CMS Experiment at LHC, CERN Data recorded: Mon Oct 25 05:47:22 2010 CDT Run/Event: 148864 / 592760996 Lumi section: 520 Orbit/Drossing: 136152948 / 1594

Collider Physics and Amplitudes

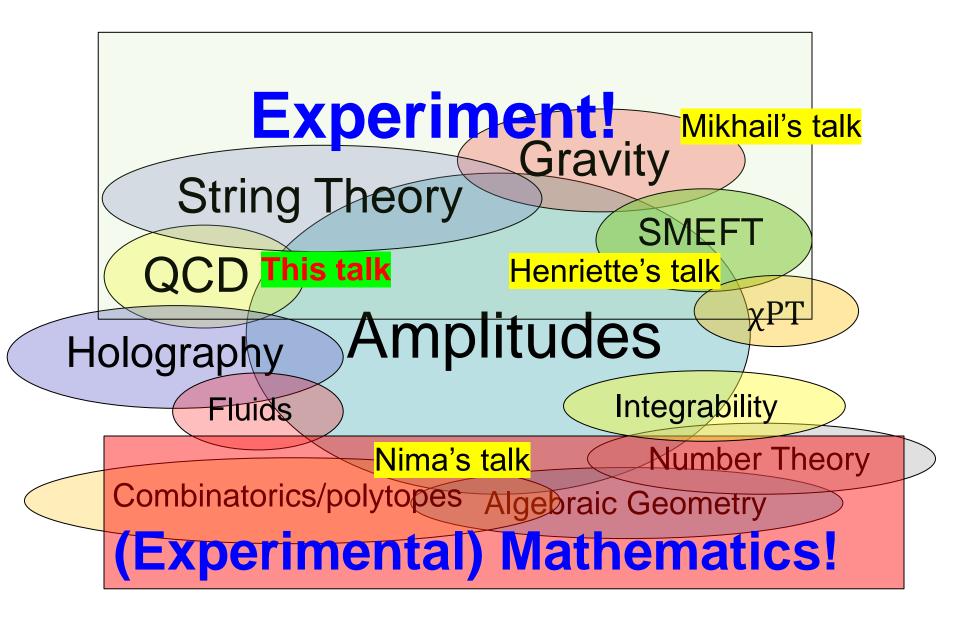
Lance Dixon (SLAC)

Snowmass Theory Frontier Conference Kavli Institute for Theoretical Physics February 25, 2022

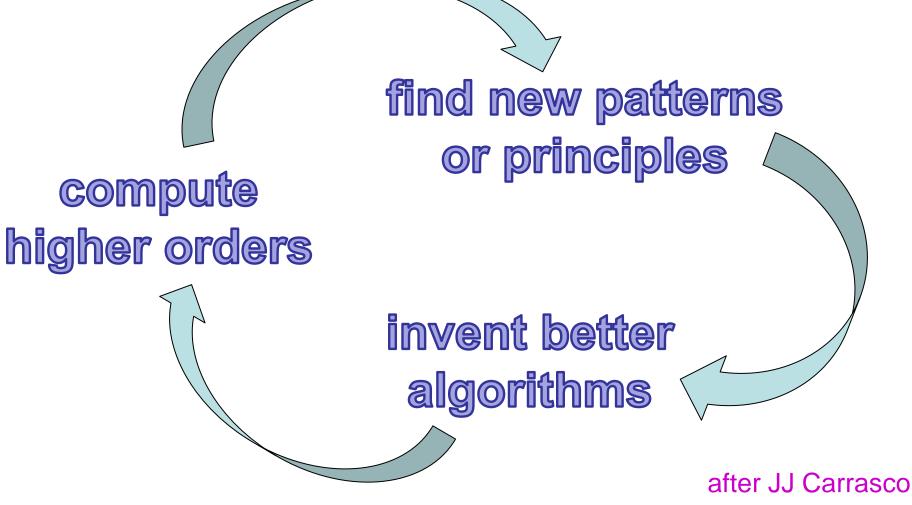
Apologies in advance

This talk will be very idiosyncratic, and is not a comprehensive review of all the impressive activity at the collider physics / amplitudes interface!

What is an amplitude? It's a tropical Fan! It's a polytope! It's a It's twistor double a Repe!string! copy! It's measured It's a in experiments! Tree!



