

Snowmass Theory Frontier Conference Kavli Institute for Theoretical Physics February 25, 2022

Apologies in advance

This talk will be very idiosyncratic, and is not a comprehensive review of all the impressive activity at the collider physics / amplitudes interface!

What is an amplitude?

Experiment! mikhairs taik

 GravityString Theory
QCD This talk
SMEFT
Henriette's talk

Holography Amplitudes

Integrability

Nima's talk Number Theory
Combinatorics/polytopes Algebraic Geometry (Experimental) Mathematics!

Amplitudes virtuous circle

Connpute

find new patterns or principles

 higher orders
after JJ Carrasco

Challenges of precision collider theory

- Many processes, measured at a wide range of experimental precision
- Harder theoretically: higher loop order, higher multiplicity, massive internal lines, more partons/jets in final state
- Total cross sections for H, W, Z, \ldots easier than differential, especially beyond NLO, but never actually measured because of acceptance cuts
- Resummation needed in corners of phase space, e.g. soft gluon (restricted) emission
- Some experimental cuts very stringent, e.g. b jet veto for $W W$ in face of $t \bar{t}$ background
- Recent review Heinrich, 2009.00516

Example: Total cross section for producing Higgs boson at LHC via gluon fusion

Leading Order (LO)

- Higgs production at LHC is dominantly via gluon fusion, mediated by top quark loop.
- Since $2 \boldsymbol{m}_{\text {top }}=350 \mathrm{GeV}$

$$
\gg \boldsymbol{m}_{\text {Higgs }}=125 \mathrm{GeV},
$$

integrate out top quark to get a leading operator $H G_{\mu \nu}^{a} G^{\mu \nu a}$

Higgs gluon fusion cross section at LHC

$$
\begin{array}{cc}
\hat{\sigma}\left(\alpha_{s}, \mu_{F}, \mu_{R}\right)=\left[\alpha_{s}\left(\mu_{R}\right)\right]^{n_{\alpha}}\left[\begin{array}{c}
\hat{\sigma}^{(0)}+\frac{\alpha_{s}}{2 \pi} \widehat{\sigma}^{(1)}\left(\mu_{F}, \mu_{R}\right)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \hat{\sigma}^{(2)}\left(\mu_{F}, \mu_{R}\right)+\cdots \\
\mathrm{LO}
\end{array} \mathrm{NLO}\right. & \mathrm{NNLO}
\end{array}
$$

Mistlberger talk

Poor convergence of expansion in $\alpha_{s}(\mu)$

LO \rightarrow NNNLO

\rightarrow factor of 2-3 increase in cross section!

Anatomy of NNNLO QCD corrections

Scattering amplitudes are the underlying building blocks

Multi-loop complexities

- Multi-loop multiscale integrals typically very difficult to evaluate
- All 1 loop integrals reducible to scalar box integrals + simpler
\rightarrow combinations of
+ simpler

$$
\operatorname{Li}_{2}(x)=-\int_{0}^{x} \frac{d t}{t} \ln (1-t)
$$

Brown-Feynman (1952), Melrose (1965), 't Hooft-Veltman (1974), PassarinoVeltman (1979), van Neerven-Vermaseren (1984), Bern, LD, Kosower (1992)

- At L loops, special functions with up to $2 L$ integrations Hannesdottir, McLeod, Schwartz, Vergu, 2109.09744
- Weight $2 L$ iterated integrals, multiple polylogarithms, or worse

Planar N=4 SYM as testing ground for QCD

- QCD's maximally supersymmetric cousin, $\mathrm{N}=4$ super-Yang-Mills theory (SYM), gauge group $\operatorname{SU}\left(N_{c}\right)$, in large N_{c} (planar) limit, where it becomes integrable
- Structure very rigid:

$$
\text { Amplitudes }=\sum_{i} \text { rational }_{i} \times \text { transcendental }_{i}
$$

- For planar N=4 SYM, we understand rational structure quite well, can focus on the transcendental functions.
- Multiple dualities hold (virtuous circle):

1. AdS/CFT (weak-strong)
2. Amplitudes dual to Wilson loops (dual conformal symmetry)
3. New "antipodal" duality between amplitudes and form factors

