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‘quasi-realistic’ models
translation: interesting features but immediately
ruled out

potentially realistic models
translation: not yet explored well enough to tell
whether ruled out or not

☞ Obvious next step: explore these constructions

☞ Ultimate hope:
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Why do string model building at all?

☞ Wish list:
1 find a model that is consistent with observation

2 try to obtain a better understanding of observation
(quantum numbers of matter, couplings, etc.)

3 try to find answers to open questions within this model

scale of soft��SUSY terms
MSSM µ problem
strong CP problem
. . .

☞ This talk: strategy to answer the open questions :
symmetries
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Orbifolds vs. Calabi-Yau compactifications

heterotic string in 10D

4D orbifold vacuum

supergravity in 10D

supergravity

limit

4D Calabi-Yau vacuum

blow-up

configuration with enhanced
symmetries
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Towards fully realistic models

☞ Strategy in this talk: use exact and approximate symmetries

☞ Focus on the following questions:

➊ hierarchically small scale of 〈W 〉 & m3/2

➋ MSSM µ term

➌ matter parity (a.k.a. R-parity)

➍ SUSY flavor structure

➎ proton stability
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➊ Introduction & Motivation X

➋ The role of (discrete) R-symmetries in
understanding:

a small gravitino mass
a suppressed µ term

➌ The role of remnant symmetries in understanding
SUSY flavor structure
proton stability

➍ Summary
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Hierarchically small 〈W 〉

Two ingredients:

1 in the presence of an exact U(1)R symmetry

∂W

∂φi
= 0 y 〈W 〉 = 0

2 for an approximate R symmetries

〈W 〉 ∼ 〈φ〉
N

typical
field VEV

order
of explicit

U(1)R breaking
terms
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〈W 〉 = 0 because of U(1)R (I)

aim: show that

∂W

∂φi
= 0 y 〈W 〉 = 0

Consider a superpotential

W =
∑

cn1···nM
φn1

1 · · ·φ
nM

M

with an exact R-symmetry

W → e2iαW , φj → φ′j = ei rj α φj

where each monomial in W has total R-charge 2
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〈W 〉 = 0 because of U(1)R (II)

Consider a field configuration 〈φi〉 with

Fi =
∂W

∂φi
= 0 at φj = 〈φj〉

Under an infinitesimal U(1)R transformation, the superpotential
transforms nontrivially

W (φj) → W (φ′
j) = W (φj) +

∑

i �
��S
SS

∂W

∂φi

∆φi
!
= e2iαW

This is only possible if 〈W 〉 = 0 !

bottom-line:

∂W

∂φi
= 0 y 〈W 〉 = 0
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setting without
supersymmetric
ground state





requires
−−−−−→

does not imply

←−−−−−−−−−−/////////

U(1)R symmetry

➌ in local SUSY :
∂W

∂φi
= 0 and 〈W 〉 = 0 imply DiW = 0

(That is, a U(1)R symmetry implies Minkowski solutions.)
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Approximate R symmetries

☞ Consider now the case of an approximate R symmetry, i.e.
explicit R symmetry breaking terms appear at order N in
the fields φi

☞ This allows us to avoid certain problems:

for a continuous U(1)R symmetry we would have
a supersymmetric ground state with 〈W 〉 = 0 and U(1)R
spontaneously broken

a problematic R-Goldstone boson

however, for an approximate U(1)R-symmetry one has
Goldstone-Boson massive and harmless

a non-trivial VEV of W at order N in φ VEVs

〈W 〉 ∼ 〈φ〉N

☞ Such approximate U(1)R symmetries can be a
consequence of discrete ZR

N symmetries

☞ Various field-theoretic examples
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2010)
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Origin of high-power discrete R-symmetries

☞ Discrete R symmetries arise as remnants of Lorentz
symmetries of compact space

→

☞ Orbifolds break SO(6) ≃ SU(4) Lorentz symmetry of
compact space to discrete subgroups

☞ For example, in Z6-II orbifolds one has

GR = [Z6 × Z3 × Z2]R
see e.g. Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R., Vaudrevange (2008)
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☞ Heterotic orbifolds appear ‘tailor-made’ for applying these
ideas

☞ To be specific, focus on the heterotic mini-landscape
= potentially realistic string models with attractive features:

matter parity

MSSM spectrum with one Higgs
pair

gauge coupling unification

see-saw

ℓ

φ

φ

ℓ

mν =
∑

ν̄
ℓ

φ

φ

ℓ

ν̄

+
ℓ

φ

φ

ℓ

ν̄
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. . . got ‘for free’