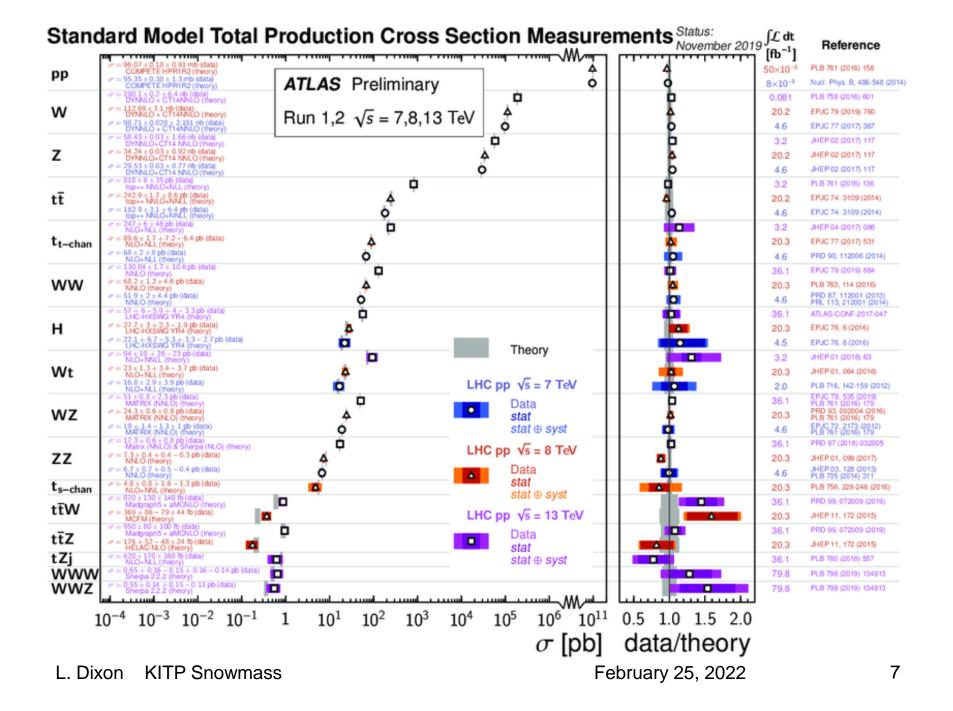
Amplitudes virtuous circle



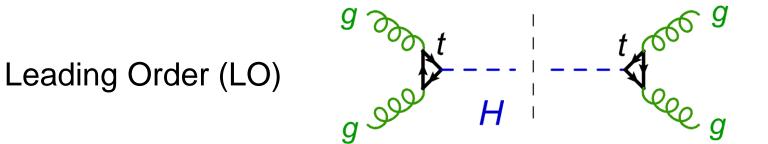
Challenges of precision collider theory

- Many processes, measured at a wide range of experimental precision
- Harder theoretically: higher loop order, higher multiplicity, massive internal lines, more partons/jets in final state
- Total cross sections for *H*,*W*,*Z*,... easier than differential, especially beyond NLO, but never actually measured because of acceptance cuts
- Resummation needed in corners of phase space, e.g. soft gluon (restricted) emission
- Some experimental cuts very stringent,
 e.g. *b* jet veto for *WW* in face of *tt* background
- Recent review Heinrich, 2009.00516

L. Dixon KITP Snowmass



Example: Total cross section for producing Higgs boson at LHC via gluon fusion



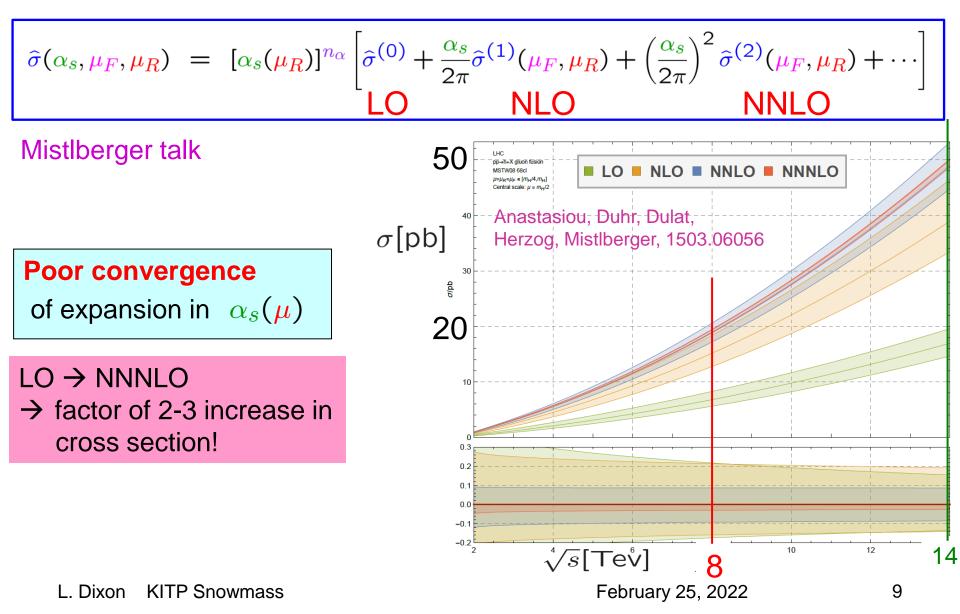
 Higgs production at LHC is dominantly via gluon fusion, mediated by top quark loop.

• Since
$$2m_{top} = 350 \text{ GeV}$$

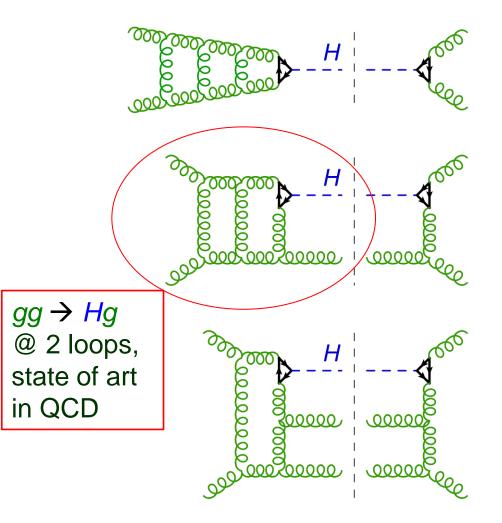
 $\gg m_{Higgs} = 125 \text{ GeV}$,
integrate out top quark to get a leading
operator $HG^a_{\mu\nu}G^{\mu\nu}a$

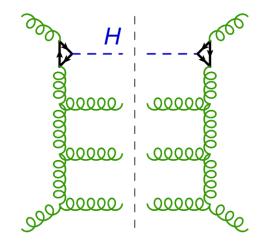
L. Dixon KITP Snowmass

Higgs gluon fusion cross section at LHC



Anatomy of NNNLO QCD corrections





- + ..
- + quarks
- + operator renormalization
- + $1/m_t^2$ corrections
- + parton distributions

Scattering amplitudes are the underlying building blocks

L. Dixon KITP Snowmass

Multi-loop complexities

- Multi-loop multiscale integrals typically very difficult to evaluate
- All 1 loop integrals reducible to scalar box integrals + simpler
- \rightarrow combinations of
 - + simpler

$$Li_2(x) = -\int_0^x \frac{dt}{t} \ln(1-t)$$

Brown-Feynman (1952), Melrose (1965), 't Hooft-Veltman (1974), Passarino-Veltman (1979), van Neerven-Vermaseren (1984), Bern, LD, Kosower (1992)

- At *L* loops, special functions with up to *2L* integrations Hannesdottir, McLeod, Schwartz, Vergu, 2109.09744
- Weight 2L iterated integrals, multiple polylogarithms, or worse

