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A (Very!) Brief History of 
New Physics
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• Unitarity arguments dependably indicate when 
new physics will appear.

Fermi theory:  Dimension six operators violate 
unitarity around 350 GeV.

Rescued:  W boson at 80 GeV.
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• Unitarity arguments dependably indicate when 
new physics will appear.

Pion effective theory:  Light pion scattering violates 
unitarity around 1.2 GeV.

Resolved by the appearance of axial and vector 
resonances at 800 MeV.

A (Very!) Brief History of
New Physics
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• Unitarity arguments dependably indicate when 
new physics will appear.

Electroweak theory:  WW scattering requires
new physics around 1.2 TeV.

Rescued:  SM higgs boson at 125.5 GeV.

A (Very!) Brief History of 
New Physics



New Physics?
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• Basic Question:   What is next?

• Assuming thermal dark matter can we construct 
a unitarity argument to place a bound on when 
new physics must appear?

• Central Question for Snowmass: 

Is this scale/new physics obtainable for foreseeable 
searches?  To what extent must existing/planned 
experiments probe (LHC, direct detection...)?



Today
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• Focus on higgs portal dark matter annihilation 
from a hidden sector*. 

Very briefly ...

1.  Cover the simplest unitarity argument.

2.  Place bounds on the “dark” higgs which
    mixes with the SM higgs.

*See arXiv:1306:XXXX for more details and other scenarios.



Previous Work
(for Unitarity + Dark Matter)

7

• Griest and Kamionkowski, PRL 64 (1990) 615. 

Basic bounds on thermal dark matter mass from the 
annihilation cross section and relic abundance.  Maximum 
mass of the dark matter must be less than ~ 120 TeV.

• Shoemaker and Vecchi,  PRD 86 (2012) 015023. 

Focused on dark matter-quark and dark matter-gluon 
irrelevant operators.  Use to constrain direct detection 
experiments and monojet searches.
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for any imaginable higgs portal scenario. We next
compute the relic abundance and outline the relevant
experimental constraints. Afterwards, we implement
our unitary bounds and show the available parameter
space for the higgs portal. Here we emphasize the
bounds on the dark higgs mass and the corresponding
symmetry breaking scale. Lastly, we sketch potential
LHC signatures and conclude.

I. A REPRESENTATIVE MODEL

Without loss of generality, we consider a model in
which a U(1) symmetry is spontaneously broken to

U(1)dark → Z2. (9)

This discrete symmetry stabilizes the dark matter can-
didates. The dark matter (χ) and dark higgs (φ) trans-
form under the U(1)dark as

[φ] = 2 [χ] = −1 [ξ] = 1 (10)

where χ and ξ have both left- and right-handed com-
ponents. This particle content is anomaly free. In this
work, we primarily focus on fermonic dark matter and
comment the results differ with bosonic dark matter.

I.1. A Generic Higgs Sector

The SM higgs (h) is neutral under this U(1) symmetry.
The higgs potential is,

V = λ1
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v2

2
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where v and u are the electroweak and dark vevs, re-
spectively. We parametrize φ = (ρ + u) eiθ/

√
2 where

〈ρ〉 = 0 and ρ is the dark higgs. Here θ is the eaten
goldstone boson needed to make the U(1)dark gauge
boson massive. Because we focus on higgs portal anni-
hilation, we do not further consider the massive dark
gauge boson in this work and postpone those details
for [9]. The higgs masses are

m2
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where mh is the SM higgs mass and is fixed to 125.5
GeV. mρ is the dark higgs mass. The higgses mix in

the mass matrix
(

h′

ρ′

)

=

(

cos θ − sin θ
sin θ cos θ

) (

h
ρ

)

(14)

where the primes are the mass eigenstates. For simplic-
ity going forward, we refer to both the mass and charge
eigenstates without primes. In the limit of u & v,

cos θ ∼ 1 −
λ2

3 v2

8λ2
2 u2

sin θ ∼
λ3 v

2λ2 u
. (15)

As expected, the decoupling limit requires λ3 → 0
and/or sending the dark vev, u, to infinity. In Ap-
pendix B, we expand the higgs potential to give
the higgs-higgs and higgs-goldstone and goldstone-
goldstone couplings after mixing. These couplings are
needed in Section IV. We note the higgs portal does
not to be the result of spontaneously broken symme-
try. One can simply mix a real, massive scalar with
the SM higgs to generate a potential similar to equa-
tion 11. We address this as well in Appendix B. Finally
before moving on, we emphasize because of the higgs
mixing that the couplings of the dark higgs with SM
matter and SM gauge bosons is proportional to cos θ.
The dark higgs and SM higgs couplings couplings are
more complicated. We list all of these couplings in
Appendix B.

I.2. Dark Matter Sector

Given the results of [1], for simplicity we assume the
dark higgs is solely responsible for the dark matter
mass. For simplicity we focus on fermonic dark matter
and comment on any differences when one considers
scalar dark matter in Appendix C. The dark matter
sector has the yukawa terms,

L = λχ χL χR φ + λξ ξL ξR φ∗. (16)

The dark higgs gives the dark matter candidates the
following masses,

mχ = λχ u mξ = λξ u (17)

We assume mξ will be of order or larger than any scale
of interest and integrated out. This leaves a single
dark matter candidate in the effective theory. Because
u & v this assumption simply means λξ ∼ O(1).

1.3. Couplings

Here we emphasize (again) that the higgs mixing mod-
ifies the SM and dark higgs couplings by sines and
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• Consider WW scattering amplitudes:

2

form

〈σ|v|〉 ∼
sin4 θ

m2
χ

or 〈σ|v|〉 ∼
sin2 θ cos2 θ

m2
χ

. (3)

The relation on the left is for dark matter annihila-
tion into SM higgses. The right is for annihilation into
SM fermions or weak gauge boson in the final state.
This brings us to our second important point: The
measured relic abundance in equation 1 requires sin θ
to be non-zero. Now consider, e.g., unitarity bounds
from high-energy WW scattering. The most impor-
tant contributions to the tree-level scattering ampli-
tudes are

Mgauge =
g2

4 m2
W

(s + t) (4)

MSM higgs = −
g2

4 m2
W

(s + t) cos2 θ (5)

Mdark higgs = −
g2

4 m2
W

(s + t) sin2 θ (6)

It is clear both the dark higgs and SM higgs exchange
diagrams are needed to unitarize WW scattering.
However, equation 6 assumes the dark higgs mass
is much smaller than

√
s. In practice, one can raise

the dark higgs mass to be larger than any other scale
of interest while keeping the mixing angle fixed and
non-zero. Thus, in this limit, the SM higgs amplitude
can only partially cancel out the gauge contribution
in equation 4. Consequently, partial wave unitarity
has the potential to place an upper bound on the
dark higgs mass. Now, for models where multiple
higgses mix (e.g. two higgs doublet models), one can
raise the analogy of the dark higgs mass so long as
the mixing angle is adjusted to ensure unitarity is
maintained. This bring us to our final important
point: In the limit of vanishingly small sin θ, the
SM higgs-like amplitude in equation 5 better cancels
the gauge contribution and therefore accommodates
a heavier dark higgs mass. However, because of the
relic abundance constraint, there is a lower bound
on the mixing angle and therefore an absolute upper
bound on the dark higgs mass1. In this letter, we
place unitarity as well as experimental constraints
to constrain the parameter space for a generic higgs
portal scenario. We not only bound the dark higgs
mass but also constrain the overall scale new physics

1 The caveat here is that the dark matter mass may be so large
that raising the dark higgs mass to be larger results in an
experimentally invalid relic abundance. We address this case
as well. Here we use SM higgs measurements to set an upper
bound on the dark higgs mass.

associated with the dark sector.

