Gamma Ray Bursts

Probes of Star Formation in the Early Universe

Edward P.J.van den Heuvel Universiteit van Amsterdam &KITP-UCSB

KITP, March 17, 2007

Age of the Universe: 13.7 billion years

Age of our Milky Way Galaxy: at least 13 billion years

Age of our Solar System and Earth: 4.6 billion years

Hydrogen (H) and helium (He) were made in the Big Bang, all other elements were made in earlier generations of (massive) stars

We are made of Stardust

Sun and Planets to the same scale

Solar Neighbourhood

Big Dipper with distances in Lightyears

Velocity of light is finite: 300 000 Km/second

FAR AWAY = LONG AGO

European Southern Observatory's Very Large Telescope, Chile

Sun is 30000 lightyrs from Galactic center

100 billion stars like our sun Andromeda Nebula: 2 million lightyrs

HUDF-2005,Adv.Cam

Hubble's "Law"

The more distant a galaxy, the more its spectrum shifted towards the Red

Space expands: lightwave is stretched out: gets redder

Redshift z: measured wavelength is (z+1) times larger than wavelength at the time of emission

At z=1 : We observe universe as it was 9 billion yrs ago (universe 4.7 billion yrs old, in linear dimension 2 times smaller than now; in volume 8 times) At z= 6, most distant Quasars, 12.6 billion yrs ago! Volume 350x smaller!

LIFETIME OF A STAR: TIME REQUIRED TO BURN ALL ITS NUCLEAR FUEL (HYDROGEN= 70% OF ITS MASS)

SUN: 10 BILLION YRS PRESENT AGE: 4.6 BILLION YEARS

STAR OF 25 SOLAR MASSES:

BURNS ITS FUEL 50 000 TIMES FASTER: LIVES 2000 TIMES SHORTER:

5 MILLION YEARS

FINAL STAGES OF STARS

10000 KM

BELOW 8 SOLAR MASSES

300 000 EARTH MASSES

BETWEEN 8 AND ~ 20 SOLAR MASSES LIVE SHORTER THAN 20 MILLION YEARS

450 000 EARTH MASSES

MORE MASSIVE THAN ~ 20 SOLAR MASSES

20 km

1 MILLION EARTH MASSES BLACK HOLE

Black Hole: hole without a bottom, in Spacetime

Completely collapsed star

Gamma-Ray Bursts

DIFFERENT TYPES OF ELECTROMAGNETIC WAVES

PROPAGATE WITH THE VELOCITY OF LIGHT: 300 000 Km/s

A Cold War riddle

2 July 1967: Not the Soviets

NASA's Gamma-Ray Observatory 1991-1999

Compactness problem

At d= 10^5 lyrs (galactic): E = 10^{44} ergs(= 10^{37} J) **Burst Energy:** At d= 10^{10} lyrs (cosmolog.): E = 10^{54} ergs

1 ms spikes: Source size < 300 km

300 km

Solution (Carvalho and Rees 1980): "Relativistic Fireball":

Solution of "Compactness Problem" (Carvalho and Rees, 1980):

Surface that is emitting the γ -rays is moving relativistically towards us with a high Lorentz-factor $\Gamma \sim 100$ to 1000

Arrival time difference $\Delta t_{rec} = (1 - v/c)\Delta t_{em} = {(1 - (v/c)^2)/(1 + v/c)}\Delta t_{em} = \Delta t_{em}/2\Gamma^2$ Where Γ = Lorentz factor. So, for Γ =1000, $\Delta t_{em} = 2.10^6$. $\Delta t_{rec} = 2000 \ sec$

Source size 2000 lightsec = 4AU (HUGE): very diluted!! This solves "compactness problem"

POSITIONAL UNCERTAINTY GAMMA-RAY OBSERVATORY: 2 DEGREES

TEN ARCMINUTES FIELD OF VIEW OF LARGE OPTICAL TELESCOPE

Italian-Dutch BeppoSAX satellite, 1996 - 2003

U

U

B

4.2 meter William Herschel Telescope on La Palma

First ever optical identification of a Gamma-ray Burst : 28 February 1997 8 days after the burst **20 hours after the burst** INT 08/03/97 WHT 28/2/97 OT OT K dwarf -K dwarf

