Systematic Investigations of the Free Fermionic Heterotic String Landscape SVP Workshop 2010

Timothy Renner

Baylor University

May 5, 2010

Outline FFHS Construction

Systematic Gauge Group Searches

NAHE Extensions and the FF Framework

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline

- General outline of free fermionic heterotic string model (FFHS) construction.
- Systematic gauge group searches and optimizations.
- Systematic NAHE and NAHE variation extension investigations and the FF Framework.

FFHS Inputs

- Two inputs:
- A set of 64 component basis vectors.
- An L×L GSO coefficient matrix, where L is the number of basis vectors.
- Basis vector elements represent phases that fermion modes gain when parallel transported around non-contractible loops of space-time.
- The GSO coefficient matrix represents the degrees of freedom present in choosing a modular invariant model.

FFHS Degrees of Freedom

- Left moving supersymmetric vibrations and right moving bosonic vibrations make up the string.
- Left moving vibrations around the 6 compactified directions consist of three degrees of freedom: 1 fermion mode and a boson mode written as two real fermions.
- In addition there are four large space time modes, two of which are eliminated in light cone gauge.
- Left moving modes have 20 degrees of freedom.

FFHS Degrees of Freedom

- Right moving modes are only bosonic, and vibrate in 26 dimensions.
- We ignore the large dimensions here because the only massless mode in which they appear is the graviton.
- (26 4) = 22 modes in a complex fermion basis, or 44 in a real basis.
- Total number of basis vector components is 64.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FFHS Construction - Constraints

- **Order** The allowed phases of the vibration modes, or a limit on basis vector component values.
- Layer The number of basis vectors in a model.
- Modular invariance constrains the allowed basis vectors for a model.
- Modular invariance is crucial to producing actual Lie algebras in the model.

Systematic Gauge Group Searches

- A recent paper by G. Cleaver, M. Robinson, M. Hunziker (MPLA 24 (2009) p.2703) showed a new way of expressing basis vectors and the modular invariance constraints for models which contain only gauge groups.
- Substantial time improvement over a brute force approach.
- Comprehensive statistics for models of layer 1 and order 1-15 have been collected for these simple gauge group models.
- This approach is currently being generalized to include matter content.
- Higher layer gauge searches are currently underway.

Gauge Group Search Results

Order	Number of Solutions	Unique Gauge Group Products		
1	1	1		
2	5	5		
3	39	8		
4	271	18		
5	1,505	22		
6	6,699	38		
7	26,967	40		
8	96,630	40		
9	326,842	65		
10	1,005,097	67		
11	2,932,573	67		
12	8,065,302	67		
13	20,941,804	69		
14	52,672,916	70		
15	126,723,711	70		
16	pprox300,000,000			

200

Breakdown of Gauge Group Product Content

Group	No.	Group	No.	Group	No.
SU(2)	32	SU(16)	3	SO(8)	12
SU(3)	4	SU(17)	0	SO(10)	9
SU(4)	12	SU(18)	1	SO(12)	14
SU(5)	4	SU(19)	0	SO(14)	5
SU(6)	10	SU(20)	0	SO(16)	6
SU(7)	4	SU(21)	1	SO(18)	1
SU(8)	8	SU(22)	0	SO(20)	4
SU(9)	3	SU(23)	0	SO(24)	3
SU(10)	7			SO(28)	2
SU(11)	2	E ₆	7	SO(32)	1
SU(12)	6	E7	7	SO(40)	1
SU(13)	2	E ₈	4	SO(44)	1
SU(14)	2				
SU(15)	0				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Non Standard E₈ Embedding

- One interesting result on this study was a non-standard embedding of E_8 , reported in G. Cleaver, R. Obousy, M. Robinson (MPLA 24 (2009) p.1577).
- A basis vector of order 3 with 18 real twists of $\frac{2}{3}$ produced a gauge group of $E_8 \otimes SO(28)$.
- The E_8 appears by combining the 80 adjoint representation of SU(9) with an 84 and an $\overline{84}$, which give a 248, the adjoint of E_8 .