→ effective couplings
etc.
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that they exist

Note: in order
to prove the existence
a full understanding

of coupling coefficients
is required
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Some details

☞ We studied one example (heterotic benchmark model IA)
with 23 SM singlets si getting a VEV

☞ R symmetry breaking terms appear at order 9

☞ We solve Da = 0 as well as global Fi = 0 at order 9

☞ We specifically search for solutions |si| < 1, and find/argue
that they exist

☞ All fields acquire positive m2

(no flat directions; not destroyed by supergravity corrections)

☞ Superpotential VEV 〈W 〉 ∼ 〈si〉
9 ≪ 1 (as expected)

bottom-line:

straightforward embedding in heterotic orbifolds
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F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2010)

☞ The more fields are switched on, the lower N we obtain
examples:

benchmark model 1A with 23 fields y N = 9

model with 7 fields y N = 26

☞ Suppressed si in accord with scale set by Fayet-Iliopoulos
term

☞ One approximate Goldstone mode η

mη ∼ 〈W 〉/〈s〉
2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses≫ mη

i.e. isolated points in si space with Fi = Da = 0
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R. Kappl, H.P. Nilles, S. Ramos-Sánchez, M.R., K. Schmidt-Hoberg, P. Vaudrevange (2008)

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2010)

☞ The more fields are switched on, the lower N we obtain
examples:

benchmark model 1A with 23 fields y N = 9

model with 7 fields y N = 26

☞ Suppressed si in accord with scale set by Fayet-Iliopoulos
term

☞ One approximate Goldstone mode η

mη ∼ 〈W 〉/〈s〉
2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses≫ mη

i.e. isolated points in si space with Fi = Da = 0

☞ Minima survive supergravity corrections
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☞ MSSM µ term

☞ Moduli stabilization
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µ from strings
Cvetič, Louis, Ovrut (1988)

☞ Kähler potential for orbifold Z2 plane

K = − ln
[(

T + T
) (

Z + Z
)
−

(
Hu + Hd

) (
Hd + Hu

)]

Kähler
modulus

complex
structure

structure
enforced by

higher-
dimensional

gauge
invariance
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µ from strings
Cvetič, Louis, Ovrut (1988)

☞ Kähler potential for orbifold Z2 plane

K = − ln
[(

T + T
) (

Z + Z
)
−

(
Hu + Hd

) (
Hd + Hu

)]

Antoniadis, Gava, Narain, Taylor (1994)

☞ Giudice-Masiero type contribution

µ = FT + . . .
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µ from strings
Cvetič, Louis, Ovrut (1988)

☞ Kähler potential for orbifold Z2 plane

K = − ln
[(

T + T
) (

Z + Z
)
−

(
Hu + Hd

) (
Hd + Hu

)]

Antoniadis, Gava, Narain, Taylor (1994)

☞ Giudice-Masiero type contribution

µ = FT + . . .

Brümmer, Kappl, M.R., Schmidt-Hoberg (2010)

☞ Holomorphic contribution

K ≃ − ln
[(

T + T
) (

Z + Z
)]

+

[
|Hu|

2 + |Hd|
2 + (Hu Hd + c.c.)

]
(
T + T

) (
Z + Z

)

= − ln
[(

T + T
) (

Z + Z
)]

+
[
|Ĥu|

2 + |Ĥd|
2 + (Ĥu Ĥd + c.c.)

]

canonically normalized fields
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µ from strings
Cvetič, Louis, Ovrut (1988)

☞ Kähler potential for orbifold Z2 plane

K = − ln
[(

T + T
) (

Z + Z
)
−

(
Hu + Hd

) (
Hd + Hu

)]

Antoniadis, Gava, Narain, Taylor (1994)

☞ Giudice-Masiero type contribution

µ = FT + . . .

Brümmer, Kappl, M.R., Schmidt-Hoberg (2010)

☞ Holomorphic contribution

K ≃ − ln
[(

T + T
) (

Z + Z
)]

+
[
|Ĥu|

2 + |Ĥd|
2 + (Ĥu Ĥd + c.c.)