Before moving on, we note that unitarity
bounds [11, 12] were the essential argument for
why the SM higgs boson was expected to be dis-
covered at the LHC. Our desire is for these simple
arguments to motivate new physics searches at scales
which may be obtainable for present/near-term
experiments. For example, if the mixing between the
SM and dark higgses is large (e.g. sin θ ∼ 1/

√
2), the

unitary constraint from WW scattering alone gives

mdark higgs ! 1.4 TeV (7)

which may be in reach for the LHC14/VLHC at high
luminosity. This follows from equations 4, 5 and 48.
Using equation 2 and assuming the higgs sector is per-
turbative, the scale of new physics is of order,

u ≤ O(3 − 4 TeV). (8)

which may be possible with the next generation of
colliders.

Beyond unitarity bounds, direct detection of dark mat-
ter has become increasingly precise. The Xenon100 [8],
EDELWEISS and CDMSII [13] collaborations have
largely ruled out dark matter-nucleon scattering
events to around cross sections of 10−43-10−44 cm2.
Very roughly, these cross sections are roughly of order
(or smaller than) what one would expect with scatter-
ing with a Z boson. The next order of magnitudes in
cross section are expected with dark matter-nucleon
scattering via the higgs bosons which, considering [1],
probes the higgs portal.

In general, there are an infinite number of dark
matter models that are consistent with experiment;
however, there is a small number of neutral mediator
particles that can mix with SM particles in order
to facilitate dark matter annihilations. Given the
results of [1] and the assumption of thermal dark
matter, perhaps an important key for understanding
the nature of dark matter could be the discovery
of these mediator particles. Thus, one can map the
search for thermal dark matter to mediator particles
which, by definition, must couple non-trivially to the
SM. Already there are searches for mediators particles
such at heavy photons. This work adds a theoretical
upper limit on the parameter space of a generic higgs
portal and therefore provide focus on what may be
possible in the near future. In collaboration [9], we
focus on heavy photons with the same intent.

In the next section we introduce a model to place our
unitary bounds. The model is generic and adaptable

The Basic Unitarity Argument
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measured relic abundance in equation 1 requires sin θ
to be non-zero. Now consider, e.g., unitarity bounds
from high-energy WW scattering. The most impor-
tant contributions to the tree-level scattering ampli-
tudes are

Mgauge =
g2

4 m2
W

(s + t) (4)

MSM higgs = −
g2

4 m2
W

(s + t) cos2 θ (5)

Mdark higgs = −
g2

4 m2
W

(s + t) sin2 θ (6)

It is clear both the dark higgs and SM higgs exchange
diagrams are needed to unitarize WW scattering.
However, equation 6 assumes the dark higgs mass
is much smaller than

√
s. In practice, one can raise

the dark higgs mass to be larger than any other scale
of interest while keeping the mixing angle fixed and
non-zero. Thus, in this limit, the SM higgs amplitude
can only partially cancel out the gauge contribution
in equation 4. Consequently, partial wave unitarity
has the potential to place an upper bound on the
dark higgs mass. Now, for models where multiple
higgses mix (e.g. two higgs doublet models), one can
raise the analogy of the dark higgs mass so long as
the mixing angle is adjusted to ensure unitarity is
maintained. This bring us to our final important
point: In the limit of vanishingly small sin θ, the
SM higgs-like amplitude in equation 5 better cancels
the gauge contribution and therefore accommodates
a heavier dark higgs mass. However, because of the
relic abundance constraint, there is a lower bound
on the mixing angle and therefore an absolute upper
bound on the dark higgs mass1. In this letter, we
place unitarity as well as experimental constraints
to constrain the parameter space for a generic higgs
portal scenario. We not only bound the dark higgs
mass but also constrain the overall scale new physics

1 The caveat here is that the dark matter mass may be so large
that raising the dark higgs mass to be larger results in an
experimentally invalid relic abundance. We address this case
as well. Here we use SM higgs measurements to set an upper
bound on the dark higgs mass.

associated with the dark sector.

Before moving on, we note that unitarity
bounds [11, 12] were the essential argument for
why the SM higgs boson was expected to be dis-
covered at the LHC. Our desire is for these simple
arguments to motivate new physics searches at scales
which may be obtainable for present/near-term
experiments. For example, if the mixing between the
SM and dark higgses is large (e.g. sin θ ∼ 1/

√
2), the

unitary constraint from WW scattering alone gives

mdark higgs ! 1.4 TeV (7)

which may be in reach for the LHC14/VLHC at high
luminosity. This follows from equations 4, 5 and 48.
Using equation 2 and assuming the higgs sector is per-
turbative, the scale of new physics is of order,

u ≤ O(3 − 4 TeV). (8)

which may be possible with the next generation of
colliders.

Beyond unitarity bounds, direct detection of dark mat-
ter has become increasingly precise. The Xenon100 [8],
EDELWEISS and CDMSII [13] collaborations have
largely ruled out dark matter-nucleon scattering
events to around cross sections of 10−43-10−44 cm2.
Very roughly, these cross sections are roughly of order
(or smaller than) what one would expect with scatter-
ing with a Z boson. The next order of magnitudes in
cross section are expected with dark matter-nucleon
scattering via the higgs bosons which, considering [1],
probes the higgs portal.

In general, there are an infinite number of dark
matter models that are consistent with experiment;
however, there is a small number of neutral mediator
particles that can mix with SM particles in order
to facilitate dark matter annihilations. Given the
results of [1] and the assumption of thermal dark
matter, perhaps an important key for understanding
the nature of dark matter could be the discovery
of these mediator particles. Thus, one can map the
search for thermal dark matter to mediator particles
which, by definition, must couple non-trivially to the
SM. Already there are searches for mediators particles
such at heavy photons. This work adds a theoretical
upper limit on the parameter space of a generic higgs
portal and therefore provide focus on what may be
possible in the near future. In collaboration [9], we
focus on heavy photons with the same intent.

In the next section we introduce a model to place our
unitary bounds. The model is generic and adaptable

The Basic Unitarity Argument
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that raising the dark higgs mass to be larger results in an
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2), the
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luminosity. This follows from equations 4, 5 and 48.
Using equation 2 and assuming the higgs sector is per-
turbative, the scale of new physics is of order,
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which may be possible with the next generation of
colliders.

Beyond unitarity bounds, direct detection of dark mat-
ter has become increasingly precise. The Xenon100 [8],
EDELWEISS and CDMSII [13] collaborations have
largely ruled out dark matter-nucleon scattering
events to around cross sections of 10−43-10−44 cm2.
Very roughly, these cross sections are roughly of order
(or smaller than) what one would expect with scatter-
ing with a Z boson. The next order of magnitudes in
cross section are expected with dark matter-nucleon
scattering via the higgs bosons which, considering [1],
probes the higgs portal.

