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Symmetry

* Symmetry has proven, from time and again, to be of fundamental
importance for describing Nature.

* In recent years, there has been a revolution in our understanding of
global symmetries.

* The notion of global symmetry has been generalized in different
directions.

* These generalized global symmetries are some of the few universally
applicable tools to analyze general quantum systems, not limited to
supersymmetric or solvable models.



Generalized global symmetries

* These new symmetries lead to several surprising consequences:
e generalized ‘t Hooft anomaly matching conditions
* new implications for the phase diagram of gauge theories
* new organizing principles of topological phases in condensed matter
physics
* new dualities

* Active collaboration between experts from high energy physics, condensed
matter physics, quantum gravity, and mathematics.

* |n this talk I'll discuss only some of these developments. Please see the
upcoming white paper for more references. | apologize in advance for the
variety of fascinating papers that are not discussed below.



Many other generalizations of global
symmetries not discussed here, e.g. dipole
symmetry, asymptotic symmetry,...

Generalizations

#b Higher-form symmetries

e.g. center symmetry in gauge theory

@
Subsystem symmetries Non-invertible symmetries
e.g. fractons e.g. Ising model, 4d Maxwell theory, Yang-Mills, ...

axb = Z Ng,c
C



Noether current

* Consider a relativistic QFT in d spacetime dimensions. Suppose it has an
ordinary U(1) global symmetry with a d — 1 form Noether current
7@~V (x) satisfying the conservation equation:

di@D = ¢ (d-1)
J Ug(M*"~)

* The conserved, unitary symmetry operator is an integral over a

codimension-1 manifold M(@~1 jn spacetime (e.g. the entire space at a

fixed time)

(d-1) - (d-1) ®y
Ug(M'*~Y) = exp(i60 ¢ jV) (x)
Mmd—-1)

« Thanks to the conservation equation, the dependence on M(@~1 js M (@-1)

topological: it is invariant under small deformations.

* It acts on a charged local operator O(x) by enclosing the latter.



Ordinary global symmetry

Properties of Ordinary symmetry Example: U(1)
(d-1)
symmetry op. Ug(M ) exp(i@jé j@-1)y
Mm(d-1)

Codimension 1 j@Disad — 1-form

in spacetime

Topological yes j@ Vs closed, dj @~V = 0

Fusion rule group U(1l)

Ug1 ng — Ug1gz U91 U92 — U91+92

Next, we generalize the ordinary global symmetry by modifying t
above conditions.
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Generalized global symmetries

Properties of Ordinary
symmetry op. symmetry
Codimension 1
in spacetime
Topological yes
group
Fusionrule | g1Xg, = g3




Higher-Form Symmetry



Global symmetries and generalizations

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. | symmetry symmetry symmetry operator
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
group group group fusion ring
Fusionrule | g1Xg2 =93 | 91X92 =93 | 91X9g2 = g3

axb = z NS, c
C




Higher-form global symmetry

[Gaiotto-Kapustin-Seiberg-Willett 2014, ...]

Properties of q-form symmetry Example: U(1)
(d-q-1)
symmetry op. Ug (M ) exp(if f j(d—q—l))
M(d—-q-1)

Codimension q+1 j@=aVisad — g — 1-form
in spacetime

Topological yes j@=9=1 s closed,

dj@-a-1 =
group U(l)
Fusion rule Ug, Uy, = Uy g, Ug,Up, = Ug, 10,

The charged objects are g-dimensional.




Higher-form symmetries and anomalies
[Gaiotto-Kapustin-Seiberg-Willett 2014, ...]

* The simplest example of higher-form symmetries is the one-form center
symmetry in gauge theory. E.g. Zy center symmetry in SU(N) Yang-Mills
theory. It acts on the Wilson lines, rather than the local operators.

* Higher-form global symmetries can have anomalies, which prevent us from
gauging them. These anomalies lead to generalized ‘t Hooft anomaly
matching conditions. Nontrivial constraints on renormalization group flows.

* E.g. SU(2) pure gauge theory at 8 = m has a mixed anomaly between CP
and the Z, one-form center symmetry. The low energy phase cannot be
trivially gapped with a non-degenerate ground state. (Contrast with the
expectation at 8 = 0.) [Gaiotto-Kapustin-Komargodski-Seiberg 2017]
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Higher-groups

* Higher-group symmetry: mixture of higher-form symmetries of
different degrees [Kapustin-Thorngren 2013, Tachikawa 2017, Cordova-Dumitrescu-
Intriligator 2018-2020, Benini-Cordova-Hsin 2018,...].

 Similar to group extensions, but for symmetries of different form
degrees.

* Higher-groups exist in many quantum systems in diverse dimensions:
2+1d Chern-Simons matter theories, 3+1d gauge theories, 5+1d
supersymmetric theories...

* Dynamical consequences. E.g. Constraints on the 3+1d axion-Yang-
Mills theory [Hidaka-Nitta-Yokokura 2020-2021, Brennan-Cordova 2020].