]

➥ induces FT-independent µ term

µ ∼ 〈W 〉 ≃ m3/2
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Application: moduli stabilization

☞ Another important application: fix the dilaton

☞ Effective superpotential

similar to KKLT

Weff = 〈W 〉+ A e−a S +
1

2
mη η

2 approximate
R axion

perturbative
superpotential

∼ 10−O(10)

“gaugino
condensate”
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Application: moduli stabilization

☞ Another important application: fix the dilaton

☞ Effective superpotential

Weff = 〈W 〉+ A e−a S +
1

2
mη η

2

☞ Dilaton adjusts to 〈W 〉

m3/2 ≃ 〈Weff〉 ∼ 〈W 〉
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Application: moduli stabilization

☞ Another important application: fix the dilaton

☞ Effective superpotential

Weff = 〈W 〉+ A e−a S +
1

2
mη η

2

☞ Dilaton adjusts to 〈W 〉

m3/2 ≃ 〈Weff〉 ∼ 〈W 〉

bottom-line:

dilaton fixed

true origin of hierarchically small m3/2(∼ mW):
approximate R symmetry



Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses

Field theory discussion

Explicit string theory realization

Applications

Toy example
Dundee, Raby, Westphal (2010)

☞ Orbifold-inspired Kähler and superpotential

K = − ln
(
S + S

)
− 3 ln

(
T + T

)
+ φ1φ1 + φ2φ2 + χχ

dilaton Kähler modulus
MSSM
singlet
fields
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Toy example
Dundee, Raby, Westphal (2010)

☞ Orbifold-inspired Kähler and superpotential

K = − ln
(
S + S

)
− 3 ln

(
T + T

)
+ φ1φ1 + φ2φ2 + χχ

W = e−bT
[
w0 + χ

(
φ101

)]
+ Aφp

2 e
−aS−b2 T

explained
by approximate

R symmetry

needs
to acquire
VEV in order
to cancel
FI term
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Toy example
Dundee, Raby, Westphal (2010)

☞ Orbifold-inspired Kähler and superpotential

K = − ln
(
S + S

)
− 3 ln

(
T + T

)
+ φ1φ1 + φ2φ2 + χχ

W = e−bT
[
w0 + χ

(
φ101

)]
+ Aφp

2 e
−aS−b2 T

☞ Features:

KKLT-type stabilization of S
race-track stabilization of T, FT dominates
all fields fixed
vacuum energy: V0/(3m

2
3/2) ≃ −3%
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Toy example
Dundee, Raby, Westphal (2010)

☞ Orbifold-inspired Kähler and superpotential

K = − ln
(
S + S

)
− 3 ln

(
T + T

)
+ φ1φ1 + φ2φ2 + χχ

W = e−bT
[
w0 + χ

(
φ101

)]
+ Aφp

2 e
−aS−b2 T

☞ Features:

KKLT-type stabilization of S
race-track stabilization of T, FT dominates
all fields fixed
vacuum energy: V0/(3m

2
3/2) ≃ −3%

bottom-line:

application to explicit string models may be feasible
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Comment on naive idea
F. Brümmer, R. Kappl, M.R., K. Schmid-Hoberg (2010)

☞ Alternative stabilization of the T- and Z-moduli

W =
∑

i

ci(Tj,Zk)Mi(φℓ)

couplings
depend on
geometry

e.g. c ∼ e−aT

monomials
in MSSM singlet

fields φℓ
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F. Brümmer, R. Kappl, M.R., K. Schmid-Hoberg (2010)

☞ Alternative stabilization of the T- and Z-moduli

W =
∑

i

ci(Tj,Zk)Mi(φℓ)

☞ As many F-equations as fields y expect ‘point-like’
solutions with masses of the fundamental scale (i.e. very
heavy T- and Z-moduli)
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Comment on naive idea
F. Brümmer, R. Kappl, M.R., K. Schmid-Hoberg (2010)

☞ Alternative stabilization of the T- and Z-moduli

W =
∑

i

ci(Tj,Zk)Mi(φℓ)

☞ As many F-equations as fields y expect ‘point-like’
solutions with masses of the fundamental scale (i.e. very
heavy T- and Z-moduli)

☞ Whether or not these solutions are at ‘reasonable’ points in
field space (i.e. 〈φℓ〉 < 1, Tj,Zk moderately large) will
depend on the precise form of the ci and the chosen φℓ
configuration R. Kappl et al. work in progress



Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses

Field theory discussion

Explicit string theory realization

Applications

Comment on naive idea
F. Brümmer, R. Kappl, M.R., K. Schmid-Hoberg (2010)