In general, there are an infinite number of dark
matter models that are consistent with experiment;
however, there is a small number of neutral mediator
particles that can mix with SM particles in order
to facilitate dark matter annihilations. Given the
results of [1] and the assumption of thermal dark
matter, perhaps an important key for understanding
the nature of dark matter could be the discovery
of these mediator particles. Thus, one can map the
search for thermal dark matter to mediator particles
which, by definition, must couple non-trivially to the
SM. Already there are searches for mediators particles
such at heavy photons. This work adds a theoretical
upper limit on the parameter space of a generic higgs
portal and therefore provide focus on what may be
possible in the near future. In collaboration [9], we
focus on heavy photons with the same intent.

In the next section we introduce a model to place our
unitary bounds. The model is generic and adaptable

• Raise the dark higgs mass to be very large:               .   
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C. Scalar Dark Matter Considerations

Scalar dark matter has the form

L = λχ φ∗φχ∗ χ + λχh h†h χ∗ χ + λχ′ (χ∗χ)2, (130)

where χ is a real scalar. When we discuss scalar dark
matter we always make the assumption that λχh → 0.
Any unitary constraints on scalar dark matter must
constrains both λχ′ and λχ independently.

C.2. Bosonic Relic Abundance

We have the following s-channel processes contributing
to the relic abundance

χ + χ → q̄ + q χ + χ → W + W (131)

χ + χ → l̄ + l χ + χ → Z + Z. (132)

Here q = u, d, c, s, t, b and l = e, µ, τ . In addition we
have the s- and t-channel diagrams

χ + χ → h + h. (133)

The thermally averaged cross section (in the low ve-
locity limit) is
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D.1. Effective Potential

In this section, we compute the quadratic and loga-
rithmic divergent pieces one-loop effective potential.
It is certainly true that additional symmetries in the
higgs sector can change the divergence structure of
the effective potential. The results in this section are
model dependent. We use the potential to constrain..

The unitarity bounds on the higgs portal con-
strain λ1−3. Inevitably, there will be points in
parameter space that pass the unitarity constraints
with relatively large values for λ2,3. For relatively
large values of λ2,3, it is important to be sure the
one-loop effective potential does not spoil electroweak
(or dark) symmetry breaking minimum in equation 11.

At one-loop, the tree-level effective potential for
the SM higgs gets quadratically and logarithmically
divergent corrections. The SM higgs potential..
Generically, modifications go as

δ Veff quadratic =
Λ2

16 π2
trM2(h) (135)

δ Veff logarithmic = tr M4(h) log
M2(h)

Λ2
(136)

where M2 Here Λ is the cutoff to the effective theory.
In addition to the tree level potential (at one loop),

we

sin θ → 0 (137)
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However ... the Relic Abundance

• Dark higgs’ mass is large:  The correct relic abundance 
prevents             .       

DM SM higgs DM SM

2

form

〈σ|v|〉 ∼
sin4 θ

m2
χ

or 〈σ|v|〉 ∼
sin2 θ cos2 θ

m2
χ

. (3)

The relation on the left is for dark matter annihila-
tion into SM higgses. The right is for annihilation into
SM fermions or weak gauge boson in the final state.
This brings us to our second important point: The
measured relic abundance in equation 1 requires sin θ
to be non-zero. Now consider, e.g., unitarity bounds
from high-energy WW scattering. The most impor-
tant contributions to the tree-level scattering ampli-
tudes are

Mgauge =
g2

4 m2
W

(s + t) (4)

MSM higgs = −
g2

4 m2
W

(s + t) cos2 θ (5)

Mdark higgs = −
g2

4 m2
W

(s + t) sin2 θ (6)

It is clear both the dark higgs and SM higgs exchange
diagrams are needed to unitarize WW scattering.
However, equation 6 assumes the dark higgs mass
is much smaller than

√
s. In practice, one can raise

the dark higgs mass to be larger than any other scale
of interest while keeping the mixing angle fixed and
non-zero. Thus, in this limit, the SM higgs amplitude
can only partially cancel out the gauge contribution
in equation 4. Consequently, partial wave unitarity
has the potential to place an upper bound on the
dark higgs mass. Now, for models where multiple
higgses mix (e.g. two higgs doublet models), one can
raise the analogy of the dark higgs mass so long as
the mixing angle is adjusted to ensure unitarity is
maintained. This bring us to our final important
point: In the limit of vanishingly small sin θ, the
SM higgs-like amplitude in equation 5 better cancels
the gauge contribution and therefore accommodates
a heavier dark higgs mass. However, because of the
relic abundance constraint, there is a lower bound
on the mixing angle and therefore an absolute upper
bound on the dark higgs mass1. In this letter, we
place unitarity as well as experimental constraints
to constrain the parameter space for a generic higgs
portal scenario. We not only bound the dark higgs
mass but also constrain the overall scale new physics

1 The caveat here is that the dark matter mass may be so large
that raising the dark higgs mass to be larger results in an
experimentally invalid relic abundance. We address this case
as well. Here we use SM higgs measurements to set an upper
bound on the dark higgs mass.

associated with the dark sector.

Before moving on, we note that unitarity
bounds [11, 12] were the essential argument for
why the SM higgs boson was expected to be dis-
covered at the LHC. Our desire is for these simple
arguments to motivate new physics searches at scales
which may be obtainable for present/near-term
experiments. For example, if the mixing between the
SM and dark higgses is large (e.g. sin θ ∼ 1/

√
2), the

unitary constraint from WW scattering alone gives

mdark higgs ! 1.4 TeV (7)

which may be in reach for the LHC14/VLHC at high
luminosity. This follows from equations 4, 5 and 48.
Using equation 2 and assuming the higgs sector is per-
turbative, the scale of new physics is of order,

u ≤ O(3 − 4 TeV). (8)

which may be possible with the next generation of
colliders.

Beyond unitarity bounds, direct detection of dark mat-
ter has become increasingly precise. The Xenon100 [8],
EDELWEISS and CDMSII [13] collaborations have
largely ruled out dark matter-nucleon scattering
events to around cross sections of 10−43-10−44 cm2.
Very roughly, these cross sections are roughly of order
(or smaller than) what one would expect with scatter-
ing with a Z boson. The next order of magnitudes in
cross section are expected with dark matter-nucleon
scattering via the higgs bosons which, considering [1],
probes the higgs portal.

In general, there are an infinite number of dark
matter models that are consistent with experiment;
however, there is a small number of neutral mediator
particles that can mix with SM particles in order
to facilitate dark matter annihilations. Given the
results of [1] and the assumption of thermal dark
matter, perhaps an important key for understanding
the nature of dark matter could be the discovery
of these mediator particles. Thus, one can map the
search for thermal dark matter to mediator particles
which, by definition, must couple non-trivially to the
SM. Already there are searches for mediators particles
such at heavy photons. This work adds a theoretical
upper limit on the parameter space of a generic higgs
portal and therefore provide focus on what may be
possible in the near future. In collaboration [9], we
focus on heavy photons with the same intent.

In the next section we introduce a model to place our
unitary bounds. The model is generic and adaptable
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largely ruled out dark matter-nucleon scattering
events to around cross sections of 10−43-10−44 cm2.
Very roughly, these cross sections are roughly of order
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which, by definition, must couple non-trivially to the
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possible in the near future. In collaboration [9], we
focus on heavy photons with the same intent.
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C. Scalar Dark Matter Considerations

Scalar dark matter has the form

L = λχ φ∗φχ∗ χ + λχh h†h χ∗ χ + λχ′ (χ∗χ)2, (130)

where χ is a real scalar. When we discuss scalar dark
matter we always make the assumption that λχh → 0.
Any unitary constraints on scalar dark matter must
constrains both λχ′ and λχ independently.

