Electron-Capture Supernovae and Accretion-Induced Collapse

Philipp Podsiadlowski (Oxford)

Ken Nomoto (1982, 1984): The progenitors of electron-capture supernovae and the progenitor of the Crab supernova

- renewed interest in e-capture supernovae in recent years
- I. Electron-Capture Supernovae
- II. Ken's Original Work
- III. Recent Simulations
- IV. Implications (Kicks, EoS)
- V. Accretion-Induced Collapse
- VI. Merger-Induced Collapse

Electron-Capture Supernovae

- classical core collapse: inert iron core ($> M_{Ch}$) collapses
 - presently favoured model:
 delayed neutrino heating
 to drive explosion

- electron-capture supernova in degenerate ONeMg core
 - ho at a critical density $(4.5 imes 10^9 \, \mathrm{g \, cm^{-3}})$, corresponding to a critical ONeMg core mass $(1.370 \pm 0.005 \, \mathrm{M_{\odot}})$, electron captures onto $^{24}\mathrm{Mg}$ removes electrons (pressure support!)
- → triggers collapse to form a low-mass neutron star

note: essentially the whole core collapses

- \rightarrow easier to eject envelope/produce supernova
- \rightarrow no significanct ejection of heavy elements

The Progenitors of E-capture Supernovae

(Nomoto 1982, 1984)

- $\begin{array}{l} \bullet \ He \ cores \ with \ M_{He} = 2.0 2.5 \ M_{\odot} \\ lead \ to \ e\text{-capture supernova} \\ (M_{MS} = 8 10 \ M_{\odot}) \end{array}$
- significant fraction of neutron stars (NSs) produced in e-capture supernova
- Crab pulsar:
 - > can explain low kinetic energy of ejecta ($\lesssim 10^{50} \, \mathrm{erg}$)

but: no hydrogen

- → loss of H-rich envelope by binary interaction?
- → requires reverse evolution +
 binary break-up (→ space
 velocity?) (Pols, Nomoto)

Simulations of E-capture Supernovae

Dessart et al. (2006)

Kitaura, Janka, Hillebrandt (2006) Recent simulations confirm

- successful explosion by delayed neutrino mechanism
- low explosion energy: $\leq 10^{50} \, \mathrm{erg}$ (low binding energy; also Crab!)
- few metals ejected
- fast explosion: $100 200 \,\mathrm{ms}$
 - → low neutron-star kick
 - best" present model for NS kick: standing accretion shock instability (Blondin, Mezzacappa, Foglizzo, Janka) requires slow explosion (≥ 500 ms) for instability to grow

Binary Evolution Effects

- dredge-up in AGB phase may prevent ONeMg core from reaching $M_{crit} \rightarrow ONeMg$ WD instead of collapse
- can be avoided if H envelope is removed by binary mass transfer
- → dichotomous kick scenario (P. et al. 2004)
 - \triangleright e-capture SN in close binaries \rightarrow low kick
 - \triangleright iron core collapse \rightarrow high kick
 - can explain
 - ▷ all single pulsars seem to have received large kicks (Hobbs, Lyne, Lorimer)
 - but need low kicks in some X-ray binaries(e.g. X Per) with low eccentricity (Pfahl)
 - retention of neutron stars in globular clusters (Pfahl, Ivanova, Belczyński)
 - ▶ double neutron star properties (v.d. Heuvel, Dewi), specifically the double pulsar

Recent Work

Arend Jan Poelarends (PhD Thesis):

- examined conditions for e-capture SNe on metallicity, wind mass loss, dredge-up efficiency in AGB stars
- best model: no e-capture SN at solar Z

Pols: mass transfer in He-star binaries may prevent e-capture $SN \rightarrow$ reduced parameter space

• but: possibility of binary break-up (Crab?)

The Double Pulsar (PSR J0737-3039)

- $egin{aligned} ullet & P_{
 m orb} = 2.4\, h, \ M_A = 1.338\, {
 m M}_{\odot} \ (P_A = 22.7\, {
 m ms}), \ & {
 m M}_{
 m B} = 1.249\, {
 m M}_{\odot} \ (P_B = 2.77\, {
 m s}) \end{aligned}$
- lower-mass pulsar formed in e-capture supernova?
- circumstantial evidence:
 - \triangleright low mass of $1.249\,M_{\odot}$ close to expected mass from e-capture SN
 - vidence for low kick: low eccentricity, low space velocity, Pulsar A spin aligned with orbital axis (no geodetic precession)

Testing the Equation of State of Nuclear Matter (P. et al. 2005)

- ullet critical density for e-capture in ONeMg core ightarrow critical collapse mass: $M_{crit} = 1.370 \pm 0.005\,M_{\odot}$ (Lesaffre) (no rotation!)
- post-SN NS mass = pre-collapse
 core mass binding energy
- binding energy depends on the equation of state

```
complications: core mass loss in explosion (a few 10^{-3}\,\mathrm{M}_\odot)
```


(Newton, Miller, Stone)

Accretion-Induced Collapse (AIC)

```
Nomoto & Iben (1985): for high accretion rate (\dot{\mathrm{M}} > 0.2\,\dot{\mathrm{M}}_{\mathrm{Edd}} \simeq 4 \times 10^{-6}\,\mathrm{M}_{\odot}\,\,[\mathrm{M}_{\mathrm{WD}} = 1\mathrm{M}_{\odot}])
```

- \rightarrow carbon shell flash
- \rightarrow series of C shell flashes at successively smaller mass shells
- → conversion of CO WD into ONeMg WD
- → core collapse rather than thermonuclear explosion
- formation of neutron stars in LMXBs by AIC (e.g. Her X-1; v.d. Heuvel, Grindlay)
 - b to produce ms pulsars with low B (alternative to recycling scenario)
 - ▶ NS with low kicks (retention in GCs, etc.)
- rate estimate: $10^{-6} 10^{-4} \,\mathrm{yr}^{-1}$ (Yungelson)

Merger-Induced Collapse (MIC)

- double-degenerate mergers are prime candidates to produce NSs in an e-capture supernova
- rate \sim SN Ia rate

Theory: a few $10^{-3} \, \text{yr}^{-1}$ (Iben, Yungelson, Nelemans, Han)

Observations: SPY (Napiwotzki) probably consistent with theoretical estimate

- 10 20 % of all NSs?
- low kick to solve retention problem in globular clusters (Pfahl, Belczyński, Ivanova)

Remnant Evolution after a Double-Degenerate Merger

(Yoon, P., Rosswog 2007)

- post-merger configuration
 - ⊳ not simple star+disk system
 - ▶ 1/3 to 1/2 of disrupted WD is dumped onto the massive WD dynamically
 - cold WD + high-entropy envelope+ thick quasi-Keplerian disk
- post-merger evolution is governed by the evolution of the envelope controlling the effective accretion rate onto the core ($\sim 10^4\,\mathrm{yr}$)
- Key result: neutrino cooling at the interface between the hot envelope and cool core can carry away the energy produced by compressional heating
- → C shell ignition may be avoided under certain conditions
- \rightarrow thermonuclear explosion?

Necessary conditions for avoiding C shell ignition

- immediately after the merger, T_{max} less than the ignition temperature for C burning
- ullet disk accretion rate less than $5 imes 10^{-6} 10^{-5}\,\mathrm{M}_\odot\,\mathrm{yr}^{-1}$
- angular momentum loss timescale > neutrino cooling timescale
- depends
 - ▶ on the CO WD masses
 - by the thermal state of the massive WD

Conclusions (personal)

• probably not the dominant channel for SNe Ia

but: some double-degenerate mergers could produce SNe Ia (special sub-class?)