QCD vs. N=4 SYM

- QCD: gluons and quarks in fundamental rep. of $\operatorname{SU}\left(N_{c}\right)$
- $\mathrm{N}=4$: Replace quarks with 4 copies of fermions in adjoint rep. (gluinos) and add 6 real adjoint scalars
- All in same supermultiplet
- Feynman vertices:
QCD

g

$$
N=4 S Y M
$$

QCD vs. $N=4$ SYM at tree level

Essentially identical

Fermions and scalars cannot appear in tree amplitude for n gluons because produced in pairs

Hence amplitude is same in QCD and $N=4$ SYM; QCD tree amplitude obeys all identities of $\mathrm{N}=4$ supersymmetry:

No longer true at quantum (loop) level

N=4 SYM special at loop level

- At one loop, loop momenta cancel in numerator \rightarrow only scalar box integrals
\rightarrow Weight 2 functions - dilogs. E.g., $g g \rightarrow H g @ 1$ loop $د$

- QCD results also contain single log's and rational parts from (tensor) triangle + bubble integrals

Higher loops

- $\mathrm{N}=4$ SYM amplitudes have "uniform weight (transcendentality)" $2 L$ for finite (ϵ^{0}) terms at loop order L
- Weight ~ number of integrations, e.g.
$\ln (s)=\int_{1}^{s} \frac{d t}{t}=\int_{1}^{s} d \ln t$
$\mathrm{Li}_{2}(x)=-\int_{0}^{x} \frac{d t}{t} \ln (1-t)=\int_{0}^{x} d \ln t \cdot[-\ln (1-t)] \quad 2$
$\mathrm{Li}_{n}(x)=\int_{0}^{x} \frac{d t}{t} \mathrm{Li}_{n-1}(t)$
- QCD amps typically all weights from 0 to $2 L$

$\mathrm{N}=4$ / QCD relations at loop level

- Some infrared quantities are gluon-dominated, and therefore are exactly the same in QCD as in (nonplanar) $\mathrm{N}=4$.
- Example: 3-loop soft anomalous dimension controls $\frac{1}{\epsilon}$ pole with most complicated color structure ("quadrupole") in QCD amplitudes Almelid, Duhr, Gardi, 1507.00047
- Uniform weight 5 function, inherited from $\mathrm{N}=4$
- Bootstrappable Almelid, Duhr, Gardi, McLeod, White, 1706.10162

Maximal transcendentality principle

 Kotikov, Lipatov, Velizhanin, hep-ph/0301021, hep-ph/0611204- Other quantities share a common "most complicated" piece between QCD and N=4 SYM.
- For example, light-like cusp anomalous dimension
$\Gamma_{\text {cusp }}$ contributes to IR divergences in amplitudes and to soft-gluon resummation
- Known to all loop orders in planar N=4

Beisert, Eden, Staudacher, hep-th/0610251

- QCD formula:

$$
\begin{gathered}
\frac{\Gamma_{\mathrm{cusp}, R}}{4}=C_{R}\left\{a[1]+a^{2}\left[C_{A}\left(\frac{67}{9}-\frac{\pi^{2}}{3}\right)-\frac{10}{9} n_{f}\right]\right\}+\cdots \\
a=\frac{\alpha_{s}}{4 \pi}
\end{gathered}
$$

- Blue entries have "maximal transcendentality", predicted by $\mathrm{N}=4$.

More loop level N=4 / QCD relations

- For massless QCD processes, integral topologies are the same
- Sometimes "amplitudes" studies reveal something about integrals also encountered in QCD.
- Example: $\mathrm{gg} \rightarrow \mathrm{Hg}$ @ 2 loops, state of art in QCD
- Integrals known 20 years ago

Gehrmann, Remiddi, hep-ph/0008287,
 hep-ph/0101124

- Going to higher loops in planar $\mathrm{N}=4$, extra structure recently observed (adjacency restrictions on symbol letters) LD, McLeod, Wilhelm, 2012.12286; also Chicherin, Henn, Papathanasiou, 2012.12285
- Structure holds in all integrals needed for QCD, many more than needed for planar $\mathrm{N}=4$. Fate at 3 loops?