C.2. Bosonic Relic Abundance

We have the following s-channel processes contributing
to the relic abundance

χ + χ → q̄ + q χ + χ → W + W (131)

χ + χ → l̄ + l χ + χ → Z + Z. (132)

Here q = u, d, c, s, t, b and l = e, µ, τ . In addition we
have the s- and t-channel diagrams

χ + χ → h + h. (133)

The thermally averaged cross section (in the low ve-
locity limit) is
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D.1. Effective Potential

In this section, we compute the quadratic and loga-
rithmic divergent pieces one-loop effective potential.
It is certainly true that additional symmetries in the
higgs sector can change the divergence structure of
the effective potential. The results in this section are
model dependent. We use the potential to constrain..

The unitarity bounds on the higgs portal con-
strain λ1−3. Inevitably, there will be points in
parameter space that pass the unitarity constraints
with relatively large values for λ2,3. For relatively
large values of λ2,3, it is important to be sure the
one-loop effective potential does not spoil electroweak
(or dark) symmetry breaking minimum in equation 11.

At one-loop, the tree-level effective potential for
the SM higgs gets quadratically and logarithmically
divergent corrections. The SM higgs potential..
Generically, modifications go as

δ Veff quadratic =
Λ2

16 π2
trM2(h) (135)

δ Veff logarithmic = tr M4(h) log
M2(h)

Λ2
(136)

where M2 Here Λ is the cutoff to the effective theory.
In addition to the tree level potential (at one loop),

we

sin θ → 0 (137)
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• Dark matter - dark matter scattering

(similar to Furman, Hinchliffe and Chanowitz’s unitarity bounds on 
heavy 4th generation fermions)

Full Unitarity Considerations

DM DM

DM DM
Dark Higgs

Dark Higgs
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Full Unitarity Considerations
(Goldstone Boson Limit)
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where
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(59a)
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α = κ(s ↔ c) (59e)

β = ξ(s ↔ c) (59f)

η = 2 δ (59g)

In the decoupling limit, this matrix reduces to the four-
channel higgs system discussed in plus a disassociated
dark higgs. The decoupled SM higgs matrix is equal
to the matrix in [12]; because the unitarity arguments
in [12] essentially place bounds on one parameter, λSM

(equation 24), the SM higgs matrix can be analyti-
cally diagonalized. The eigenvalues full matrix above
has three unknown parameters and is most efficiently
solved numerically. For example, if λ1 = λ2 = λ3 = 1
and u = 1 TeV, then the absolute values of the eigen-
values are e1 = 1.89247, e2 = 1.02262, e3 = 0.648219,
e4 = 0.500029, e5 = 0.489262, e6 = 0.250014 and
e7 = 0.0411365. These first four eigenvalues violate
the unitarity condition in equation 48 thereby inval-
idating this parameter point. In Figure 1 from this
unitarity constraint alone we plot the .....
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h, the partial wave am-
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FIG. 1: Plot (a)

are the light masses in this limit: mρ, mh, mZ or mW .
log ε factor originates from those terms with t- and/or
u-channel propagators. Integrating over the scattering
angle in the center-of-mass fame generates “Coulomb
singularities” in the limit where ε → 0 [27]. However,
ε log ε and ε terms are well behaved and in the limit

7

where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.

IV. UNITARITY CONSTRAINTS

There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
dance in equation 1. Here we derive unitarity con-
straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
the restrictive partial wave unitary constraint [25, 26],

∣

∣ReM(j)
∣

∣ ≤
1

2
, (48)

for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
theorem. The scalar potential (equation 11) before
the goldstone bosons are eaten is

V = λ1

(

v2 h2 + v h
(
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)
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)

Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams

In the Appendix A.1-A.3, we list the amplitudes for
higgs-higgs, goldstone boson boson-higgs and gold-
stone boson-goldstone boson scattering. We consider
partial-wave unitarity constraints on a seven channel
system (equations 50-55) consisting of the vector,
(

W+
L W−

L ,
ZLZL√

2
,

hh√
2
,

ρρ√
2
, hρ, hZL, ρZL

)

, (57)

which describes initial and final states for different in-
teractions.
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When s % u2, m2
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h, a constraint on the couplings

in the higgs potential can be imposed. The scattering
amplitudes of coupled seven channel system has the
form,
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4 Please see Appendix C for scalar dark matter considerations.
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where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.

IV. UNITARITY CONSTRAINTS

There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
dance in equation 1. Here we derive unitarity con-
straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
the restrictive partial wave unitary constraint [25, 26],

∣
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∣
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, (48)

for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
theorem. The scalar potential (equation 11) before
the goldstone bosons are eaten is

V = λ1

(

v2 h2 + v h
(

2 w+w− + h2 + z2
)

(49)

+
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)

Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams

In the Appendix A.1-A.3, we list the amplitudes for
higgs-higgs, goldstone boson boson-higgs and gold-
stone boson-goldstone boson scattering. We consider
partial-wave unitarity constraints on a seven channel
system (equations 50-55) consisting of the vector,
(

W+
L W−

L ,
ZLZL√

2
,
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2
,

ρρ√
2
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)

, (57)

which describes initial and final states for different in-
teractions.
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in the higgs potential can be imposed. The scattering
amplitudes of coupled seven channel system has the
form,
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where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.

IV. UNITARITY CONSTRAINTS

There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
dance in equation 1. Here we derive unitarity con-
straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
the restrictive partial wave unitary constraint [25, 26],
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∣
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for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
theorem. The scalar potential (equation 11) before
the goldstone bosons are eaten is

V = λ1

(

v2 h2 + v h
(
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)
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Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams

In the Appendix A.1-A.3, we list the amplitudes for
higgs-higgs, goldstone boson boson-higgs and gold-
stone boson-goldstone boson scattering. We consider
partial-wave unitarity constraints on a seven channel
system (equations 50-55) consisting of the vector,
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which describes initial and final states for different in-
teractions.
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4 Please see Appendix C for scalar dark matter considerations.
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where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.
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There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
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straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
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for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
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Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams
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Full Unitarity Considerations
(Goldstone Boson Limit)
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where

c = 1 −
λ2

3 v2

8λ2
2 u2

s =
λ3 v

2λ2 u
(59a)

and

κ =
3

4
s2

(

c2 +
λ2

λ3
s2

)

(59b)

δ =
1

8

(

s4 + c4

)

−
1

2
s2c2

(

1 −
3

2

λ2

λ3

)

(59c)

ξ =
3 cs√

8

(

−
1

2

(

c2 − s2
)

−
λ2

λ3
s2

)

(59d)

α = κ(s ↔ c) (59e)

β = ξ(s ↔ c) (59f)

η = 2 δ (59g)

In the decoupling limit, this matrix reduces to the four-
channel higgs system discussed in plus a disassociated
dark higgs. The decoupled SM higgs matrix is equal
to the matrix in [12]; because the unitarity arguments
in [12] essentially place bounds on one parameter, λSM

(equation 24), the SM higgs matrix can be analyti-
cally diagonalized. The eigenvalues full matrix above
has three unknown parameters and is most efficiently
solved numerically. For example, if λ1 = λ2 = λ3 = 1
and u = 1 TeV, then the absolute values of the eigen-
values are e1 = 1.89247, e2 = 1.02262, e3 = 0.648219,
e4 = 0.500029, e5 = 0.489262, e6 = 0.250014 and
e7 = 0.0411365. These first four eigenvalues violate
the unitarity condition in equation 48 thereby inval-
idating this parameter point. In Figure 1 from this
unitarity constraint alone we plot the .....
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In the limit of u2 $ s $ m2
ρ, m

2
h, the partial wave am-

plitudes are sum of equation 58 plus additional contri-
butions that go as ε or ε log ε. Here ε = m2/s and m
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FIG. 1: Plot (a)

are the light masses in this limit: mρ, mh, mZ or mW .
log ε factor originates from those terms with t- and/or
u-channel propagators. Integrating over the scattering
angle in the center-of-mass fame generates “Coulomb
singularities” in the limit where ε → 0 [27]. However,
ε log ε and ε terms are well behaved and in the limit

7

where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.