☞ Alternative stabilization of the T- and Z-moduli

W =
∑

i

ci(Tj,Zk)Mi(φℓ)

☞ As many F-equations as fields y expect ‘point-like’
solutions with masses of the fundamental scale (i.e. very
heavy T- and Z-moduli)

☞ Whether or not these solutions are at ‘reasonable’ points in
field space (i.e. 〈φℓ〉 < 1, Tj,Zk moderately large) will
depend on the precise form of the ci and the chosen φℓ
configuration R. Kappl et al. work in progress

☞ As before: in the presence of approximate U(1)R
‘reasonable’ solutions will have suppressed 〈W 〉
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Matter parity from U(1)B−L

Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (2006)

☞ In the heterotic mini-landscape search we obtained a ZM
2

matter parity like in SO(10) GUTs, i.e. as a subgroup of a
gauged U(1)B−L symmetry

U(1)B−L

χ→〈χ〉
−−−−→ ZM

2

carries even B− L charge
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Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (2006)

☞ In the heterotic mini-landscape search we obtained a ZM
2

matter parity like in SO(10) GUTs, i.e. as a subgroup of a
gauged U(1)B−L symmetry

U(1)B−L

χ→〈χ〉
−−−−→ ZM

2

☞ Obvious generalization:

qB−L(χ) =
even

odd
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Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (2006)

☞ In the heterotic mini-landscape search we obtained a ZM
2

matter parity like in SO(10) GUTs, i.e. as a subgroup of a
gauged U(1)B−L symmetry

U(1)B−L

χ→〈χ〉
−−−−→ ZM

2

☞ Obvious generalization:

qB−L(χ) =
even

odd

☞ In orbifolds: many discrete and continuous symmetries
y non-trivial embedding of ZM

2
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Matter parity from U(1)B−L

Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (2006)

☞ In the heterotic mini-landscape search we obtained a ZM
2

matter parity like in SO(10) GUTs, i.e. as a subgroup of a
gauged U(1)B−L symmetry

U(1)B−L

χ→〈χ〉
−−−−→ ZM

2

☞ Obvious generalization:

qB−L(χ) =
even

odd

☞ In orbifolds: many discrete and continuous symmetries
y non-trivial embedding of ZM

2

☞ Related discussion

W. Buchmüller, J. Schmidt (2009)

Skip
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Explicit string theory example

How to extract residual discrete symmetries

☞ Generalization to many U(1) factors, non-Abelian
symmetries and several ZN’s

☞ Assume certain charged fields φ(i) attain VEVs

☞ What is the residual discrete symmetry?
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☞ 3 VEV fields φ(i), 2 matter fields ψ(j), 2 U(1) factors
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☞ 3 VEV fields φ(i), 2 matter fields ψ(j), 2 U(1) factors

U(1) U(1)′

φ(1) 8 -2

φ(2) 4 2
φ(3) 2 4

U(1) U(1)′

ψ(1) 1 3
ψ(2) 1 5
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A simple example

☞ 3 VEV fields φ(i), 2 matter fields ψ(j), 2 U(1) factors

U(1) U(1)′

φ(1) 8 -2

φ(2) 4 2
φ(3) 2 4

U(1) U(1)′

ψ(1) 1 3
ψ(2) 1 5

☞ Charge lattice

φ(2)

φ(3)

bcψ(1)

bcψ(2)

rs

rs

rs

rs

rs

rs

rs rs

rs
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A simple example (cont’d)

☞ Charge lattice

φ(2)

φ(3)

bcψ(1)

bcψ(2)

rs

rs

rs

rs

rs

rs

rs rs

rs






Coupling

(ψ(1))n1(ψ(2))n2

allowed




 ⇐⇒






n1 q(ψ(1)) + n2 q(ψ(2))
lies on

lattice node








Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory example

A simple example (cont’d)

☞ Charge lattice after diagonalization by unimodular
transformation

bc
ψ(1)

bc
ψ(2)

rs

rs

rs

rs

rs

rs



Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory example

A simple example (cont’d)

☞ Charge lattice after diagonalization by unimodular
transformation

bc
ψ(1)

bc
ψ(2)

rs

rs

rs

rs

rs

rs

➥ Premature result: Z2 × Z6 symmetry with discrete charges
q(ψ(1)) = (1, 1) and q(ψ(2)) = (1, 3)
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A simple example (cont’d)