Planar N=4 SYM as testing ground for QCD

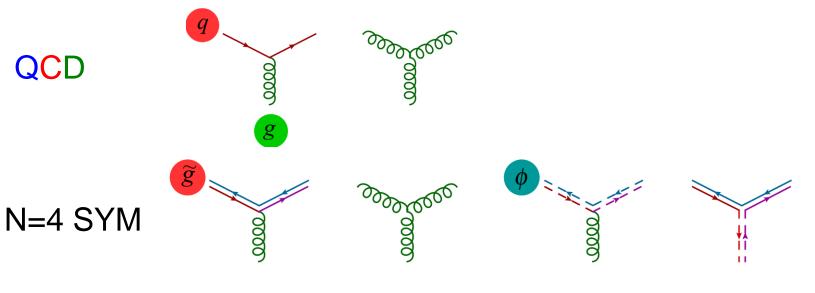
- QCD's maximally supersymmetric cousin, N=4 super-Yang-Mills theory (SYM), gauge group $SU(N_c)$, in large N_c (planar) limit, where it becomes integrable
- Structure very rigid:

Amplitudes = $\sum_{i} rational_{i} \times transcendental_{i}$

- For planar N=4 SYM, we understand rational structure quite well, can focus on the transcendental functions.
- Multiple dualities hold (virtuous circle):
- 1. AdS/CFT (weak-strong)
- 2. Amplitudes dual to Wilson loops (dual conformal symmetry)
- 3. New "antipodal" duality between amplitudes and form factors

QCD vs. N=4 SYM

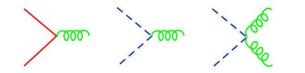
- QCD: gluons and quarks in fundamental rep. of $SU(N_c)$
- N=4: Replace quarks with 4 copies of fermions in adjoint rep. (gluinos) and add 6 real adjoint scalars
- All in same supermultiplet
- Feynman vertices:

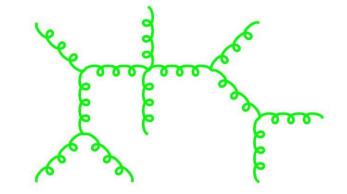


QCD vs. N=4 SYM at tree level

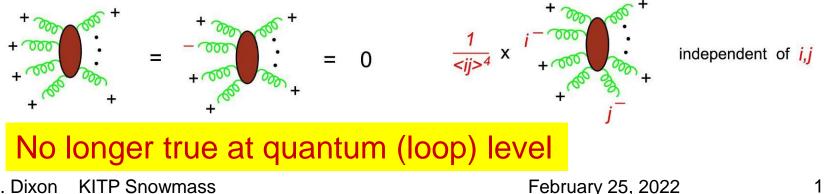
Essentially identical

Fermions and scalars cannot appear in tree amplitude for *n* gluons because produced in pairs





Hence amplitude is same in QCD and N=4 SYM; QCD tree amplitude obeys all identities of N=4 supersymmetry:



N=4 SYM special at loop level

- At one loop, loop momenta cancel in numerator
 → only scalar box integrals
- → Weight 2 functions dilogs. E.g., $gg \rightarrow Hg$ @ 1 loop ⊃

$$\begin{array}{c} \mathbf{H} \\ \mathbf{g}_{1} \\ \mathbf{g}_{3} \\ \mathbf{g}_{2} \end{array}^{1} = \operatorname{Li}_{2} \left(1 - \frac{s_{123}}{s_{12}} \right) + \operatorname{Li}_{2} \left(1 - \frac{s_{123}}{s_{23}} \right) + \frac{1}{2} \ln^{2} \left(\frac{s_{12}}{s_{23}} \right) + \cdots$$

 QCD results also contain single log's and rational parts from (tensor) triangle + bubble integrals

$$\int_{3}^{1} \int_{2}^{1} = \frac{1}{\epsilon} - \ln(s_{123})$$

L. Dixon KITP Snowmass

Higher loops

- N=4 SYM amplitudes have "uniform weight (transcendentality)" 2L for finite (\epsilon^0) terms at loop order L
- Weight ~ number of integrations, e.g.

$$\ln(s) = \int_{1}^{s} \frac{dt}{t} = \int_{1}^{s} d\ln t \qquad 1$$

$$\operatorname{Li}_{2}(x) = -\int_{0}^{x} \frac{dt}{t} \ln(1-t) = \int_{0}^{x} d\ln t \cdot \left[-\ln(1-t)\right] \qquad 2$$

$$\operatorname{Li}_{n}(x) = \int_{0}^{x} \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$
 n

• QCD amps typically all weights from 0 to 2L

N=4 / QCD relations at loop level

- Some infrared quantities are gluon-dominated, and therefore are exactly the same in QCD as in (nonplanar) N=4.
- Example: 3-loop soft anomalous dimension controls $\frac{1}{\epsilon}$ pole with most complicated color structure ("quadrupole") in QCD amplitudes Almelid, Duhr, Gardi, 1507.00047
- Uniform weight 5 function, inherited from N=4
- Bootstrappable Almelid, Duhr, Gardi, McLeod, White, 1706.10162
- Similar story for "tripole" terms in 2-loop soft gluon emission LD, Herrmann, Yan, Zhu,1912.09370

L. Dixon KITP Snowmass

February 25, 2022

Kotikov, Lipatov, Velizhanin, hep-ph/0301021, hep-ph/0611204

- Other quantities share a common "most complicated" piece between QCD and N=4 SYM.
- For example, light-like cusp anomalous dimension Γ_{cusp} contributes to IR divergences in amplitudes and to soft-gluon resummation
- Known to all loop orders in planar N=4 Beisert, Eden, Staudacher, hep-th/0610251
- QCD formula:

$$\frac{\Gamma_{\text{cusp},R}}{4} = C_R \left\{ a \ [1] + a^2 \left[C_A \left(\frac{67}{9} - \frac{\pi^2}{3} \right) - \frac{10}{9} n_f \right] \right\} + \cdots \\ a = \frac{\alpha_s}{4\pi}$$

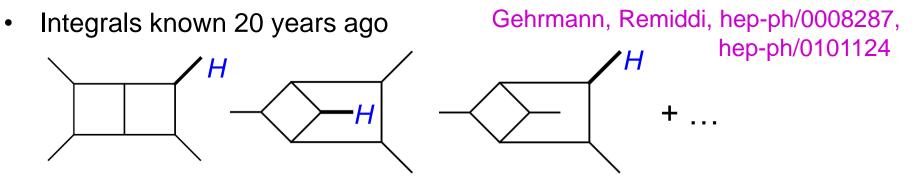
• Blue entries have "maximal transcendentality", predicted by N=4.

