

Combinatorial optimization algorithms for lines and interfaces in random media

H. Rieger

Physics Department, Universität des Saarlandes – Saarbrücken, Germany

Stochastic Geometry and Field Theory: From Growth Phenomena to Disordered Systems, 7.8.-15.12.06 KITP UCSB

(Directed) Polymers in a Random environment

Random bond energies: $e_i \in [0,1]$

$$e_i \in [0,1]$$

Total energy:
$$E = \sum_{i \in path} e_i$$

Find ground state – i.e. optimal path From top node to a bottom nodes: Dijkstras algorithm

Dijkstras algorithm for shortest paths in general graphs

```
Start node: s
Minimal distance (energy)
from s to j: d(j)
Predecessor of j: pred(j)
```

```
algorithm Dijkstra
begin
S:={s}, S'=N\{s};
d(s):=0, pred(s):=0;
while |S|<|N| do
begin
```

```
choose (i,j):  d(j) := \min_{k,m} \{d(k) + c_{km} | k \text{ in S, m in S'}\};  S' = S' \setminus \{j\}; S = S + \{j\};  pred(j) := i;  Perfore end  with head
```

Performance O(N²), with heap reshuffling O(N log(N))

Optimal paths with correlated disorder

Isotropically correlated disorder: $\langle e_i e_{i+r} \rangle \sim r^{2\rho-1}$ Ovehangs relevant? \rightarrow non-directed lattice

Roughness:

$$D(L) = \langle x^2 \rangle - \langle x \rangle^2 \sim L^{\nu}$$

Energy fluctuations:

$$\Delta E(L) = \langle E^2 \rangle - \langle E \rangle^2 \sim L^{\omega}$$

Optimal paths with E<E₀

2d
$$\rho$$
<0

$$\rho = 0.4$$

From one line to many lines

Continuum model for N interacting elastic lines in a random potential

$$H = \sum_{i=1}^{N} \int_{0}^{H} dz \left\{ \frac{\gamma}{2} \left[\frac{dr_{i}}{dz} \right]^{2} + V_{rand}[r_{i}(z), z] + \sum_{j(\neq i)} V_{int}[r_{i}(z) - r_{j}(z)] \right\}$$

Strong disorder: $V_{rand} >> \gamma$; V_{int} short ranged, hard core

$$\Rightarrow H = \sum_{i(bond)} e_i n_i \qquad n_i = 0,1 \qquad e_i \in [0,1]$$

Ground state of N-line problem: Minimum Cost Flow problem

From one line to many lines (with hard-core interactions)

Successive shortest path algorithm

Lines in 2d - Roughness

Roughness

$$w^2 = \overline{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

For $H\rightarrow \infty$ roughness saturates $w\rightarrow w_s(L)$ $w_s(L) \sim ln(L)$ means "super-rough"

Lines in 3d - Roughness

$$w^2 = \overline{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

 $w = L \cdot \widetilde{w}(H/L^2)$

FSS:

Saturation roughness (H→∞): w~L

(≠ elastic media!)

[Petäjä, Lee, HR, Alava: JSTAT P10010 (2004)]

Entanglement transition of elastic lines

Conventional 2d percolation transition

 $d_f = 1,896$

 $\tau = 2,055$

 $\upsilon = 4/3$

[Petäjä, Alava, HR: EPL 66, 778 (04)]

The SOS model on a random substrate

$$H = \sum_{(ij)} (h_i - h_j)^2, \quad h_i = n_i + d_i, \quad d_i \in [0,1]$$

Height profile ↔ Flow configuration

Ground state (T=0):

In 1d: h_{i-1} performs random walk $C(r) = [(h_{i-1} h_{i+r})^2] r$

In 2d: Ground state superrough, $C(r) \sim log^2(r)$ stays superrough at temp. $0 < T < T_{\alpha}$

[HR, Blasum PRB 55, R7394 (1997)]

2d Universality classes: Interacting lines = elastic medium

N interacting elastic lines in a 2d random environment

$$H = \sum_{i=1}^{N} \int_{0}^{H} dz \left\{ \frac{\gamma}{2} \left[\frac{dr_{i}}{dz} \right]^{2} + V_{rand}[r_{i}(z), z] + \sum_{j(\neq i)} V_{int}[r_{i}(z) - r_{j}(z)] \right\}$$

⇔ 2d Sine-Gordon model with random phase shifts

$$H = \int d^2r \left[(\nabla \phi(r))^2 - \lambda \cos(\phi(r) - \theta(r)) \right]; \quad \phi(r) \in [0, 2\pi[$$

$$\theta(r) \in [0,2\pi[$$
 random

⇔ SOS-model on a disordered substrate

$$H = \sum_{\langle ij \rangle} (n_i + d_i - n_j - d_j); \quad n_i \in \{0, \pm 1, \pm 2, \dots\}$$

$$d \in [0,1]$$
 random

T>T_g: Rough phase, $<(n_i-n_{i+r})^2> \sim \ln r$ T_g= $2/\pi$ T<T_g: Super-rough phase, $<(n_i-n_{i+r})^2> \sim \ln^2 r$

Domain walls (random SOS model)

 $D_f = 1.32 \pm 0.02$

[HR, Blasum PRB 55, R7394 (1997)]

and dislocations:

$$[\Delta E]_{\text{dis}} \sim \begin{cases} \ln(L) \\ -0.27(7) \times \ln^{3/2}(L) \\ -0.73(8) \times \ln^{3/2}(L) \end{cases}$$

fixed defect pair partially optimized completely optimized

[Pfeiffer, HR JPA 33, 2489 (00)]