Systematic Gauge Group Searches

NAHE Extensions and the FF Framework

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The NAHE Set

- Serves as a nice starting basis for "realistic" FFHS models.
- N=1 ST SUSY.
- SO(10) observable GUT gauge group.
- Three generations of particles (each with 16 copies, however).

NAHE Variation

- A variation of the NAHE set reported in G. Cleaver, T. Ali, K. Pechan, J. Greenwald, T.R. (arXiv:0912.5207) provides an alternative to the NAHE set.
- N=1 ST SUSY is preserved.
- Gauge groups are $E_6 \otimes SO(28)$.
- Range of mirror models models with identical observable and hidden sector gauge groups (and matter states) possible.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Systematic NAHE Extensions

- NAHE set will be extended by adding any number of basis vectors of any order.
- Statistics will be collected on these models.
- Attention paid to SO(6)⊗SO(4) models, flipped SU(5) models, and (N)MSSM-like models.
- Gauge groups and matter representations will be generated.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NAHE Variation Extensions

- NAHE variation will also be systematically extended.
- Special emphasis placed on mirror models.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Statistics

Probabilities of :

- Anomalous U(1).
- Hidden sector gauge groups.
- Hidden sector matter.
- Number of observable (chiral) generations.
- Number of Higgs scalars.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Challenges to Systematic Searches

- Lots of computing time needed optimized software is necessary.
- Core logic changes may invalidate results.
- Several graduate careers.

Outline

Systematic Gauge Group Searches

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FF Framework

- A collection of C++ classes.
- Designed to optimize and generalize computer construction of FFHS models.
- Intended to balance speed with usability by other graduate students.

ystematic Gauge Group Searches

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Speed Improvements

- Redundancy reduction.
- Combinatoric basis vector generation allows far less file I/O.
- "Smart" loop nesting is used when applicable, greatly improved over brute force nesting.

Usability Improvements

- Current software in FORTRAN 77, contains hundreds of thousands of lines of code.
- FF Framework has under 5,000 lines, and is in a modern language.

Usability Improvements

- Current software in FORTRAN 77, contains hundreds of thousands of lines of code.
- FF Framework has under 5,000 lines, and is in a modern language.

Usability Improvements

- Current software in FORTRAN 77, contains hundreds of thousands of lines of code.
- FF Framework has under 5,000 lines, and is in a modern language.

- Object oriented.
- Many features may be added or removed without compromising core logic.

Further Usability Improvements

- Core logic adjusts to layer and order.
- Uses C++ STL containers.
- Ideal not only for the NAHE extensions, but also for almost any kind of individual FFHS model as well.

Future Plans

- Framework is nearly complete.
- Preparations are being made to generate data and collect statistics over the summer.
- NAHE extension and the extension of the NAHE variation will be examined systematically.
- Continued improvements of speed will be implemented (i.e. threading, multi-node processing, etc.).
- Additional features will be added as more detailed analyses are desired.

Outline

Systematic Gauge Group Searches

NAHE Extensions and the FF Framework

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Acknowledgements

- The Baylor University EUCOS group:
- Dr. Gerald Cleaver
- Tim Renner
- Kristen Pechan
- Jared Greenwald
- Douglas Moore

References

- Free Fermionic Heterotic Model Building and Root Systems -M. Robinson, G. Cleaver, M. Hunziker MPLA 24 (2009) p 2703
- A Non-Standard Embedding of E₈ R. Obousy, M. Robinson, G. Cleaver MPLA 24 (2009) p 1577
- Note on a NAHE Variation J. Greenwald, K. Pechan, T.R., T. Ali, G. Cleaver (arXiv:0912.5207)
- Systematic Investigation of Free Fermionic Heterotic String Gauge Group Statistics: Layer 1 Results - C. Buescher, J. Greenwald, M. Janas, G. Miller, K. Pechan, T.R., S. Ruhnau,G. Cleaver. (in progress)
- Systematic Investigation of NAHE and NAHE Variation Extensions -T.R., J. Greenwald, D. Moore, G. Cleaver (in progress)
- Image Credit: oldcomputers.net