☞ ‘Blown up’ diagonal charge lattice

e1

e2

bc
ψ(1)

bc
ψ(2)

rs rs

rs rs
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A simple example (cont’d)

☞ ‘Blown up’ diagonal charge lattice

e1

e2

bc
ψ(1)

bc
ψ(2)

rs rs

rs rs

➥ ‘Blown up’ symmetry: Z6 × Z6 with discrete charges
q(ψ(1)) = (3, 1) and q(ψ(2)) = (3, 3)
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A simple example (cont’d)

☞ Canonical form ‘blown up’ diagonal charge lattice and
charges

bc
ψ(1)

bc
ψ(2)

rs rs

➥ Final result: Z6 symmetry with discrete charges q(ψ(1)) = 1

and q(ψ(2)) = 3
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General algorithm
B. Petersen, M.R., R. Schieren (2009)

➊ Build and diagonalize charge lattice
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➋ Extend charge lattice to Zn
N



Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory example

General algorithm
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➊ Build and diagonalize charge lattice

➋ Extend charge lattice to Zn
N

➌ Bring the result to ‘normal form’ and omit trivial Z1 factors
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B. Petersen, M.R., R. Schieren (2009)

➊ Build and diagonalize charge lattice

➋ Extend charge lattice to Zn
N

➌ Bring the result to ‘normal form’ and omit trivial Z1 factors

☞ Extension to mixed case (U(1)N × Zn1
× Zn1

· · · ) and
non-Abelian groups straightforward
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Explicit string theory example

General algorithm
B. Petersen, M.R., R. Schieren (2009)

➊ Build and diagonalize charge lattice

➋ Extend charge lattice to Zn
N

➌ Bring the result to ‘normal form’ and omit trivial Z1 factors

☞ Extension to mixed case (U(1)N × Zn1
× Zn1

· · · ) and
non-Abelian groups straightforward

☞ Automatization (by R. Schieren)

http://einrichtungen.physik.tu-muenchen.de/T30e/codes/DiscreteBreaking/
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Explicit string theory example

General algorithm
B. Petersen, M.R., R. Schieren (2009)

➊ Build and diagonalize charge lattice

➋ Extend charge lattice to Zn
N

➌ Bring the result to ‘normal form’ and omit trivial Z1 factors

☞ Extension to mixed case (U(1)N × Zn1
× Zn1

· · · ) and
non-Abelian groups straightforward

☞ Automatization (by R. Schieren)

http://einrichtungen.physik.tu-muenchen.de/T30e/codes/DiscreteBreaking/

☞ Main applications:

matter parity
forbid µ term to all orders

cf. W. Buchmüller, J. Schmidt (2009)
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M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6)

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry
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Explicit string theory exampleZ2 × Z2 orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6) →

bcbc
SU(5)

bcbc
SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

breaks SU(5) → SU(3)C × SU(2)L ×U(1)Y
reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)

Braun, He, Ovrut, Pantev (2005)
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Main features

➊ GUT symmetry breaking non-local
y no ‘logarithmic running above the GUT scale’

Hebecker, Trapletti (2004)
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Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction
y complete blow-up without breaking SM gauge
symmetry in principle possible
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Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y ×U(1)B−L × [SU(3) × SU(2)2 × U(1)7]
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Explicit string theory example

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y ×U(1)B−L × [SU(3) × SU(2)2 × U(1)7]

➍ massless spectrum

# representation label # representation label

3 (3,2;1,1,1)( 1
6
, 1
3
) q 3 (3,1;1,1,1)(− 2

3
,− 1

3
) u

3 (3,1;1,1,1)( 1
3
,− 1

3
) d 3 (1,2;1,1,1)(− 1

2
,−1) ℓ

3 (1,1;1,1,1)(1,1) e 33 (1,1;1,1,1)(0,σ) s

4 (1,2;1,1,1)(− 1
2
,0) h 4 (1,2;1,1,1)( 1

2
,0) h

5 (3,1;1,1,1)( 1
3
, 2
3
) δ 5 (3,1;1,1,1)(− 1

3
,− 2

3
) δ

5 (1,1;3,1,1)(0,ξ) x 5 (1,1;3,1,1)(0,−ξ) x

6 (1,1;1,1,2)(0,0) y 6 (1,1;1,2,1)(0,0) z
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Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory example

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y ×U(1)B−L × [SU(3) × SU(2)2 × U(1)7]