IV. UNITARITY CONSTRAINTS

There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
dance in equation 1. Here we derive unitarity con-
straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
the restrictive partial wave unitary constraint [25, 26],

∣

∣ReM(j)
∣

∣ ≤
1

2
, (48)

for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
theorem. The scalar potential (equation 11) before
the goldstone bosons are eaten is

V = λ1

(

v2 h2 + v h
(

2 w+w− + h2 + z2
)

(49)

+
1

4

(

2 w+w− + h2 + z2
)2
)

+ λ2

(

u2 ρ2 + u ρ3 +
1

4
ρ4

)

+ λ3

(

u v ρ h +
1

2
v h ρ2

+
1

2
u ρ
(

2 w+w− + h2 + z2
)

+
1

4
ρ2
(

2 w+w− + h2 + z2
)

)

Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams

In the Appendix A.1-A.3, we list the amplitudes for
higgs-higgs, goldstone boson boson-higgs and gold-
stone boson-goldstone boson scattering. We consider
partial-wave unitarity constraints on a seven channel
system (equations 50-55) consisting of the vector,
(

W+
L W−

L ,
ZLZL√

2
,

hh√
2
,

ρρ√
2
, hρ, hZL, ρZL

)

, (57)

which describes initial and final states for different in-
teractions.
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When s % u2, m2
ρ, m

2
h, a constraint on the couplings

in the higgs potential can be imposed. The scattering
amplitudes of coupled seven channel system has the
form,
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where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.

IV. UNITARITY CONSTRAINTS

There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
dance in equation 1. Here we derive unitarity con-
straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
the restrictive partial wave unitary constraint [25, 26],

∣

∣ReM(j)
∣

∣ ≤
1

2
, (48)

for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
theorem. The scalar potential (equation 11) before
the goldstone bosons are eaten is

V = λ1

(

v2 h2 + v h
(

2 w+w− + h2 + z2
)

(49)

+
1

4

(

2 w+w− + h2 + z2
)2
)

+ λ2

(

u2 ρ2 + u ρ3 +
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4
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)
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(
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+
1

2
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(
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)

+
1

4
ρ2
(

2 w+w− + h2 + z2
)

)

Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams

In the Appendix A.1-A.3, we list the amplitudes for
higgs-higgs, goldstone boson boson-higgs and gold-
stone boson-goldstone boson scattering. We consider
partial-wave unitarity constraints on a seven channel
system (equations 50-55) consisting of the vector,
(

W+
L W−

L ,
ZLZL√

2
,

hh√
2
,

ρρ√
2
, hρ, hZL, ρZL

)

, (57)

which describes initial and final states for different in-
teractions.
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When s % u2, m2
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2
h, a constraint on the couplings

in the higgs potential can be imposed. The scattering
amplitudes of coupled seven channel system has the
form,
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where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.

IV. UNITARITY CONSTRAINTS

There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
dance in equation 1. Here we derive unitarity con-
straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
the restrictive partial wave unitary constraint [25, 26],

∣

∣ReM(j)
∣

∣ ≤
1

2
, (48)

for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
theorem. The scalar potential (equation 11) before
the goldstone bosons are eaten is

V = λ1

(

v2 h2 + v h
(

2 w+w− + h2 + z2
)

(49)

+
1

4

(

2 w+w− + h2 + z2
)2
)
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(
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(
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)

+
1

4
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(
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)

)

Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams

In the Appendix A.1-A.3, we list the amplitudes for
higgs-higgs, goldstone boson boson-higgs and gold-
stone boson-goldstone boson scattering. We consider
partial-wave unitarity constraints on a seven channel
system (equations 50-55) consisting of the vector,
(

W+
L W−

L ,
ZLZL√

2
,

hh√
2
,

ρρ√
2
, hρ, hZL, ρZL

)

, (57)

which describes initial and final states for different in-
teractions.
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h, a constraint on the couplings
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amplitudes of coupled seven channel system has the
form,
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where the U parameter is roughly zero; the “. . .” rep-
resent additional finite and higher-order corrections.
The lowest order corrections by the dark higgs is from
two insertions of the h h ρ vertex given in equation ??.

IV. UNITARITY CONSTRAINTS

There are five unknown parameters (equation 26)
that are constrained to three by the measured SM
higgs mass and the requirement that the higgs por-
tal dark matter annihilation generates the relic abun-
dance in equation 1. Here we derive unitarity con-
straints from dark matter-dark matter scattering as
well as goldstone-higgs, higgs-higgs and goldstone-
goldsone scattering. Please note: Throughout we use
the restrictive partial wave unitary constraint [25, 26],
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for all of our computations.

To generate the unitarity constraints on the higgs
sector, we employ the goldstone boson equivalence
theorem. The scalar potential (equation 11) before
the goldstone bosons are eaten is
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(
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(
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)
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Recall, to simply matters, we decouple the goldstone
boson eaten to make the dark photon massive. We
consider this case in separate work [9]. We focus on
the charge neutral scattering processes,

V + V ∗ → V ∗ + V (50)

V + V ∗ ↔ H + H (51)

V + V ∗ ↔ H + z (52)

H + H → H + H (53)

H + H ↔ H + z (54)

H + z → H + z (55)

using the goldstone boson equivalence theorem. Here
V = w+, z and H = h, ρ where the above processes ac-
count for all possible scattering combinations. In this

section we generate unitary constraints on these pro-
cesses by essentially generalizing the analysis in [12].
In order to directly place constraints on the dark mat-
ter yukawa coupling, λχ, we also consider the process

χ + χ → χ + χ (56)

An analogous process was considered in [22, 23] to
place upper bounds on new fermion masses resulting
from electroweak symmetry breaking4. Finally, since it
is relatively easy, we compare our bounds on the dark
matter mass to updated constraints from Griest and
Kamiokowski [24].