L. Dixon KITP Snowmass

0000

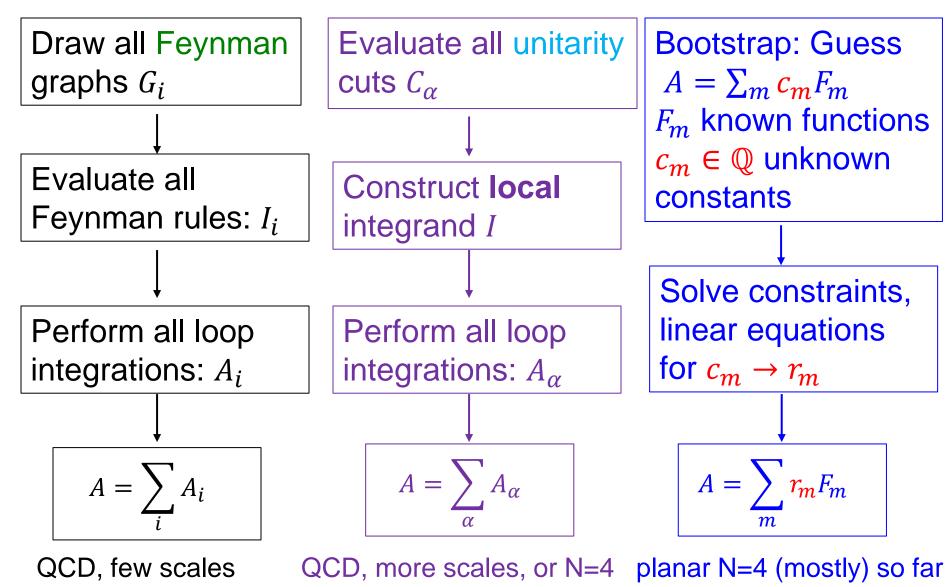
More loop level N=4 / QCD relations

- For massless QCD processes, integral topologies are the same
- Sometimes "amplitudes" studies reveal something about integrals also encountered in QCD.
- **Example:** $gg \rightarrow Hg$ @ 2 loops, state of art in QCD



- Going to higher loops in planar N=4, extra structure recently observed (adjacency restrictions on symbol letters) LD, McLeod, Wilhelm, 2012.12286; also Chicherin, Henn, Papathanasiou, 2012.12285
- Structure holds in all integrals needed for QCD, many more than needed for planar N=4. Fate at 3 loops?

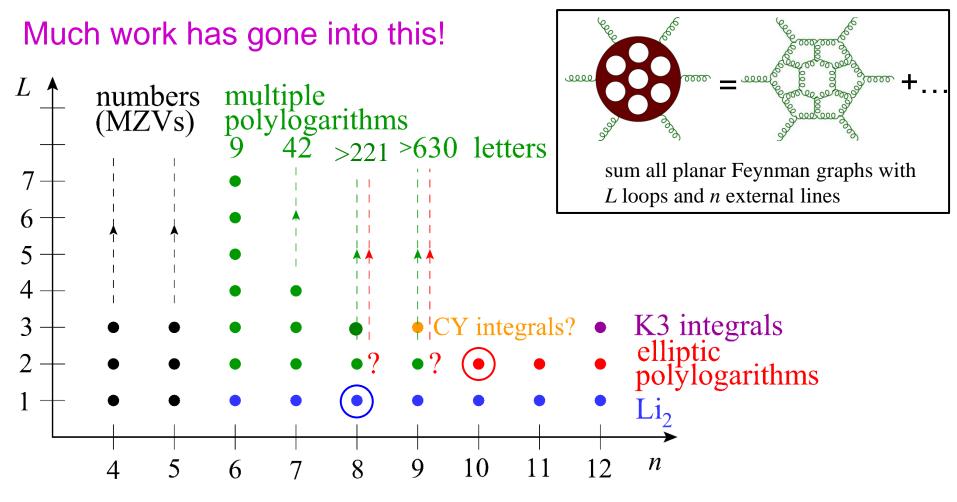
Different routes to perturbative amplitudes



L. Dixon KITP Snowmass

February 25, 2022

Functions entering *n*-point amplitudes in planar N=4 SYM



L. Dixon KITP Snowmass

Multiple polylogarithms

Chen, Goncharov, Brown,...

• Iterated integrals, e.g.

$$G(a_1, a_2, \dots, a_n, x) = \int_0^x \frac{dt}{t - a_1} G(a_2, \dots, a_n, t)$$

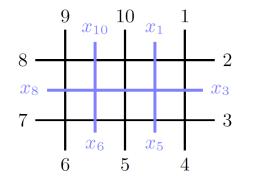
one weight lower define differentially:
$$dF = \sum_{s_k \in \mathcal{S}} F^{s_k} d \ln s_k$$

- s_k are letters in the symbol alphabet S
 Goncharov, Spradlin, Vergu, Volovich, 1006.5703
- Beyond polylogarithms \rightarrow Elliptic polylogarithms $\sim \int_{0}^{x} \frac{dt}{\sqrt{(t-a_{1})(t-a_{2})(t-a_{3})}} G(a_{4}, ..., a_{n}, t)$ elliptic curve

L. Dixon KITP Snowmass

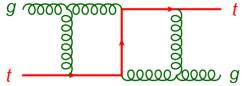
Elliptic polylogarithms

• Enter planar N=4 at *L* = 2, *n* = 10 via elliptic double box integral



Caron-Huot, Larsen 1205.0801; Nandan, Paulos, Spradlin, Volovich, 1203.6362, 1301.2500; Kristenson, Wilhelm, Zhang, 2106.14902