➍ massless spectrum

spectrum = 3× generation + vector-like
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Residual discrete symmetries

Explicit string theory example

Spectrum and matter parity

# representation label # representation label

3 (3,2;1,1,1)( 1
6
, 1
3
) q 3 (3,1;1,1,1)(− 2

3
,− 1

3
) u

3 (3,1;1,1,1)( 1
3
,− 1

3
) d 3 (1,2;1,1,1)(− 1

2
,−1) ℓ

3 (1,1;1,1,1)(1,1) e 33 (1,1;1,1,1)(0,σ) s

4 (1,2;1,1,1)(− 1
2
,0) h 4 (1,2;1,1,1)( 1

2
,0) h

5 (3,1;1,1,1)( 1
3
, 2
3
) δ 5 (3,1;1,1,1)(− 1

3
,− 2

3
) δ

5 (1,1;3,1,1)(0,ξ) x 5 (1,1;3,1,1)(0,−ξ) x

6 (1,1;1,1,2)(0,0) y 6 (1,1;1,2,1)(0,0) z

U(1)B−L : discriminate between matter and Higgs/exotics



Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory example

Spectrum and matter parity

# representation label # representation label

3 (3,2;1,1,1)( 1
6
, 1
3
) q 3 (3,1;1,1,1)(− 2

3
,− 1

3
) u

3 (3,1;1,1,1)( 1
3
,− 1

3
) d 3 (1,2;1,1,1)(− 1

2
,−1) ℓ

3 (1,1;1,1,1)(1,1) e 33 (1,1;1,1,1)(0,σ) s

4 (1,2;1,1,1)(− 1
2
,0) h 4 (1,2;1,1,1)( 1

2
,0) h

5 (3,1;1,1,1)( 1
3
, 2
3
) δ 5 (3,1;1,1,1)(− 1

3
,− 2

3
) δ

5 (1,1;3,1,1)(0,ξ) x 5 (1,1;3,1,1)(0,−ξ) x

6 (1,1;1,1,2)(0,0) y 6 (1,1;1,2,1)(0,0) z

☞ σ ∈ {0,±1,±2,±3}y can break U(1)B−L → ZM
2
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Spectrum and matter parity

# representation label # representation label

3 (3,2;1,1,1)( 1
6
, 1
3
) q 3 (3,1;1,1,1)(− 2

3
,− 1

3
) u

3 (3,1;1,1,1)( 1
3
,− 1

3
) d 3 (1,2;1,1,1)(− 1

2
,−1) ℓ

3 (1,1;1,1,1)(1,1) e 33 (1,1;1,1,1)(0,σ) s

4 (1,2;1,1,1)(− 1
2
,0) h 4 (1,2;1,1,1)( 1

2
,0) h

5 (3,1;1,1,1)( 1
3
, 2
3
) δ 5 (3,1;1,1,1)(− 1

3
,− 2

3
) δ

5 (1,1;3,1,1)(0,ξ) x 5 (1,1;3,1,1)(0,−ξ) x

6 (1,1;1,1,2)(0,0) y 6 (1,1;1,2,1)(0,0) z

☞ can break U(1)B−L → ZM
2

☞ Many other good features:

exotics decouple at the linear level in SM singlets
non-trivial Yukawa couplings
gauge-top unification
SU(5) relation yτ ≃ yb (but also for light generations)

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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Spectrum and matter parity

# representation label # representation label

3 (3,2;1,1,1)( 1
6
, 1
3
) q 3 (3,1;1,1,1)(− 2

3
,− 1

3
) u

3 (3,1;1,1,1)( 1
3
,− 1

3
) d 3 (1,2;1,1,1)(− 1

2
,−1) ℓ

3 (1,1;1,1,1)(1,1) e 33 (1,1;1,1,1)(0,σ) s

4 (1,2;1,1,1)(− 1
2
,0) h 4 (1,2;1,1,1)( 1

2
,0) h

5 (3,1;1,1,1)( 1
3
, 2
3
) δ 5 (3,1;1,1,1)(− 1

3
,− 2

3
) δ

5 (1,1;3,1,1)(0,ξ) x 5 (1,1;3,1,1)(0,−ξ) x

6 (1,1;1,1,2)(0,0) y 6 (1,1;1,2,1)(0,0) z

☞ can break U(1)B−L → ZM
2

☞ Many other good features

§ However: generically the Higgs pair as heavy as the exotics
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Spectrum and matter parity