IV.1. Goldstone-Higgs Boson Scattering Diagrams

In the Appendix A.1-A.3, we list the amplitudes for
higgs-higgs, goldstone boson boson-higgs and gold-
stone boson-goldstone boson scattering. We consider
partial-wave unitarity constraints on a seven channel
system (equations 50-55) consisting of the vector,
(

W+
L W−

L ,
ZLZL√
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,
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2
,

ρρ√
2
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which describes initial and final states for different in-
teractions.
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
3 +

3

8
g′ 4 +

3

4
g′ 2g 2 +

9

8
g4 − 6λ4

t + . . . ,

16π2 dλ2

dt
= 24λ2

2 + 2λ2
3 − 2λ4

χ + . . . , (21)

16π2 dλ3

dt
= 4λ2

3 + 12λ3(λ1 + λ2) + . . . , (22)

16π2 dλχ

dt
=

3

2
λ3

χ + . . . , (23)

where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π

(

m2
χ − m2

h

)3/2

mχ

(

2 m2
χ − m2

h

)2 (30)
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:
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16π2 dλ3

dt
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3 + 12λ3(λ1 + λ2) + . . . , (22)
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dt
=

3

2
λ3

χ + . . . , (23)

where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π

(
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Hidden sector symmetry 
breaking vev.
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
3 +

3

8
g′ 4 +

3

4
g′ 2g 2 +

9

8
g4 − 6λ4

t + . . . ,

16π2 dλ2

dt
= 24λ2

2 + 2λ2
3 − 2λ4

χ + . . . , (21)

16π2 dλ3

dt
= 4λ2

3 + 12λ3(λ1 + λ2) + . . . , (22)

16π2 dλχ

dt
=

3

2
λ3

χ + . . . , (23)

where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π

(

m2
χ − m2

h

)3/2

mχ

(

2 m2
χ − m2

h

)2 (30)

Goldstone-higgs scattering produces unitarity 
constraints for higgs potential couplings.
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
3 +

3

8
g′ 4 +

3

4
g′ 2g 2 +

9

8
g4 − 6λ4

t + . . . ,

16π2 dλ2

dt
= 24λ2

2 + 2λ2
3 − 2λ4

χ + . . . , (21)

16π2 dλ3

dt
= 4λ2

3 + 12λ3(λ1 + λ2) + . . . , (22)

16π2 dλχ

dt
=

3

2
λ3

χ + . . . , (23)

where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π

(

m2
χ − m2

h

)3/2

mχ

(
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χ − m2

h
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
3 +

3

8
g′ 4 +

3

4
g′ 2g 2 +

9

8
g4 − 6λ4

t + . . . ,

16π2 dλ2

dt
= 24λ2
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3 − 2λ4

χ + . . . , (21)

16π2 dλ3

dt
= 4λ2

3 + 12λ3(λ1 + λ2) + . . . , (22)

16π2 dλχ

dt
=

3

2
λ3

χ + . . . , (23)

where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π

(

m2
χ − m2

h

)3/2

mχ

(

2 m2
χ − m2

h

)2 (30)

Goldstone-higgs scattering indirectly constrains 
the dark symmetry breaking scale.

Parameter Scan

4

cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
3 +

3

8
g′ 4 +

3

4
g′ 2g 2 +

9

8
g4 − 6λ4

t + . . . ,

16π2 dλ2

dt
= 24λ2

2 + 2λ2
3 − 2λ4

χ + . . . , (21)

16π2 dλ3

dt
= 4λ2

3 + 12λ3(λ1 + λ2) + . . . , (22)
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=
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4
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4 π
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
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=
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2
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109
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1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π
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Dark matter-dark matter scattering produces 
unitarity constraints for these couplings .
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1
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16π2 dλχ

dt
=

3

2
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
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=
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.
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We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl
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1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π
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Dark matter-dark matter scattering indirectly produces 
unitarity constraints for these.
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)
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=
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2
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
3 +

3

8
g′ 4 +

3

4
g′ 2g 2 +

9

8
g4 − 6λ4

t + . . . ,

16π2 dλ2

dt
= 24λ2

2 + 2λ2
3 − 2λ4

χ + . . . , (21)

16π2 dλ3

dt
= 4λ2

3 + 12λ3(λ1 + λ2) + . . . , (22)
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=
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π
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Relic Abundance constrains these couplings 
and the dark symmetry breaking scale.
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
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〈σ|v|〉
1
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. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is
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Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.
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We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM
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(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as
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where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is
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SM higgs mass constraint 
relates

3

for any imaginable higgs portal scenario. We next
compute the relic abundance and outline the relevant
experimental constraints. Afterwards, we implement
our unitary bounds and show the available parameter
space for the higgs portal. Here we emphasize the
bounds on the dark higgs mass and the corresponding
symmetry breaking scale. Lastly, we sketch potential
LHC signatures and conclude.

I. A REPRESENTATIVE MODEL

Without loss of generality, we consider a model in
which a U(1) symmetry is spontaneously broken to

U(1)dark → Z2. (9)

This discrete symmetry stabilizes the dark matter can-
didates. The dark matter (χ) and dark higgs (φ) trans-
form under the U(1)dark as

[φ] = 2 [χ] = −1 [ξ] = 1 (10)

where χ and ξ have both left- and right-handed com-
ponents. This particle content is anomaly free. In this
work, we primarily focus on fermonic dark matter and
comment the results differ with bosonic dark matter.

I.1. A Generic Higgs Sector

The SM higgs (h) is neutral under this U(1) symmetry.
The higgs potential is,

V = λ1

(

h†h −
v2

2

)2

+ λ2

(

φ∗φ −
u2

2

)2

(11)

+ λ3

(

h†h −
v2

2

)(

φ∗φ −
u2

2

)

,

where v and u are the electroweak and dark vevs, re-
spectively. We parametrize φ = (ρ + u) eiθ/

√
2 where

〈ρ〉 = 0 and ρ is the dark higgs. Here θ is the eaten
goldstone boson needed to make the U(1)dark gauge
boson massive. Because we focus on higgs portal anni-
hilation, we do not further consider the massive dark
gauge boson in this work and postpone those details
for [9]. The higgs masses are

m2
h = 2 λ1v

2

(

1 −
λ2

3

4 λ1λ2
+ . . .

)

(12)

m2
ρ = 2 λ2 u2

(

1 +
λ2

3

4 λ2
2

v2

u2
+ . . .

)

(13)

where mh is the SM higgs mass and is fixed to 125.5
GeV. mρ is the dark higgs mass. The higgses mix in

the mass matrix
(

h′

ρ′

)

=

(

cos θ − sin θ
sin θ cos θ

) (

h
ρ

)

(14)

where the primes are the mass eigenstates. For simplic-
ity going forward, we refer to both the mass and charge
eigenstates without primes. In the limit of u & v,

cos θ ∼ 1 −
λ2

3 v2

8λ2
2 u2

sin θ ∼
λ3 v

2λ2 u
. (15)

As expected, the decoupling limit requires λ3 → 0
and/or sending the dark vev, u, to infinity. In Ap-
pendix B, we expand the higgs potential to give
the higgs-higgs and higgs-goldstone and goldstone-
goldstone couplings after mixing. These couplings are
needed in Section IV. We note the higgs portal does
not to be the result of spontaneously broken symme-
try. One can simply mix a real, massive scalar with
the SM higgs to generate a potential similar to equa-
tion 11. We address this as well in Appendix B. Finally
before moving on, we emphasize because of the higgs
mixing that the couplings of the dark higgs with SM
matter and SM gauge bosons is proportional to cos θ.
The dark higgs and SM higgs couplings couplings are
more complicated. We list all of these couplings in
Appendix B.