- Prototype for understanding multi-scale elliptic polylogs that enter much earlier when internal lines are massive, e.g.:
- 1. QCD corrections to top quark processes
- 2. electroweak corrections with virtual *W*,*Z*,*t*

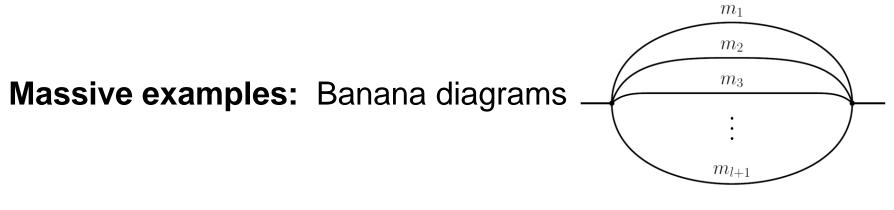


Beyond elliptic \rightarrow K3, Calabi-Yau manifolds

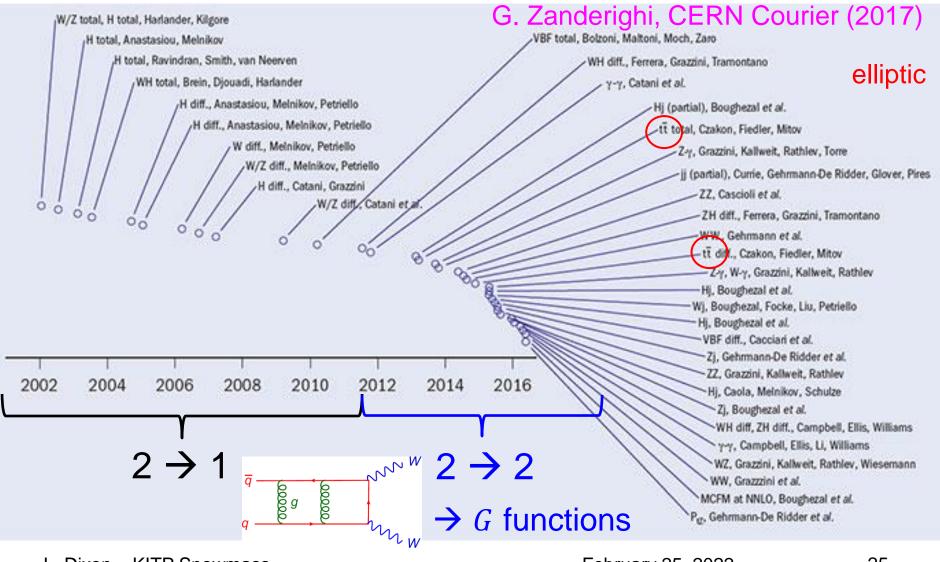
Bourjaily, He, McLeod, Spradlin, Volk, von Hippel, Wilhelm, 2103.15423 and refs. therein

Massless examples: Train tracks, tardigrades, ...

Bönisch, Duhr, Fischbach, Klemm, Nega, 2108.05310



NNLO frontier circa 2017



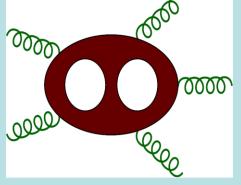
L. Dixon KITP Snowmass

February 25, 2022

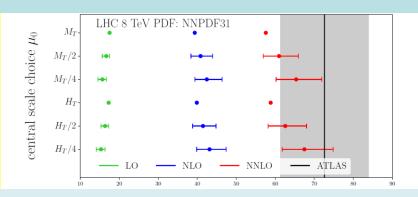
Since 2017: First 2 loop 2 \rightarrow 3 amplitudes

• All massless partons (or photons) in large N_c (planar) limit for QCD gauge group SU(3) \rightarrow SU(N_c):

 $gg \rightarrow ggg, qg \rightarrow qgg, q\overline{q} \rightarrow q\overline{q}g, ...$ Gehrmann, Henn, Lo Presti, 1511.05409; Badger, Brønnum-Hansen, Hartanto, Peraro, 1712.02229, 1811.11699; Abreu, Dormans, Febres Cordero, Ita, Page, Zeng, Sotnikov, 1712.03946, 1812.04586, 1904.00945, 2102.13609



- Last matrix elements needed for $pp \rightarrow 3$ jets (up to $1/N_c^2$ corrections). Much use of unitarity. Still multiple polylogarithms.
- And $q\bar{q} \rightarrow \gamma \gamma \gamma$
- already with NNLO cross section for $pp \rightarrow \gamma\gamma\gamma$ Chawdhry, Czakon, Mitov, Poncelet, 1911.00479; Abreu, Page, Pascual, Sotnikov, 2010.15834;...

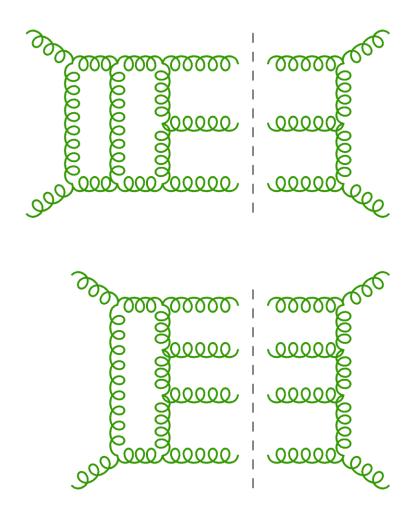


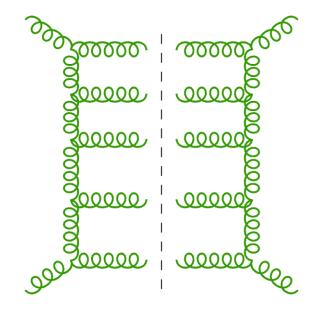
More recently: one massive leg (Wjj), & massless nonplanar