Van Paradijs, Groot, Galama et al., Nature, April 1997

Gamma-ray Burst of 23 March 2003: Redshift z= 3.28, 11.7 billion years ago (Universe was 4.28 times smaller than now; in volume: ~ 100 times smaller)

GRACE-collaboration with the ESO VLT

ENERGY OF THE GAMMA-RAY BURST

* IF EMITTED WITH SAME STRENGTH IN ALL DIRECTIONS:

To Earth

AS MUCH AS THE SUN PRODUCES IN 10 000 BILLION YEARS (1000 TIMES THE LIFETIME OF THE SUN): COMPLETE CONVERSION INTO ENERGY OF 1 SOLAR MASS = 330 000 x EARTH (~10⁵⁴ ergs)

*IF RADIATED IN NARROW BEAMS (CONES OF 10 DEGREES):

1000 TIMES LESS ENERGY: AS MUCH AS SUN EMITS IN ENTIRE LIFE = ENERGY OF SUPERNOVA EXPLOSION (~10⁵¹ ergs)

Supernova 1998bw / Gamma-Ray Burst of 25 April 1998

Picture of 1 May 1998

Picture from 1985

Galaxy ESO 0184-G82 at 140 million lightyears distance Supernova had no H or He in spectrum: Type Ic (peculiar) Outflow velocities 40 000 km/s (4x larger than "normal" Ic)

Types of Core-collapse supernovae

 Rapidly Rotating Disk of NUCLEAR matter around a recently-formed BLACK HOLE produces neutrinodriven JETS perpendicular to the disk.

(Woosley, 1993, and MacFadyan & Woosley 1998)

"Hypernova" or "Collapsar"

STAR

JET OF HIGH-ENERGY PARTICLES (will become a gamma-ray burst)

Some portions of the jet are moving at 99.99 percent of the speed of light.

Very dense regions

Less dense

Low-mass regions

Sources: Weiqun Zhang and Stan E. Woosley, University of California at Santa Cruz

Many long bursts at high z have shown a late-time Supernova "bump" in lightcurve, further confirming the "Collapsar" model for long-duration GRBs

HST Host galaxies of 18 long-duration GRBs

Swift Satellite Launched 20 Nov 2004

GRB 050904 (4 sept. 2005) Most distant GRB ever recorded: z= 6.29

[12.6 Billion years ago]

Infrared afterglow: discovery picture (left), and subseq. Nights (4.1 meter SOAR telescope Chile)

GRBs in Cosmological Context

Lamb and Reichart (2000)

Long versus Short Gamma-ray Bursts

Very probably different origin

Gamma-Ray Burst GRB 050724 (FORS1/VLT)

ESO PR Photo 39/05 (December 14, 2005)

Left: VLT exposure 24 July 2005, 12 hours after the burst: Cross: SWIFT XRT position; circle: CHANDRA position X-afterglow

Right: difference beween the VLT- pictures of 29 and 24 July 2005 shows visible afterglow of the burst on 24 July. Redshift z = 0.258

Conclusions

GRBs are beamed phenomena (opening angle < 10°):
 ejection of a few Earth masses of baryons at Γ = 100 - 1000

 Long-duration GRBs (> 2s) are related to black-hole formation at the death of short-lived stars > 20 solar masses: "Collapsars"/"Hypernovae" (pec. energetic SNe) * Requirement of Collapsar: rapid rotation and no H or He

* Occur preferentially in small disturbed "starburst" galaxies in early Universe : redshift typically between 1 and 6 (low "metallicity" may be a requirement).

 Short-duration GRBs (< 2s) consistent with black-hole formation by Double Neutron Star mergers
 Occur in elliptical (old-population) galaxies AND in star-forming galaxies, at redshifts typically 0.2 to 0.8.

Literature:

G.Schilling: "Flash", Cambridge University Press, 2002

J.I.Katz: "The Biggest Bangs", Oxford University Press, 2002.

Some Websites:

Heasarc.gsfc.nasa.gov/docs/swift/swiftsc.html

www.nasa.gov/swift

www.swift.psu.edu

www.swift.ac.uk

Swift.sonoma.edu/education

Beaming and true energy

Energy in Jets: opening angle <10deg
Reduces required Gamma Energy from E 53.5 to E 50.5 ergs (=Supernova-like) (Galama et al.1999; Frail et al. 2001)