11



Subsystem Symmetry



Generalized global symmetries

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. symmetry symmetry symmetry symmetry
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
group group group fusion ring
Fusionrule | g1Xg2 =93 | 91X92 =93 | 91X9g2 = g3

axb = z NS, c
C
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Subsystem symmetry

* There are many interesting lattice models, such as
fractons, exhibiting subsystem symmetries.

* The subsystem symmetry charges are supported on certain
higher-codimensional manifolds L in space (E.g. straight lines
on a plane) [..., Paramekanti-Balent-Fisher 2002, ...]. They depend NOT

only on the topology of the manifolds.

* The number of subsystem symmetry charges generally
depends on the number of lattice points.

* Low energy observables are sensitive to short distance
details: UV/IR MIXINg [Gorantla-Lam-Seiberg-SHS 2021].

Q*(x)

Q¥ (y)
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Fractons

* Fractons [Chamon 2005, Haah 2011, ...] are a large class of 3+1d gapped lattice spin
models with many peculiar features.

* They do not admit a conventional continuum field theory limit. Challenge the
canonical paradigm that QFT describes low energy phases.

e Large ground state degeneracy ~ 2%, where L is the number of lattice sites in
every direction.

* The peculiarities of fractons can be universally captured by the underlying
subsystem symmetries. For example, the large ground state degeneracy is a direct
consequence of the anomalies of the subsystem symmetries [Seiberg-SHS 2020, Burnell-
Devakul-Gorantla-Lam-SHS 2021].

* Many fracton models can also be realized as the gauge theory of subsystem
sym metries [Vijay-Haah-Fu 2016, Williamson 2016, Slagle-Kim 2017, Shirley-Slagle-Chen 2018, ...]
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Non-invertible Symmetries



Generalized global symmetries

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. symmetry symmetry symmetry symmetry
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
group group group fusion ring
Fusionrule | g1Xg2 =93 | 91X92 =93 | 91X9g2 = g3

axb = z Nj,c
C
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Wilson lines for finite gauge groups

* Consider a QFT with a finite gauge group G (e.g. Zy, Sy, etc.).

* The topological Wilson lines Wj are labeled by the irreducible
representations R of G.

* The fusion of the Wilson lines is generally NOT a group! (E.g. the
representationringof S3: 2QR2=1P 1_ D 2)

More than one
WRaXWRb — E Nab WRC term on RHS
CEirreps

* Do these Wilson lines generate a global symmetry?
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Non-invertible symmetries

* More generally, a topological operator L is called non-invertible if there is
no inverse L™ such that LxL™! = 1.

* |t has been advocated that the non-invertible topological operators should
be viewed as generalizations of ordinary global symmetries [Bhardwaj-Tachikawa
2017, Chang-Lin-SHS-Wang-Yin 2018,...].

* Non-invertible symmetries in many familiar systems:

e 1+1d Ising model [Frohlich-Fuchs-Runkel-Schweigert 2006, ...]

e 3+1d gauge theories (Maxwell, Yang-Mills, N' = 4 super Yang-Mills)
[Choi-Cordova-Hsin-Lam-SHS 2021, Kaidi-Ohmori-Zheng 2021]

* 3+1d Zy lattice gauge theories [Koide-Nagoya-Yamaguchi 2021]
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Non-invertible symmetries

Why should we think of the non-invertible topological operators as
generalized symmetries?

* Some non-invertible operators can be gauged [Brunner-Carqueville-Plencner
2014].

* They can have generalized anomalies, which lead to generalized ‘t
Hooft anomaly matching conditions. They result in nontrivial
constraints on the renormalization group flows [Chang-Lin-SHS-Wang-Yin 2018,
Thorngren-Wang 2019, 2021, Komargodski-Ohmori-Roumpedakis-Seifnashri 2020, ...].

* Analytic obstruction to a trivially confining phase in 3+1d gauge
theories [Choi-Cordova-Hsin-Lam-SHS 2021].
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Conclusion

* We have discussed three generalizations of global symmetries, higher form
symmetries, subsystem symmetries, and non-invertible symmetries. Many
other generalizations.

* This more general perspective of global symmetry unifies many known
phenomena into a coherent framework.

* Generalized global symmetries and their anomalies provide an invariant
characterization of many topological phases of matter such as fractons.

 More importantly, they lead to new dynamical consequences that are
otherwise obscured.

e Generalizations of the ‘t Hooft anomaly matching condition lead to nontrivial
constraints on renormalization group flows.

* New symmetries in new and old QFTs!
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Generalized global symmetries

Properties of Ordinary Higher-form Subsystem Non-invertible
symmetry op. symmetry symmetry symmetry symmetry
Codimension 1 > 1 > 1 =1

in spacetime

Topological yes yes not completely yes

but conserved in time
group group group fusion ring
Fusionrule | g1Xg2 =93 | 91X92 =93 | 91X9g2 = g3

axb = z NS, c
C

Thank you for listening!
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