:
Minimum Cost Flow problem




From one line to many lines

(with hard-core interactions)

Successive shortest path algorithm




Lines in 2d - Roughness

Roughness

For H- o
roughness saturates w - w,(L)
w¢(L) ~ In(L) means ,super-rough®




Lines in 3d - Roughness

Line density: p=0.2 p=N/L?2

For L —o: w~HY2 ~ Random walk behavior

Saturation roughness (H - «): w~L

( # elastic media!)

[Pet&ja, Lee, HR, Alava: JSTAT P10010 (2004)]




Entanglement transition of elastic lines
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[Petqja, Alava, HR: EPL 66, 778 (04)]




The SOS model on arandom substrate

Ground state (T=0):

In 1d: h-- h.,, performs random walk 5y //
C(r) = [(h- h)2~r e
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In 2d: Ground state superrough,

C(r) ~ log?(r)
stays superrough at temp. O<T<T

[HR, Blasum PRB 55, R7394 (1997)]



2d Universality classes: Interacting lines = elastic medium

N interacting elastic lines in a 2d random environment

rz +Vrand[ri(z)1z]+ Z\/int[ri(z)_ri(z)]}

J(#)

= 2d Sine-Gordon model with random phase shifts

H = [d?r [(O@r))> - Acos(@Ar) - 6(r)];  @(r) D[0,27

= SOS-model on a disordered substrate

H=> (n+d-n -d); n0{0+L+2,..}
(i)

T>T,: Rough phase, <(n-n,,)>>~Inr T =2/m
T<T,: Super-rough phase, <(n-n;,)*>~ In“r




Domain walls .... and dislocations:
(random SOS model)

h=1

cation
ne

D=1.32+0.02

[HR, Blasum PRB 55, R7394 (1997)]

In(L) fixed defect pair
[AE]gs ~ { —0.27(7) x In*/?(L) partially optimized

[Pfeiffer, HR JPA 33, 2489 (00)] —0.73(8) x In*/?(L) completely optimized




Another combinatorial optimization problem:
Interfaces in random bond Ising ferromagnets

Find for given
random bonds J;
the ground state

configuration {S;}

with fixed +/- b.c.

= Find interface (cut)
with minimum

energy \ -~




Min-Cut-Max-Flow Problem

network G(V,A), arcs (Bonds) (i,))[JA have capacity u;>0,
flow O<=n, <=U; fulfills mass balance constraint

\'

2= 2y =4-v

{LlanoaAr {IG)0A} 0 dse

Find the maximum flow n* with value v from s tot

residual network G(n) with residual capacities

n* maximum flow < no directed path st in G(n%)

s-t cut [S,S'] Is a partition of V in two disjoint sets with sIS, tLIS'=V\S,
(S,S) = {(i,j) DAli O0S,j OS*}; capacity of the s-t-cut ERYE >

(i, )OCS, 5)

Min-Cut-Max-Flow-Theorem: max,,v = ming sqv[S,S] and rij*:O along (S,SY)




Problems that can be mapped on
min-cut / max-flow

Interfaces / wetting in random media

Random field Ising model (in any dimension)

Periodic media (flux lines, CDW, etc.)
In disordered environments

Elastic manifolds with periodic potential
and disorder



E.g.: Periodic elastic medium + periodic potential

Mapping to an RBIFM interface problem

Discrete interface  [® =" (h -h))? -7, cos(2rth / p-8)
hamiltonian: (if) i

Ising model:

Jh_direcion =77(r)cos(2nh/ p—6(r))
J =const. - y(r,h)

r —direction




Periodic elastic medium + periodic potential

The roughening transition in 3d:

Order parameter: [UWS(IWYE S-SR

[Noh, HR: PRL 87, 176102 (01)],
[c.f. Emig & Nattermann: PRL 79, 5090 (97)]




E.g.: Fractal properties of Contour Loops

Co

HUOEY) = | &x §|Vh(x)|2 +vx )] |,

ntour Loops (CL)

TABLE 1. Geometric exponents of both contour loops and
fully packed loops. Rational numbers are the proposed
exponents.

Random elastic medium
contour loops Fully packed loops

D = 1.46 = 0.01 (3/2) = 1.75 £ 0.01 (7/4)
7 =232 =% 0.01(7/3) =215 £ 0.01 (15/7)
x; = 0.50 = 0.01 (1/2) x; =025 = 001 (1/4)
{ = 0.08 = 0.01 (0) £ = 0.00 = 0.01 (0)

Random manifold
contour loops Fully packed loops

D =131 =£0.02(?) D =174 = 0.01 (7/4)
T =219 £ 0.02 (?) 7 =2.15 %= 0.01 (15/7)
x; =049 = 0.02 (1/2) x; =025 = 001 (1/4)
=040 = 0.02 (?) £ =0.01 = 0.01 (0)

[Zeng et al., PRL 80, 109 (98)]




2d Ising spin glass:
Minimum weigted matching problem

J; Gaussian

Ho=-C+2 >  |Jyl.

unsatistfied edges

Recent applications: See A. Middletons talk next week on SLE and domain walls in 2d Ising spin glasses...




Further applications
of combinatorial optimization methods in Stat-Phys.

Flux lines with hard core interactions

Vortex glass with strong screening

Interfaces, elastic manifolds, periodic media

Wetting phenomena in random systems

Random field Ising systems

Spin glasses (2d polynomial, d>2 NP complete)
Statistical physics of complexity (K-Sat, vertex cover)
Random bond Potts model at T in the limit g - «
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