# representation label # representation label

3 (3,2;1,1,1)( 1
6
, 1
3
) q 3 (3,1;1,1,1)(− 2

3
,− 1

3
) u

3 (3,1;1,1,1)( 1
3
,− 1

3
) d 3 (1,2;1,1,1)(− 1

2
,−1) ℓ

3 (1,1;1,1,1)(1,1) e 33 (1,1;1,1,1)(0,σ) s

4 (1,2;1,1,1)(− 1
2
,0) h 4 (1,2;1,1,1)( 1

2
,0) h

5 (3,1;1,1,1)( 1
3
, 2
3
) δ 5 (3,1;1,1,1)(− 1

3
,− 2

3
) δ

5 (1,1;3,1,1)(0,ξ) x 5 (1,1;3,1,1)(0,−ξ) x

6 (1,1;1,1,2)(0,0) y 6 (1,1;1,2,1)(0,0) z

☞ can break U(1)B−L → ZM
2

☞ Many other good features

§ However: generically the Higgs pair as heavy as the exotics

§ Dimension five proton decay operators as problematic as
in 4D GUTs
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Solving the µ and proton decay problems

☞ There are many inequivalent VEV configurations with
matter parity
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☞ There are many inequivalent VEV configurations with
matter parity

☞ The µ problem and proton decay problems can be solved
simultaneously by a simple ZR

2 symmetry
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➊ W
ZR

2−−→ −W
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Solving the µ and proton decay problems

☞ There are many inequivalent VEV configurations with
matter parity

☞ The µ problem and proton decay problems can be solved
simultaneously by a simple ZR

2 symmetry

☞ ZR
2 properties

➊ W
ZR

2−−→ −W

➋ superfields transform with + or −
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Residual discrete symmetries

Explicit string theory example

Solving the µ and proton decay problems

☞ There are many inequivalent VEV configurations with
matter parity

☞ The µ problem and proton decay problems can be solved
simultaneously by a simple ZR

2 symmetry

☞ ZR
2 properties

➊ W
ZR

2−−→ −W

➋ superfields transform with + or −

➌ for fermions and θ-coordinates it is a Z4 symmetry
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General aspects of ZR
2

☞ Structure of the superpotential : W = ψ f (φ) +O(ψ3)ZR
2 odd ZR

2 even
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General aspects of ZR
2

☞ Structure of the superpotential : W = ψ f (φ) +O(ψ3)

☞ ZR
2 preserving configurations 〈ψ〉 = 0 y F-term equations

Fψ = f (φ)
!
= 0

Fφ = ψ f ′(φ) = 0 at ψ = 0



Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory example

General aspects of ZR
2

☞ Structure of the superpotential : W = ψ f (φ) +O(ψ3)

☞ ZR
2 preserving configurations 〈ψ〉 = 0 y F-term equations

Fψ = f (φ)
!
= 0 fixes φ possibly at 〈φ〉 6= 0

Fφ = ψ f ′(φ) = 0 at ψ = 0 automatic
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General aspects of ZR
2

☞ Structure of the superpotential : W = ψ f (φ) +O(ψ3)

☞ ZR
2 preserving configurations 〈ψ〉 = 0 y F-term equations

Fψ = f (φ)
!
= 0 fixes φ possibly at 〈φ〉 6= 0

Fφ = ψ f ′(φ) = 0 at ψ = 0 automatic

☞ Mass term

∂2W

∂φ∂ψ
= f ′(φ) 6= 0 in general at ψ = 0
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General aspects of ZR
2

☞ Structure of the superpotential : W = ψ f (φ) +O(ψ3)

☞ ZR
2 preserving configurations 〈ψ〉 = 0 y F-term equations

Fψ = f (φ)
!
= 0 fixes φ possibly at 〈φ〉 6= 0

Fφ = ψ f ′(φ) = 0 at ψ = 0 automatic

☞ Mass term

∂2W

∂φ∂ψ
= f ′(φ) 6= 0 in general at ψ = 0

➥ fields fixed (〈φ〉 6= 0 & 〈ψ〉 = 0) with W = 0
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Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory example

General aspects of ZR
2

☞ Structure of the superpotential : W = ψ f (φ) +O(ψ3)