L. Dixon KITP Snowmass

February 25, 2022

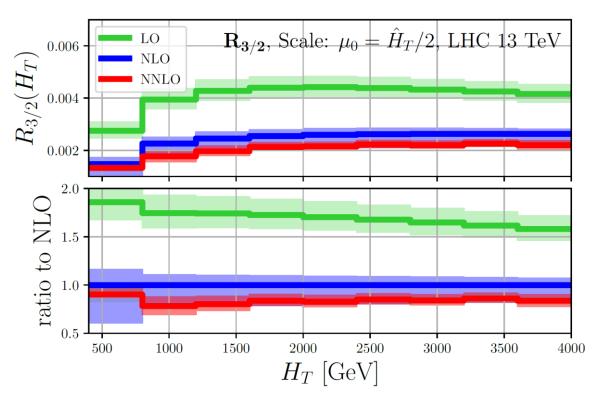
Anatomy of NNLO pp \rightarrow 3 jets





- + quarks
- + lots of tricky phase space integrals+ parton distributions

NNLO 3-jet / 2-jet ratio

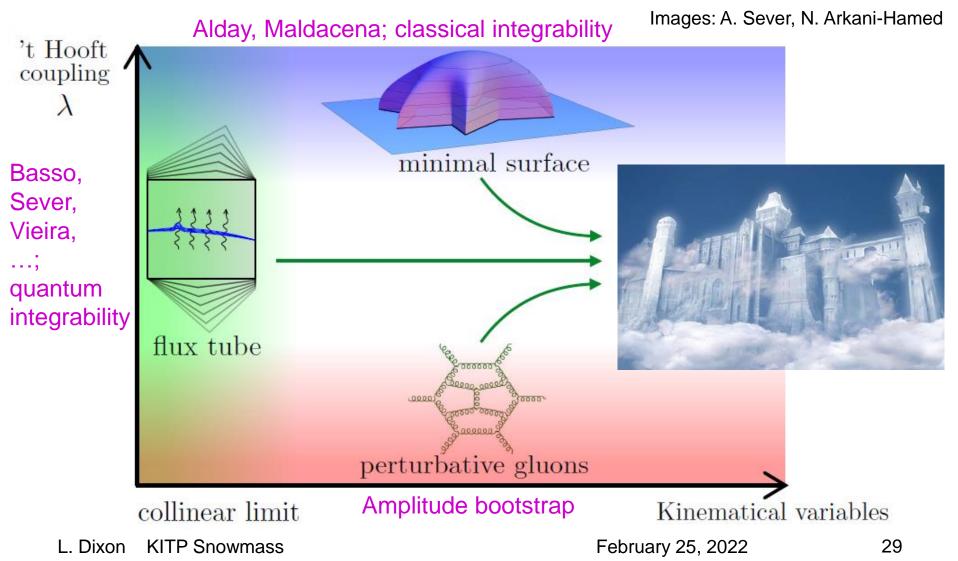


Czakon, Mitov, Poncelet, 2106.05331

- Tour de force: Great NNLO/NLO agreement (not with LO!)
- \rightarrow Measure α_s more reliably at very large momentum transfer
- Foreshadows many more NNLO 2 \rightarrow 3 results in near future

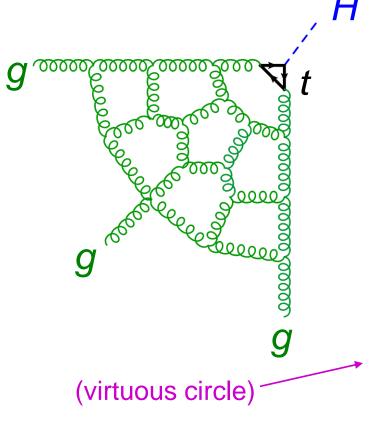
Planar N=4 SYM Dream:

Solve for amplitudes nonperturbatively for any kinematices



Can push to 8 loops in a Goldilocks "Higgs" amplitude

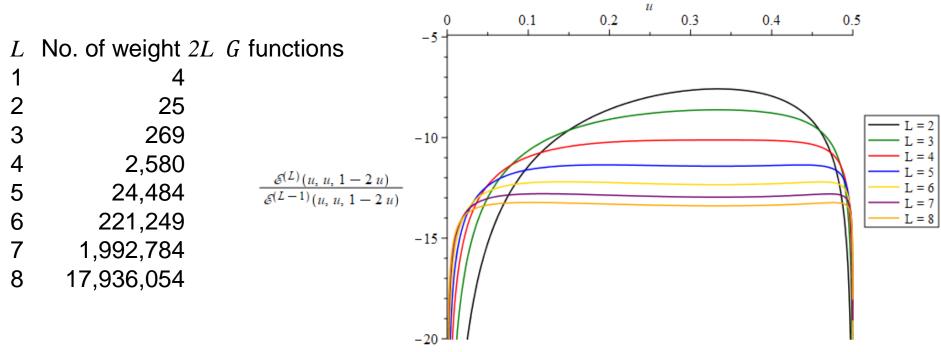
LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, 2012.12286, 2112.06243, 22mm.nnnn



- Matrix elements of operator $G^{a}_{\mu\nu}G^{\mu\nu}a$ with *n* gluons in planar N=4
 - Hgg form factor (n = 2) "too simple", no kinematic dependence beyond overall $(-s_{12})^{-L\epsilon}$
- Hggg (n = 3) is "just right", depends on
- 2 dimensionless ratios
 - A loop results for function of 2 variables
 → rich theoretical "data mine"
 - Led to discovery of strange new antipodal duality between form factor and 6 gluon amplitude, where symbol gets reversed

Approximation Mandatory for 8 Loop Plots

Example: planar N=4 analog of $H \rightarrow ggg$, [Successive loop ratios reveal finite radius of convergence]



- On 1-dimensional lines, series expansions do the job.
- For this plot: one series around u = 0, one around $u = \frac{1}{2}$

Series expansions on the fly

Moriello, 1907.13234

- Construct series expansions from differential equations
- For phenomenology, need whole phase space
- Nevertheless, elliptic problems can be handled →
- **DiffExp** package Hidding, 2006.05510

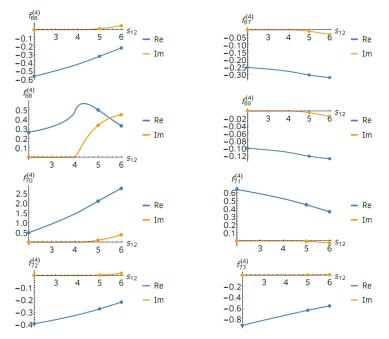


Figure 2: Plots of the elliptic integral sectors, for $s_{13} = -1$, $p_4^2 = \frac{13}{25}$, $m^2 = 1$ as a function of s_{12} , at order ϵ^4 , obtained by series expanding along the contour γ_{thr} . The solid point represent values computed numerically with the software FIESTA [51].