I.2. Dark Matter Sector

Given the results of [1], for simplicity we assume the
dark higgs is solely responsible for the dark matter
mass. For simplicity we focus on fermonic dark matter
and comment on any differences when one considers
scalar dark matter in Appendix C. The dark matter
sector has the yukawa terms,

L = λχ χL χR φ + λξ ξL ξR φ∗. (16)

The dark higgs gives the dark matter candidates the
following masses,

mχ = λχ u mξ = λξ u (17)

We assume mξ will be of order or larger than any scale
of interest and integrated out. This leaves a single
dark matter candidate in the effective theory. Because
u & v this assumption simply means λξ ∼ O(1).

1.3. Couplings

Here we emphasize (again) that the higgs mixing mod-
ifies the SM and dark higgs couplings by sines and
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:

16π2 dλ1

dt
= 24λ2

1 − λ1(9g2 + 3g′2 − 12λ2
t ) (20)

+ 2λ2
3 +

3

8
g′ 4 +

3

4
g′ 2g 2 +

9

8
g4 − 6λ4

t + . . . ,

16π2 dλ2

dt
= 24λ2

2 + 2λ2
3 − 2λ4

χ + . . . , (21)

16π2 dλ3

dt
= 4λ2

3 + 12λ3(λ1 + λ2) + . . . , (22)

16π2 dλχ

dt
=

3

2
λ3

χ + . . . , (23)

where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.

II. GENERIC HIGGS PORTAL

We are most familiar with unitarity constraints on the
electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109

Mpl

xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π

(

m2
χ − m2

h

)3/2

mχ

(

2 m2
χ − m2

h

)2 (30)
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potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:
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ter is the λSM in the SM higgs potential,
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(
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)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.
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III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109
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xF√
g∗

1

〈σ|v|〉
1

GeV
. (28)

where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is

〈σ|v|〉 =
λ4

χ sin4 θ

4 π

(

m2
χ − m2

h

)3/2

mχ

(

2 m2
χ − m2

h

)2 (30)

Additional considerations for the initial parameter scan:

1.  Dark Matter must be cold.

2.  SM Higgs Mixing Constraints @ 95% c.l.

3.  Invisible Higgs Decay (when applicable) ...
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cosines. For example,

Γµν(WWh) = i g mW cos θ gµν (18)

Γ(χ̄χh) = −i λχ sin θ/2 (19)

Additionally, through mixing all couplings in the higgs
potential are a function of both the dark and elec-
troweak vev times mixing sines and cosines. For ex-
ample, In Appendix B, we write out the couplings in
the higgs potential for reference. In the decoupling
limit, the SM higgs couplings reduce to the SM values.

I.4. Renormalization Group Equations

In Section VI, we refine the basic unitarity bounds
by requiring perturbativity (as well as an absence of
triviality) on the higgs sector up to 10 TeV. To imple-
ment this requirement we compute the renormalization
group equations at one-loop:
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where t = ln(Λ/mρ). The “. . .” includes higher order
and finite effects.
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electroweak sector. There the only unknown parame-
ter is the λSM in the SM higgs potential,

Velectroweak = λSM

(

h†h −
v2

2

)2

(24)

Thus, the standard elecroweak unitarity bounds con-
strain this one parameter to give a bound on the SM
higgs mass. For the higgs portal, there are five generic
parameters

{mh, mρ, mχ, sin θ, u}. (25)

Without loss of generality, we can trade these param-
eters for

{λ1, λ2, λχ, λ3, u}. (26)

Requiring mh = 125.5 GeV removes the higgs mass
as a free parameter and leaves four unknowns. Re-
quiring the right relic abundance in the next section
leaves three. In Section IV, we compute the unitarity
constraints using the goldstone boson equivalence the-
orem. Goldstone-goldstone, goldstone-higgs and higgs-
higgs scattering as well as dark matter scattering con-
strains the remaining parameters. After placing all of
the bounds, Section V has the results from the uni-
tarity constraints using the parameters in equation 25.
Additional constraints appear in the subsequent sec-
tions.

III. DARK MATTER CONSTRAINTS

III.1. Dark Matter Relic Abundance

We compute the dark matter relic abundance to reduce
the unknowns in equation 26 to three. The SM higgs
mass constraint eliminated one unknown to give four
parameters from five. In order to generate unitarity
constraints on the dark higgs mass, we raise the dark
higgs mass so that

mρ " mh, mχ. (27)

For completeness, in Section VIII we consider con-
straints on the dark higgs mass without this limit.

The dark matter relic abundance is defined as

Ωχ h2 =
1 × 109
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where xF ≡ mχ/TF and TF is the freeze out temper-
ature. g∗ is calculable depending on the dark matter
mass. For simplicity, we do not consider dark matter
annihilation into slightly heavier states or annihilation
with a pole in the cross section. The central argu-
ments contained in this section remain unaltered in
these cases and in basic coannhilation scenarios.

III.1.1. t-channel annihilation

If the dark matter has a mass mχ " mh, then t-
channel annihilation of fermonic dark matter into the
higgses,

χ + χ → h + h (29)

dominates. The thermally averaged cross section (in
the low velocity limit) is
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C. Scalar Dark Matter Considerations

Scalar dark matter has the form

L = λχ φ∗φχ∗ χ + λχh h†h χ∗ χ + λχ′ (χ∗χ)2, (130)

where χ is a real scalar. When we discuss scalar dark
matter we always make the assumption that λχh → 0.
Any unitary constraints on scalar dark matter must
constrains both λχ′ and λχ independently.

C.2. Bosonic Relic Abundance

We have the following s-channel processes contributing
to the relic abundance

χ + χ → q̄ + q χ + χ → W + W (131)

χ + χ → l̄ + l χ + χ → Z + Z. (132)

Here q = u, d, c, s, t, b and l = e, µ, τ . In addition we
have the s- and t-channel diagrams

χ + χ → h + h. (133)

The thermally averaged cross section (in the low ve-
locity limit) is

〈σ|v|〉b =
(λχ g u sin θ cos θ)2

4π m2
W

(

∑

f

m2
f

(

m2
χ − m2

f

)3/2

m3
χ

(

4 m2
χ − m2

h

)2

+
3m4

W

2 m3
χ

√

m2
χ − m2

W
(

4 m2
χ − m2

h

)2 +
2
(

m2
χ − m2

W

)3/2

mχ

(

4 m2
χ − m2

h

)2

+

(

4m4
χ + 3m4

Z − 4m2
χm2

Z

)

√

m2
χ − m2

Z

2 m3
χ

(

4m2
χ − m2

h

)2

)

+
(λχu sin θ)2

√

m2
χ − m2

h

2 π m3
χ

(

9 λ2
h3

(

m2
h − 4m2

χ

)2

+
λ2

χu2 sin2 θ
(

m2
h − 2m2

χ

)2

)

+ . . . (134)

D.1. Effective Potential

In this section, we compute the quadratic and loga-
rithmic divergent pieces one-loop effective potential.
It is certainly true that additional symmetries in the
higgs sector can change the divergence structure of
the effective potential. The results in this section are
model dependent. We use the potential to constrain..

The unitarity bounds on the higgs portal con-
strain λ1−3. Inevitably, there will be points in
parameter space that pass the unitarity constraints
with relatively large values for λ2,3. For relatively
large values of λ2,3, it is important to be sure the
one-loop effective potential does not spoil electroweak
(or dark) symmetry breaking minimum in equation 11.