Different routes to perturbative amplitudes

Draw all Feynman graphs G_{i}

Perform all loop integrations: A_{i}

QCD, few scales
L. Dixon KITP Snowmass

Evaluate all unitarity cuts C_{α}

Construct local integrand I

Perform all loop integrations: A_{α}

Bootstrap: Guess $A=\sum_{m} c_{m} F_{m}$
F_{m} known functions $c_{m} \in \mathbb{Q}$ unknown constants

QCD, more scales, or $\mathrm{N}=4$ planar $\mathrm{N}=4$ (mostly) so far February 25, 2022

Functions entering n-point amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

Much work has gone into this!
$L \uparrow$ numbers multiple
(MZVs) polylogarithms
$\begin{array}{ccccc}9 & 42 & >221 & >630 & \text { letters } \\ \bullet & & 1 & \vdots \\ & 4 & & \end{array}$

Multiple polylogarithms

Chen, Goncharov, Brown,...

- Iterated integrals, e.g.

$$
G\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)=\int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n}, t\right)
$$

- Or define differentially: $d F=\sum_{s_{k} \in S} F^{s_{k}} d \ln s_{k}$
weight
lower
- s_{k} are letters in the symbol alphabet δ

Goncharov, Spradlin, Vergu, Volovich, 1006.5703

- Beyond polylogarithms \rightarrow Elliptic polylogarithms

$$
\sim \int_{0}^{x} \frac{d t}{\sqrt{\left(t-a_{1}\right)\left(t-a_{2}\right)\left(t-a_{3}\right)}} G\left(a_{4}, \ldots, a_{n}, t\right)
$$

Elliptic polylogarithms

- Enter planar $\mathrm{N}=4$ at $L=2, n=10$ via elliptic double box integral

Caron-Huot, Larsen 1205.0801;
Nandan, Paulos, Spradlin, Volovich, 1203.6362, 1301.2500; Kristenson, Wilhelm, Zhang, 2106.14902

- Prototype for understanding multi-scale elliptic polylogs that enter much earlier when internal lines are massive, e.g.:

1. QCD corrections to top quark processes
2. electroweak corrections with virtual W, Z, t

Beyond elliptic \rightarrow K3, Calabi-Yau manifolds

Bourjaily, He, McLeod, Spradlin, Volk, von Hippel, Wilhelm, 2103.15423 and refs. therein
Massless examples: Train tracks, tardigrades, ...

Bönisch, Duhr, Fischbach, Klemm, Nega, 2108.05310

Massive examples: Banana diagrams

NNLO frontier circa 2017

L. Dixon KITP Snowmass

Since 2017: First 2 loop $2 \rightarrow 3$ amplitudes

- All massless partons (or photons) in large N_{c} (planar) limit for QCD gauge group $\mathrm{SU}(3) \rightarrow \mathrm{SU}\left(N_{c}\right)$:
$g g \rightarrow g g g, q g \rightarrow q g g, q \bar{q} \rightarrow q \bar{q} g, \ldots$
Gehrmann, Henn, Lo Presti, 1511.05409;
Badger, Brønnum-Hansen, Hartanto, Peraro, 1712.02229, 1811.11699;
Abreu, Dormans, Febres Cordero, Ita, Page, Zeng, Sotnikov,
1712.03946, 1812.04586, 1904.00945, 2102.13609
- Last matrix elements needed for $\mathrm{pp} \rightarrow 3$ jets
 (up to $1 / N_{c}^{2}$ corrections). Much use of unitarity. Still multiple polylogarithms.
- And $q \bar{q} \rightarrow \gamma \gamma \gamma$
- already with NNLO cross section for pp $\rightarrow \gamma \gamma \gamma$
Chawdhry, Czakon, Mitov, Poncelet, 1911.00479; Abreu, Page, Pascual, Sotnikov, 2010.15834;...

- More recently: one massive leg ($W_{j j}$), \& massless nonplanar

Anatomy of NNLO pp $\rightarrow 3$ jets

$+\ldots$

+ quarks
+ lots of tricky phase space integrals + parton distributions

NNLO 3-jet / 2-jet ratio

Czakon, Mitov, Poncelet, 2106.05331

- Tour de force: Great NNLO/NLO agreement (not with LO!)
\rightarrow Measure α_{s} more reliably at very large momentum transfer
- Foreshadows many more NNLO $2 \rightarrow 3$ results in near future

Planar N=4 SYM Dream:

Solve for amplitudes nonperturbatively for any kinematices

L. Dixon KITP Snowmass

February 25, 2022

Can push to 8 loops in a Goldilocks "Higgs" amplitude

LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, 2012.12286, 2112.06243, 22mm.nnnnn