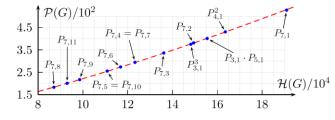
Tropical methods

Panzer, 1908.09820

Feynman parameter polynomial for true integral $\mathcal{P}(G)$ replaced by a simple monomial (locally) using "tropicalization" (a.k.a. the Newton polytope):

$$\lim_{\xi \to \infty} p(x_1^{\xi}, \dots, x_n^{\xi})^{\frac{1}{\xi}} = \lim_{\xi \to \infty} \left(\sum_{\ell \in \operatorname{supp}(p)} c_\ell \boldsymbol{x}^{\xi \ell} \right)^{\frac{1}{\xi}} = \max_{\ell \in \operatorname{supp}(p)} \boldsymbol{x}^{\ell} = p^{\operatorname{tr}}(\boldsymbol{x})$$

- Integrate $p^{tr}(x) \rightarrow \text{Hepp bound } \mathcal{H}(G)$
- Integrate $p^{cr}(x) \rightarrow$ Hepp bound $\mathcal{H}(G)$ $\mathcal{P}(G) \& \mathcal{H}(G)$ strongly correlated! \rightarrow $\frac{4.5}{2.5} \begin{bmatrix} r(G)/10 \\ P_{7,11} \\ P_{7,8} \end{bmatrix} \begin{bmatrix} P_{7,9} \\ P_{7,9} \end{bmatrix}$



- Motivates "tropical" Monte Carlo sampling Borinsky, 2008.12310 ullet
- Remarkably efficient, even up to 17 loops!

KITP Snowmass Dixon

February 25, 2022

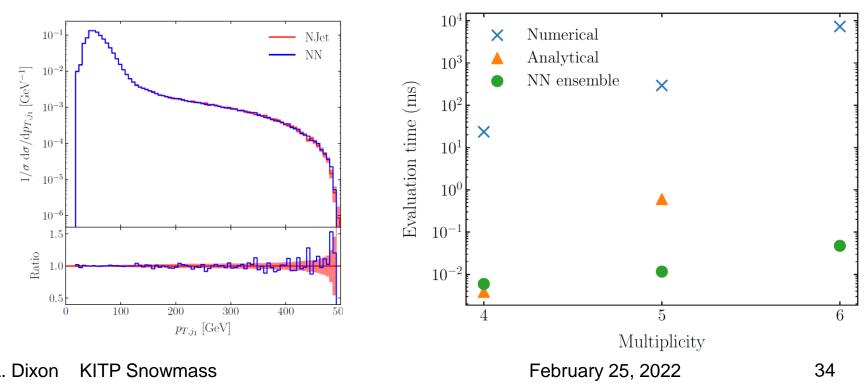
Machine learning approximations

Thaler talk

 Model amplitudes that are very expensive to compute, then compute with the model

Aylett-Bullock, Badger, Moodie, 2106.09474; Moodie, 2202.04506

Simulation time can be reduced by a large factor (~30?)



Machine learning exactly?

Statistics of the *Hggg* planar N=4 amplitude: log_{10} of *G* function (HPL) coefficients (all integers!)



Grist for a machine to learn exactly L = 9, 10, 11, ...?

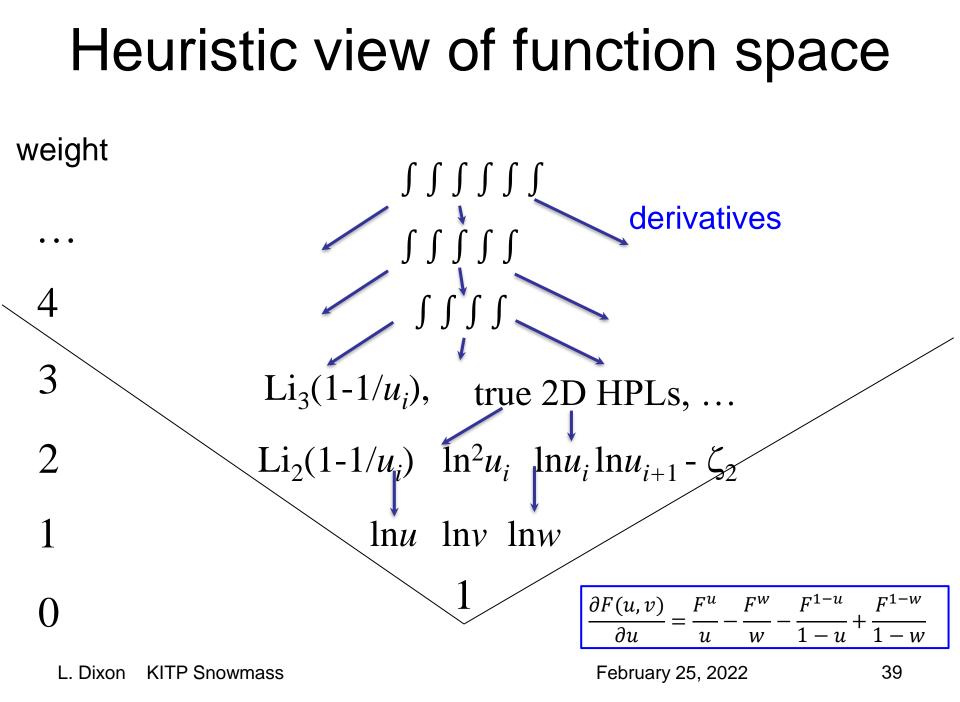
To the future

- "Amplitudes" notions and methods will continue to provide a central role in the building blocks for precision collider cross sections
- Strong interplay in both directions
- The NNLO revolution to higher multiplicity is well underway, with the aid of many of these ideas
- Also NNNLO for high-value targets Mistlberger talk
- Deeper understanding of relevant analytic functions will help, but also novel approximation methods, and most likely more roles for machine learning
- The finite coupling solution to N=4 scattering awaits too!