At one-loop, the tree-level effective potential for
the SM higgs gets quadratically and logarithmically
divergent corrections. The SM higgs potential..
Generically, modifications go as

δ Veff quadratic =
Λ2

16 π2
trM2(h) (135)

δ Veff logarithmic = tr M4(h) log
M2(h)

Λ2
(136)

where M2 Here Λ is the cutoff to the effective theory.
In addition to the tree level potential (at one loop),

we

m2
ρ ∼ 2λ2 u2 (137)

u ∼ (2λ2)
−1/2 mρ (138)
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C. Scalar Dark Matter Considerations

Scalar dark matter has the form

L = λχ φ∗φχ∗ χ + λχh h†h χ∗ χ + λχ′ (χ∗χ)2, (130)

where χ is a real scalar. When we discuss scalar dark
matter we always make the assumption that λχh → 0.
Any unitary constraints on scalar dark matter must
constrains both λχ′ and λχ independently.

C.2. Bosonic Relic Abundance

We have the following s-channel processes contributing
to the relic abundance

χ + χ → q̄ + q χ + χ → W + W (131)

χ + χ → l̄ + l χ + χ → Z + Z. (132)

Here q = u, d, c, s, t, b and l = e, µ, τ . In addition we
have the s- and t-channel diagrams

χ + χ → h + h. (133)

The thermally averaged cross section (in the low ve-
locity limit) is
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D.1. Effective Potential

In this section, we compute the quadratic and loga-
rithmic divergent pieces one-loop effective potential.
It is certainly true that additional symmetries in the
higgs sector can change the divergence structure of
the effective potential. The results in this section are
model dependent. We use the potential to constrain..

The unitarity bounds on the higgs portal con-
strain λ1−3. Inevitably, there will be points in
parameter space that pass the unitarity constraints
with relatively large values for λ2,3. For relatively
large values of λ2,3, it is important to be sure the
one-loop effective potential does not spoil electroweak
(or dark) symmetry breaking minimum in equation 11.

At one-loop, the tree-level effective potential for
the SM higgs gets quadratically and logarithmically
divergent corrections. The SM higgs potential..
Generically, modifications go as

δ Veff quadratic =
Λ2

16 π2
trM2(h) (135)

δ Veff logarithmic = tr M4(h) log
M2(h)

Λ2
(136)

where M2 Here Λ is the cutoff to the effective theory.
In addition to the tree level potential (at one loop),

we
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Scalar dark matter has the form

L = λχ φ∗φχ∗ χ + λχh h†h χ∗ χ + λχ′ (χ∗χ)2, (130)

where χ is a real scalar. When we discuss scalar dark
matter we always make the assumption that λχh → 0.
Any unitary constraints on scalar dark matter must
constrains both λχ′ and λχ independently.
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D.1. Effective Potential

In this section, we compute the quadratic and loga-
rithmic divergent pieces one-loop effective potential.
It is certainly true that additional symmetries in the
higgs sector can change the divergence structure of
the effective potential. The results in this section are
model dependent. We use the potential to constrain..

The unitarity bounds on the higgs portal con-
strain λ1−3. Inevitably, there will be points in
parameter space that pass the unitarity constraints
with relatively large values for λ2,3. For relatively
large values of λ2,3, it is important to be sure the
one-loop effective potential does not spoil electroweak
(or dark) symmetry breaking minimum in equation 11.

At one-loop, the tree-level effective potential for
the SM higgs gets quadratically and logarithmically
divergent corrections. The SM higgs potential..
Generically, modifications go as

δ Veff quadratic =
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δ Veff logarithmic = tr M4(h) log
M2(h)
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where M2 Here Λ is the cutoff to the effective theory.
In addition to the tree level potential (at one loop),

we

m2
ρ ∼ 2λ2 u2 (137)

u ∼ (2λ2)
−1/2 mρ (138)

λ2,3 ∼ {6, ! 8.5} (139)

λχ ∼ {2.5, < 4} (140)
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• Can we refine the parameter space?  

Today consider requiring an absence of 
Landau poles up to 10 TeV.*  

Require a triviality bound for the points
with a dominant dark yukawa coupling.
 

Unitarity Bounds + Perturbativity?

*Applied 1-loop RGEs and modified the perturbativity arguments in Barbieri, Hall and 
Rychkov.  Modifications were for this higgs portal scenario.



Unitarity Bound + Perturbativity*

35

0 1000 2000 3000 4000
0

1000

2000

3000

4000

Dark Higgs Mass,mr HGeVL

D
ar
k
Sy
m
m
et
ry
Br
ea
ki
ng
Sc
al
e,
u
HGe

V
L Valid Parameter Points for mr > mh, mc

0 1000 2000 3000 4000

0.75

0.80

0.85

0.90

0.95

1.00

Dark Matter Mass HGeVL
co
sq

Valid Parameter Points for mr > mh, mc

*Applied 1-loop RGEs and modified the perturbativity arguments in Barbieri, Hall and 
Rychkov.  Modifications were for this higgs portal scenario.



Unitarity Bound + Perturbativity*

36

0 1000 2000 3000 4000
0

1000

2000

3000

4000

Dark Higgs Mass,mr HGeVL

D
ar
k
Sy
m
m
et
ry
Br
ea
ki
ng
Sc
al
e,
u
HGe

V
L Valid Parameter Points for mr > mh, mc

0 1000 2000 3000 4000

0.75

0.80

0.85

0.90

0.95

1.00

Dark Matter Mass HGeVL
co
sq

Valid Parameter Points for mr > mh, mc

*Applied 1-loop RGEs and modified the perturbativity arguments in Barbieri, Hall and 
Rychkov.  Modifications were for this higgs portal scenario.

LHC14 300/fb
Upper bound on dark

symmetry breaking vev.



Unitarity Bound + Perturbativity*

37

0 1000 2000 3000 4000
0

1000

2000

3000

4000

Dark Higgs Mass,mr HGeVL

D
ar
k
Sy
m
m
et
ry
Br
ea
ki
ng
Sc
al
e,
u
HGe

V
L Valid Parameter Points for mr > mh, mc

0 1000 2000 3000 4000

0.75

0.80

0.85

0.90

0.95

1.00

Dark Matter Mass HGeVL
co
sq

Valid Parameter Points for mr > mh, mc

*Applied 1-loop RGEs and modified the perturbativity arguments in Barbieri, Hall and 
Rychkov.  Modifications were for this higgs portal scenario.

ILC250 500/fb

LHC14 300/fb
Upper bound on dark

higgs mass



38

Takeaways...

• It may be possible for new physics to be “around the 
corner” for (well motivated) thermal dark matter + 
mediators.

• Questions for the Snowmass Contribution: 

Connection between new scale/new physics obtainable for 
foreseeable searches?  To what extent must existing/planned 
experiments probe (LHC, direct detection...)?
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Thank you!



A Perspective
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*E.g., Cotta, Hewett, Tait and DW, to appear. 

• Today:  Focus on higgs portal dark matter 
annihilation from a hidden sector.  

Many reasons for mediators:

1.  Direct detection largely rules out Z boson dark
    matter/nucleon scattering (heavy neutrino).

2.  Precision electroweak gives strong constraints on
    dark matter that obtains mass solely from EWSB.*

3.  Implies new mediator particles and a new physics 
    scale associated with the dark matter mass.

    and more . . .
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• Cynolter, Lendvai and Pocsik,  Acta Phys. Polon. B36 827 

Constrains scalar dark matter-higgs couplings.  No bound 
on dark matter mass.

Previous Work
(for Unitarity + Dark Matter)