(virtuous circle)

- Matrix elements of operator $G_{\mu \nu}^{a} G^{\mu \nu a}$ with n gluons in planar $\mathrm{N}=4$
- Hgg form factor ($n=2$) "too simple",
no kinematic dependence beyond overall $\left(-s_{12}\right)^{-L \epsilon}$
- $\operatorname{Hggg}(n=3)$ is "just right", depends on

2 dimensionless ratios

- 8 loop results for function of 2 variables \rightarrow rich theoretical "data mine"
- Led to discovery of strange new antipodal duality between form factor and 6 gluon amplitude, where symbol gets reversed

Approximation Mandatory for 8 Loop Plots

Example: planar $\mathrm{N}=4$ analog of $H \rightarrow g g g$, [Successive loop ratios reveal finite radius of convergence]
L No. of weight $2 L G$ functions

1	4
2	25
3	269
4	2,580
5	24,484
6	221,249
7	$1,992,784$
8	$17,936,054$

- On 1-dimensional lines, series expansions do the job.
- For this plot: one series around $u=0$, one around $u=1 / 2$

Series expansions on the fly

Moriello, 1907.13234

A

B

C

- Construct series expansions from differential equations
- For phenomenology, need whole phase space
- Nevertheless, elliptic problems can be handled \rightarrow
- DiffExp package

Hidding, 2006.05510

Figure 2: Plots of the elliptic integral sectors, for $s_{13}=-1, p_{4}^{2}=\frac{13}{25}, m^{2}=1$ as a functic of s_{12}, at order ϵ^{4}, obtained by series expanding along the contour γ_{thr}. The solid poin represent values computed numerically with the software FIESTA [51].

Tropical methods

- Feynman parameter polynomial for true integral $\mathcal{P}(G)$ replaced by a simple monomial (locally) using "tropicalization" (a.k.a. the Newton polytope):

$$
\lim _{\xi \rightarrow \infty} p\left(x_{1}^{\xi}, \ldots, x_{n}^{\xi}\right)^{\frac{1}{\xi}}=\lim _{\xi \rightarrow \infty}\left(\sum_{\ell \in \operatorname{supp}(p)} c_{\ell} \boldsymbol{x}^{\xi \ell}\right)^{\frac{1}{\xi}}=\max _{\ell \in \operatorname{supp}(p)} \boldsymbol{x}^{\ell}=p^{\operatorname{tr}}(\boldsymbol{x})
$$

- Integrate $p^{\operatorname{tr}}(x) \rightarrow$ Hepp bound $\mathcal{H}(G)$
- $\mathcal{P}(G) \& \mathcal{H}(G)$ strongly correlated! \rightarrow

- Motivates "tropical" Monte Carlo sampling Borinsky, 2008.12310
- Remarkably efficient, even up to 17 loops!
L. Dixon KITP Snowmass

Machine learning approximations

Thaler talk

- Model amplitudes that are very expensive to compute, then compute with the model
Aylett-Bullock, Badger, Moodie, 2106.09474; Moodie, 2202.04506
- Simulation time can be reduced by a large factor (~ 30 ?)

February 25, 2022

Machine learning exactly?

Statistics of the Hggg planar N=4 amplitude: $\log _{10}$ of G function (HPL) coefficients (all integers!)

Grist for a machine to learn exactly $L=9,10,11, \ldots$?

To the future

- "Amplitudes" notions and methods will continue to provide a central role in the building blocks for precision collider cross sections
- Strong interplay in both directions
- The NNLO revolution to higher multiplicity is well underway, with the aid of many of these ideas
- Also NNNLO for high-value targets Mistlberger talk
- Deeper understanding of relevant analytic functions will help, but also novel approximation methods, and most likely more roles for machine learning
- The finite coupling solution to $\mathrm{N}=4$ scattering awaits too!

Those who explore an unknown world are travelers without a map: the map is the result of the exploration. The position of their destination is not known to them, and the direct path that leads to it is not yet made.