Those who explore an unknown world are travelers without a map: the map is the result of the exploration. The position of their destination is not known to them, and the direct path that leads to it is not yet made.

Hideki Yukawa

Extra Slides



Symbol alphabets for planar N=4 *n*-gluon amplitudes

parity-odd letters, algebraic in $\hat{u}, \hat{v}, \hat{w}$

n = 6 has 9 letters: $S_6 = \{\hat{u}, \hat{v}, \hat{w}, 1 - \hat{u}, 1 - \hat{v}, 1 - \hat{w}, \hat{y}_u, \hat{y}_v, \hat{y}_w\}$

Goncharov, Spradlin, Vergu, Volovich, 1006.5703; LD, Drummond, Henn, 1108.4461; Caron-Huot, LD, von Hippel, McLeod, 1609.00669

n = 7 has 42 letters

Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289; Drummond, Papathanasiou, Spradlin 1412.3763

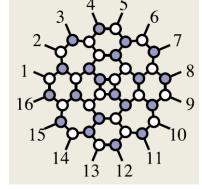
n = 8 has at least 222 letters, could even be infinite as $L \rightarrow \infty$

Arkani-Hamed, Lam, Spradlin, 1912.08222; Drummond, Foster, Gürdoğan, Kalousios, 1912.08217, 2002.04624; Henke, Papathanasiou 1912.08254, 2106.01392; Z. Li, C. Zhang, 2110.00350

Planar N=4 SYM symbol letters from plabic graphs & tensor diagrams

Mago, Schreiber, Spradlin, Srikant, Volovich, 2007.00646, 2012.15812,

2106.01406



Ren, Spradlin, Volovich, 2106.01405

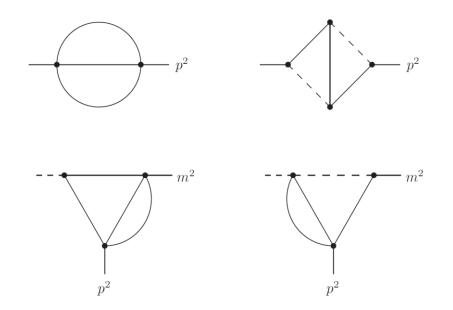


- Almost arborizable TDs can be "resummed" to give square root letters seen in \bar{Q} computations
- Also predictions of symbol letters from tropical Grassmannians

Modular properties of elliptic integrals

Weinzierl, 2011.07311

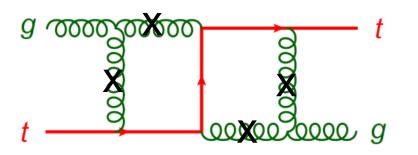
Examples of elliptic Feynman integrals depending on one kinematic $x = \frac{-p^2}{m^2}$ (solid internal lines of mass *m*, dashed lines massless):



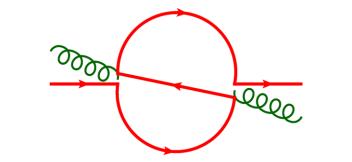
• For numerical purposes, handy to use modular transformations to move $q = e^{2\pi i \tau}$ into fundamental region for modular group, so |q| < 0.0043

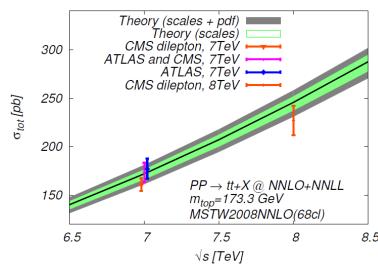
Elliptic sunset inside top production

• At subleading color in $gg \rightarrow t \overline{t}$,



- Done numerically long ago Czakon, Fiedler, Mitov, 1303.6254
- Better analytic understanding should aid computational efficiency in multiscale processes





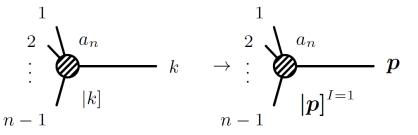
^{BE} ■BOLD∝

On-shell Massive Amplitudes and SMEFT

Arkani-Hamed, Huang², 1709.04891; ...; Shadmi, Weiss, 1809.09644; ...

- Massive external states also have a natural helicity formalism based on "bold" spinors (A-HH²)
- In EFT descriptions, such as SMEFT, on-shell amplitudes take into account equations of motion naturally
- Both massless and massive versions of EFT; latter leverages A-HH² massive spinor technology:

bolding as higgsing



massless EFT \rightarrow massive EFT

Double copy / color kinematics duality

 Began with KLT relations from string theory, and a slogan:

$$Gravity = YM^2$$

• Then became graphical [Bern, Carrasco, Johansson]

$$n_{i} - n_{j} = n_{k} \quad \Leftrightarrow \quad c_{i} - c_{j} = c_{k},$$

$$n_{i} \rightarrow -n_{i} \quad \Leftrightarrow \quad c_{i} \rightarrow -c_{i}$$

$$\stackrel{2}{\xrightarrow{a \ b}}_{i \ c \ d} \quad \stackrel{2}{\xrightarrow{a \$$

- Now connects a much broader web of theories
- Underlies much of the motivation for the "scattering amplitudes for LIGO" program [Elvang, Solon talks]

L. Dixon KITP Snowmass

February 25, 2022

Hggg kinematics is two-dimensional