Another combinatorial optimization problem: Interfaces in random bond Ising ferromagnets

$$H = -\sum_{i} J_{ij} S_i S_j \qquad J_{ij} \ge 0, \quad S_i = \pm 1$$

$$J_{ij} \ge 0, \quad S_i = \pm 1$$

Find for given random bonds Jii the ground state configuration {S_i} with fixed +/- b.c.

$$S_{i} = +1$$

⇔ Find interface (cut) with minimum energy

Min-Cut-Max-Flow Problem

network G(V,A), arcs (Bonds) $(i,j) \in A$ have capacity $u_{ij} > 0$, flow $0 <= n_{ii} <= u_{ii}$ fulfills mass balance constraint

$$\sum_{\substack{\{j \mid (ji) \in A\}}} n_{ji} - \sum_{\substack{\{j \mid (ij) \in A\}}} n_{ij} = \begin{cases} v & for & i = s \\ -v & for & i = t \\ 0 & else \end{cases}$$

Find the maximum flow n* with value v from s to t

residual network G(n) with residual capacities

$$r_{ij} = u_{ij} - n_{ij} + n_{ji}$$

 n^* maximum flow \Leftrightarrow no directed path $s \rightarrow t$ in $G(n^*)$

s-t cut [S,S'] is a partition of V in two disjoint sets with $s \in S$, $t \in S' = V \setminus S$, $(S,S') = \{(i,j) \in A | i \in S, j \in S'\}$; capacity of the s-t-cut $v[S,S'] = \sum_{(i,j) \in (S,S')} u_{ij}$

Min-Cut-Max-Flow-Theorem: $\max_{\{n\}} v = \min_{[S,S']} v[S,S']$ and $r_{ij}^* = 0$ along (S,S')

Problems that can be mapped on min-cut / max-flow

- Interfaces / wetting in random media
- Random field Ising model (in any dimension)
- Periodic media (flux lines, CDW, etc.) in disordered environments
- Elastic manifolds with periodic potential and disorder

E.g.: Periodic elastic medium + periodic potential

Mapping to an RBIFM interface problem

Discrete interface hamiltonian:

$$H = \sum_{(ij)} (h_i - h_j)^2 - \sum_i \eta_i \cos(2\pi h_i / p - \theta_i)$$

Ising model:

$$H = -\sum_{(ij)} J_{ij} S_i S_j$$

$$J_{h-direction} = \eta(r)\cos(2\pi h/p - \theta(r))$$

$$J_{r-direction} = const. \rightarrow \gamma(r,h)$$

Periodic elastic medium + periodic potential

The roughening transition in 3d:

Order parameter:

$$m_{p,q}(L,\Delta) = \mid < e^{2\pi i/q} > \mid$$

p	$\Delta_{ m c}$	$\beta_{\rm p,2}/\nu$	$\beta_{p,3}/\nu$	$\beta_{p,4}/\nu$	ν
2	2.20	0.046	0.034	0.022	1.25
3	2.48	0.049	0.037	0.024	1.29
4	2.95	0.044	0.033	0.022	1.28

E.g.: Fractal properties of Contour Loops

$$H(\lbrace h(\mathbf{x})\rbrace) = \int d^2\mathbf{x} \left[\frac{K}{2} |\nabla h(\mathbf{x})|^2 + V[\mathbf{x}, h(\mathbf{x})] \right],$$

TABLE I. Geometric exponents of both contour loops and fully packed loops. Rational numbers are the proposed exponents.

Random elastic medium contour loops	Fully packed loops		
$D = 1.46 \pm 0.01 (3/2)$ $\tau = 2.32 \pm 0.01 (7/3)$ $x_l = 0.50 \pm 0.01 (1/2)$ $\zeta = 0.08 \pm 0.01 (0)$	$D = 1.75 \pm 0.01 (7/4)$ $\tau = 2.15 \pm 0.01 (15/7)$ $x_l = 0.25 \pm 0.01 (1/4)$ $\zeta = 0.00 \pm 0.01 (0)$		
Random manifold contour loops	Fully packed loops		
$D = 1.31 \pm 0.02 (?)$ $\tau = 2.19 \pm 0.02 (?)$ $x_l = 0.49 \pm 0.02 (1/2)$ $\zeta = 0.40 \pm 0.02 (?)$	$D = 1.74 \pm 0.01 (7/4)$ $\tau = 2.15 \pm 0.01 (15/7)$ $x_l = 0.25 \pm 0.01 (1/4)$ $\zeta = 0.01 \pm 0.01 (0)$		

2d Ising spin glass: Minimum weigted matching problem

$$H = -\sum_{(ij)} J_{ij}\sigma_i\sigma_j ,$$

J_{ii} Gaussian

$$H(\underline{\sigma}) = -C + 2 \sum_{\text{unsatisfied edges}} |J_{ij}|.$$

Further applications of combinatorial optimization methods in Stat-Phys.

- o Flux lines with hard core interactions
- o Vortex glass with strong screening
- o Interfaces, elastic manifolds, periodic media
- o Wetting phenomena in random systems
- o Random field Ising systems
- o Spin glasses (2d polynomial, d>2 NP complete)
- o Statistical physics of complexity (K-Sat, vertex cover)
- o Random bond Potts model at T_c in the limit $q \rightarrow \infty$
- 0 ...