Hideki Yukawa

Extra Slides

Heuristic view of function space

weight

4
3
2
1
0

L. Dixon KITP Snowmass

February 25, 2022

Symbol alphabets for planar $\mathrm{N}=4 n$-gluon amplitudes

$$
\text { parity-odd letters, algebraic in } \hat{u}, \hat{v}, \widehat{w}
$$

$n=6$ has 9 letters: $\delta_{6}=\left\{\hat{u}, \widehat{v}, \widehat{w}, 1-\hat{u}, 1-\hat{v}, 1-\widehat{w}, \widehat{\hat{y}_{u}}, \hat{y}_{v}, \hat{y}_{w}\right\}$ Goncharov, Spradlin, Vergu, Volovich, 1006.5703; LD, Drummond, Henn, 1108.4461; Caron-Huot,
$n=7$ has 42 letters LD, von Hippel, McLeod, 1609.00669

Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289; Drummond, Papathanasiou, Spradlin 1412.3763
$n=8$ has at least 222 letters, could even be infinite as $L \rightarrow \infty$
Arkani-Hamed, Lam, Spradlin, 1912.08222;
Drummond, Foster, Gürdoğan, Kalousios, 1912.08217, 2002.04624; Henke, Papathanasiou 1912.08254, 2106.01392;
Z. Li, C. Zhang, 2110.00350

Planar N=4 SYM symbol letters from plabic graphs \& tensor diagrams

Mago, Schreiber, Spradlin, Srikant, Volovich, 2007.00646, 2012.15812, 2106.01406

Ren, Spradlin, Volovich, 2106.01405

- Almost arborizable TDs can be "resummed" to give square root letters seen in \bar{Q} computations
- Also predictions of symbol letters from tropical Grassmannians

Modular properties of elliptic integrals

Weinzierl, 2011.07311

Examples of elliptic Feynman integrals depending on one kinematic $x=\frac{-p^{2}}{m^{2}}$ (solid internal lines of mass m, dashed lines massless):

- For numerical purposes, handy to use modular transformations to move
$q=e^{2 \pi i \tau}$ into fundamental region for modular group, so $|q|<0.0043$

Elliptic sunset inside top production

- At subleading color in $g g \rightarrow t \bar{t}$,

- Done numerically long ago

Czakon, Fiedler, Mitov, 1303.6254

- Better analytic understanding should aid computational efficiency in multiscale processes

On-shell Massive

Amplitudes and SMEFT

Arkani-Hamed, Huang², 1709.04891; ...; Shadmi, Weiss, 1809.09644; ...

- Massive external states also have a natural helicity formalism based on "bold" spinors (A-HH ${ }^{2}$)
- In EFT descriptions, such as SMEFT, on-shell amplitudes take into account equations of motion naturally
- Both massless and massive versions of EFT; latter leverages $\mathrm{A}-\mathrm{HH}^{2}$ massive spinor technology: bolding as higgsing

massless EFT \rightarrow massive EFT

Double copy / color kinematics duality

- Began with KLT relations from string theory, and a slogan:
Gravity = YM²
- Then became graphical [Bern, Carrasco, Johansson]

$$
\begin{array}{rll}
n_{i}-n_{j}=n_{k} & \Leftrightarrow & c_{i}-c_{j}=c_{k}, \\
n_{i} \rightarrow-n_{i} & \Leftrightarrow & c_{i} \rightarrow-c_{i}
\end{array}
$$

- Now connects a much broader web of theories
- Underlies much of the motivation for the "scattering amplitudes for LIGO" program [Elvang, Solon talks]

Hggg kinematics is two-dimensional

$$
\begin{aligned}
& k_{1}+k_{2}+k_{3}=-k_{H} \\
& s_{123}=s_{12}+s_{23}+s_{31}=m_{H}^{2} \\
& w=0 \quad \begin{array}{c}
v \uparrow \\
\text { IIIb }
\end{array} \begin{array}{l}
\text { en }
\end{array} \\
& s_{i j}=\left(k_{i}+k_{j}\right)^{2} \quad k_{i}^{2}=0 \\
& u=\frac{s_{12}}{s_{123}} \quad v=\frac{s_{23}}{s_{123}} \quad w=\frac{s_{31}}{s_{123}} \\
& u+v+w=1 \\
& \mathrm{I}=\text { decay } / \text { Euclidean } \\
& \text { IIa,b,c = scattering / spacelike operator } \\
& \text { IIIa,b,c = scattering } / \text { timelike operator }
\end{aligned}
$$

