Probing P and T Violation in The Higgs Sector

Michael Park

in collaboration with

Scott Thomas

Rutgers University

Motivation

Standard Model Higgs found, spin measured, coupling-to-mass ratios checked

No compelling evidence for BSM physics from direct searches

Should look for effects of new virtual/intermediate particle states

Weak scale new physics could give percent level deviations to SM Higgs observables

Violations of P and T could arise from pseudoscalar interference

Issues

Fortuitous Higgs mass - many channels available but many difficulties

Higgs to diphoton?

$$\mathcal{O}_{-}^{AA} = \frac{g^2 \widetilde{S}_{AA}}{16\pi v} h A^{\mu\nu} \widetilde{A}_{\mu\nu}$$

Detectors cannot measure spins, only 4-vectors

Higgs to WW?

Hadronic decays muddled by background

Leptonic decays lose information

The Golden Channel

Pros:

Preserves all kinematic information Best measured final state

Cons:

Low statistics

$$pp \rightarrow h \rightarrow ZZ' \rightarrow l_{+}l_{-}l'_{+}l'_{-}$$

In the Standard Model, the contributing operator is

$$\mathcal{O}_h = \frac{m_Z^2}{v} h Z^\mu Z_\mu$$

The lowest order pseudoscalar effective operator after EWSB is

$$\mathcal{O}_{-} = \frac{g_Z^2 \widetilde{S}_{ZZ}}{16\pi v} h Z^{\mu\nu} \widetilde{Z}_{\mu\nu}$$

Bounds from EDM's

Similar operators would contribute to electron EDM

$$\mathcal{O}_{-}^{AA} = \frac{g^2 \widetilde{S}_{AA}}{16\pi v} h A^{\mu\nu} \widetilde{A}_{\mu\nu} \qquad \qquad \mathcal{O}_{-}^{AZ} = \frac{g g_Z \widetilde{S}_{AZ}}{16\pi v} h Z^{\mu\nu} \widetilde{A}_{\mu\nu}$$

$$\mathcal{O}_{-}^{AZ} = \frac{gg_Z \widetilde{S}_{AZ}}{16\pi v} h Z^{\mu\nu} \widetilde{A}_{\mu\nu}$$

$$\mathcal{O}_{EDM} = \frac{d_e}{2} \overline{\Psi} \sigma^{\mu\nu} \Psi \widetilde{A}_{\mu\nu}$$

Bounds from EDM's

Really it is a specific linear combination that is bounded by the EDM

$$\frac{d_e}{e} = \frac{\alpha}{32\pi^2} \frac{m_e}{v^2} \left[\widetilde{S}_{AA} \log \left(1 + \frac{\Lambda^2}{m_h^2} \right) - \frac{1 - 4s_W^2}{2s_W^2 c_W^2} \widetilde{S}_{AZ} \frac{m_h^2 \log \left(1 + \frac{\Lambda^2}{m_h^2} \right) - m_Z^2 \log \left(1 + \frac{\Lambda^2}{m_Z^2} \right)}{m_h^2 - m_Z^2} \right]$$

$$\frac{d_e}{e} < 1 \times 10^{-26}$$

Ignoring considerations of naturalness, the operator

$$\mathcal{O}_{-}=rac{g_{Z}^{2}\widetilde{S}_{ZZ}}{16\pi v}hZ^{\mu\nu}\widetilde{Z}_{\mu\nu}$$
 remains unbounded

Kinematic Structures

Operators determine kinematic behavior of decay products

$$Z^{\mu}Z_{\mu} \sim \epsilon_Z \cdot \epsilon_{Z'}$$

$$Z^{\mu\nu}\widetilde{Z}_{\mu\nu} \sim \epsilon_{\mu\nu\rho\sigma} p_Z^{\mu} \epsilon_Z^{\nu} p_{Z'}^{\rho} \epsilon_{Z'}^{\sigma}$$

The leptonic decay plane determined by polarization

T Violation

Signed plane angle is sensitive to T violation

T violation should show up as an interference effect

Should vanish for pure scalar or pure pseudoscalar couplings

T-odd Observable

The unique T-odd observable for this four body final state is given by

$$\tau \equiv \frac{\epsilon_{\mu\nu\rho\sigma}p^{\mu}_{l_+}p^{\nu}_{l_-}p^{\rho}_{l'_+}p^{\sigma}_{l'_-}}{m^4_h}$$

It is related to the plane angle by

$$\sin \varphi = -\frac{1}{2} \tau \frac{\lambda^{1/2}(m_h^2, m_Z^2, m_{Z'}^2)}{\sqrt{m_Z^2 m_{Z'}^2 (p_{l_+} \cdot p_{Z'})(p_{l_-} \cdot p_{Z'})(p_{l'_+} \cdot p_Z)(p_{l'_-} \cdot p_Z)}}$$

We expect a cross term proportional to tau resulting in a deficit amplitude when tau is negative

$$|\mathcal{M}_{total}|^2 = |\mathcal{M}_h|^2 + |\mathcal{M}_-|^2 + \mathcal{M}_h^* \mathcal{M}_- + h.c.$$

T-odd Observable

Plot of tau shows almost no noticeable asymmetry

Maybe the asymmetry is too small

Give up?

Matrix Elements

Interference term contains extra kinematic structure

$$\mathcal{M}_h^*\mathcal{M}_- + h.c. \sim \frac{4g_Z^2 \widetilde{S}_{ZZ} m_Z^2 (g_V^2 + g_A^2)^2}{\pi v} \tau (p_{l_+} - p_{l_-})^\mu (p_{l_+'} - p_{l_-'})_\mu$$

$$\tilde{\mu} \equiv \frac{(p_{l_+} - p_{l_-})^{\mu} (p_{l'_+} - p_{l'_-})_{\mu}}{m_h^2}$$

Enhancing the Asymmetry

Define a new observable that untangles the asymmetry

$$\widetilde{\mathcal{T}} \equiv \tau \widetilde{\mu} = \frac{\epsilon_{\mu\nu\rho\sigma} p_{l_+}^{\mu} p_{l_-}^{\nu} p_{l'_+}^{\rho} p_{l'_-}^{\sigma} (m_{l_+ l'_+}^2 - m_{l_+ l'_-}^2 - m_{l_- l'_+}^2 + m_{l_- l'_-}^2)}{m_h^6}$$

Quantifying the Asymmetry

The simplest way to quantify the asymmetry is

$$\mathcal{A}_{\widetilde{\mathcal{T}}}^{(\theta)} = \int d\widetilde{\mathcal{T}} \left(\theta(\widetilde{\mathcal{T}}) - \theta(-\widetilde{\mathcal{T}}) \right) \frac{d\mathcal{P}(h \to \ell^+ \ell^- \ell'^+ \ell'^-)}{d\widetilde{\mathcal{T}}}$$

Conclusion

The era of precision Higgs measurements has begun

A novel evaluation of discrete symmetries in Higgs interactions

The measurement of a new coupling

Large integrated luminosity to compete with EDM

Yet still an interesting probe of T-violation in the Higgs sector