Padova SN re-searches

Stefano Benetti, Enrico Cappellaro, Laura Greggio, Massimo Turatto, Luca Zampieri

PhD students: Avet Harutunyan, Nancy Elias de la Rosa, Milena Bufano, Maria Teresa Botticella, Stefano Valenti, Irene Agnoletto

+

Paolo Mazzali, Marco Riello, Andrea Pastorello, Nando Patat

- SN la as Cosmological Distance Indicators
- SNe as Cosmic Stellar Population Tracers
- Understanding SN diversity (evolution)
- Link GRBs and SNe

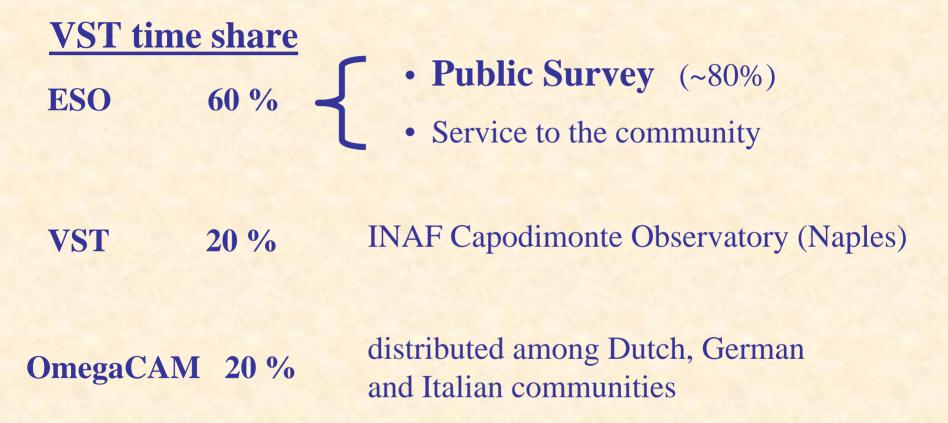
Asiago 40/50 cm Schmidt telescope (1958 - 1992)

VST: VLT Survey Telescope

- built by the Capodimonte Astronomical Observatory
- 2.6 m primary mirror
- 1.46 deg FoV (∅), 80% EE in 0.4"

Location

- located at Cerro Paranal
- dome built by ESO
- operation carried out by ESO



OmegaCAM

- built by a Dutch, German & Italian consortium + ESO
- 16k×16k CCD mosaic
- 1 deg FoV (), 0.21"/pixel scale

Scientific use of VST ESO instrument

25% of VST time is for the Italian community

SUpernova Diversity And Rate Evolution

approved OmegaCAM+VST proposal for guaranteed time

Aim: Detection and monitoring of ~200 SNe

3 yr monitoring of 1sq deg field, limiting magnitude

25

frequency	filter	exposure	purpose
every 2nd night	r	30 min	detection
once a week	g, i	30 min	light curve classification extinction

Constraints: R.A., $> \pm 5$ days from full moon, seeing < 1.4"

80 r + 30 g, i exposures/yr \rightarrow 80 h/yr

Follow-up:

1. spectroscopy at selected epochs for SN classification

2. u, z (IR) for galaxy photometric redshifts

By-product: Deep images (seeing < 1 arcsec)

r 60h; g, i 22h

$$\rightarrow$$
 r_{AB} ~27 S/N = 10

Open issue: Data delivery policy

starting mid 2008

The Vista SuperNova Abell clusters Public Survey (SNAPS) Pl Marco Riello

Proposal submitted to VISTA public survey call (75% of time allocation)

Starting point: 1/3 - 2/3 of all core collapse SNe remains undetected due to dust obscuration

Proposal aim: Search for extinguished SNe, Measure extinction bias

of optical SN searches.

Strategy: Imaging of 30-40 Abell Clusters in J and K bands

1 visit/mo x field per 3 yr Expected 2-3 dozen SNe

Rejected for public time (main motivation: modest survey legacy value)

Encouraged to apply for open time call

Large Binocular Cameras

E. Giallongo, R. Ragazzoni

Redshift limit for SN detection with 8m class telescope

SN search efficiency

	r mag lim	FoV deg	z limit	SN / exp	fields for 10 ² SN/yr
FORS2@VLT	26.3	0.013	1.0	0.2	50
VIMOS@VLT	25.9	0.06	0.8	0.7	15
Ωcam@VST	25.3	1.0	0.5	5	1
LBC@LBT	26.3	0.15	1.0	2	5

Planning a SN search with LBT

.... chat at KITP with Peter Garnavich, Paolo Mazzali, Elena Pian

- Redshift range of interest 0.8 < z < 1.3
 - Deep exposures with red filter -> ~30 min
- Most candidates will be too faint for spectroscopy
 - Rolling search to include photometric monitoring -> 2-3 x
- Account for weather statistics
 - Usable nights (transparency, seeing < 1.2) -> ~ 50%
- Cameras will be available only part-time (4 other instruments coming on line)
 - Search for optimization with other extragalactic surveys
- Scheduling policy
 - Require collaboration among LBT partners

Planning a SN search with LBT

.... chat at KITP with Peter Garnavich, Paolo Mazzali, Elena Pian

- Goal: 100 SN/yr
 - 1 yr monitoring of 5 fields
- "Optimal/minimal" time allocation:
 - 1/2 night per week in dark/grey moon (12n/yr)
- Strategy:
- Search with red camera. Blue camera parallel observation to get colors (at maximum)
- Synergy
- Ultra deep images, r>27.5, seeing <1"