☞ ZR
2 preserving configurations 〈ψ〉 = 0 y F-term equations

Fψ = f (φ)
!
= 0 fixes φ possibly at 〈φ〉 6= 0

Fφ = ψ f ′(φ) = 0 at ψ = 0 automatic

☞ Mass term

∂2W

∂φ∂ψ
= f ′(φ) 6= 0 in general at ψ = 0

➥ fields fixed (〈φ〉 6= 0 & 〈ψ〉 = 0) with W = 0

➥ Generalization: N ψ(i) and M φ(j)

y expect non-trivial solution, i.e. 〈φ(j)〉 6= 0, for N ≤M
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Matter parity & proton stability

Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory exampleZM2 × ZR
2 vacuum configuration

R. Kappl, B. Petersen, M.R., R. Schieren, P. Vaudrevange, in preparation

# representation label # representation label

3 (3,2;1,1,1) 1
6

q 3 (3,1;1,1,1)− 2
3

u

3 + 1 (3,1;1,1,1) 1
3

d 1 (3,1;1,1,1)− 1
3

d

3 + 1 (1,2;1,1,1)− 1
2

ℓ 1 (1,2;1,1,1) 1
2

ℓ

3 (1,1;1,1,1)1 e 33 (1,1;1,1,1)0 s

3 (1,2;1,1,1)− 1
2

h 3 (1,2;1,1,1) 1
2

h

4 (3,1;1,1,1) 1
3

δ 4 (3,1;1,1,1)− 1
3

δ

5 (1,1;3,1,1)0 x 5 (1,1;3,1,1)0 x

6 (1,1;1,1,2)0 y 6 (1,1;1,2,1)0 z
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Comments on the structure of soft masses

Residual discrete symmetries

Explicit string theory exampleZM2 × ZR
2 vacuum configuration

R. Kappl, B. Petersen, M.R., R. Schieren, P. Vaudrevange, in preparation

# representation label # representation label

3 (3,2;1,1,1) 1
6

q 3 (3,1;1,1,1)− 2
3

u

3 + 1 (3,1;1,1,1) 1
3

d 1 (3,1;1,1,1)− 1
3

d

3 + 1 (1,2;1,1,1)− 1
2

ℓ 1 (1,2;1,1,1) 1
2

ℓ

3 (1,1;1,1,1)1 e 33 (1,1;1,1,1)0 s

3 (1,2;1,1,1)− 1
2

h 3 (1,2;1,1,1) 1
2

h

4 (3,1;1,1,1) 1
3

δ 4 (3,1;1,1,1)− 1
3

δ

5 (1,1;3,1,1)0 x 5 (1,1;3,1,1)0 x

6 (1,1;1,1,2)0 y 6 (1,1;1,2,1)0 z

☞ Exact ZM
2 symmetry allows to distinguish between

ℓ − ℓ̄ and h− h̄

d− d̄ and δ − δ̄
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Explicit string theory exampleZM2 × ZR
2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0



Hierarchically small 〈W 〉

Matter parity & proton stability

Comments on the structure of soft masses
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Explicit string theory exampleZM2 × ZR
2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0fields with VEV

Md = Mℓ =
(

0 0 φ̃
9

φ̃
9

)

mass might be suppressed

complete SU(5) multiplets 5 + 5 with
equal masses due to SU(5) relation
y doesn’t spoil unification
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Explicit string theory exampleZM2 × ZR
2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0

Mδ =




0 φ̃ 0 0

φ̃ 0 φ̃ φ̃

φ̃ 0 φ̃ φ̃3

φ̃ 0 φ̃3 φ̃




δ exotics decouple at the linear level in
VEV fields
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Explicit string theory exampleZM2 × ZR
2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0Mh =




0 0 0

φ̃11 φ̃ φ̃3

φ̃11 φ̃3 φ̃





extra Higgs decouple at the linear level
in VEV fields

one pair of massless Higgs

hu = h̄1

hd = a1 h1 + a2 h2 + a3 h3
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Explicit string theory exampleZM2 × ZR
2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0Yu =




φ̃6 h̄1 φ̃6 h̄1 0

φ̃6 h̄1 φ̃6 h̄1 0

0 0 h̄1




gauge-top unification : yt ≃ g at high
energies

Yukawa hierarchies & non-trivial 1-2
mixing

but no mixing with 3rd family
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Explicit string theory exampleZM2 × ZR
2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0

Yd =

0

B

B

B

@

h1
eφ10 + h2 + h3

eφ4 h1
eφ10 + h3 + h2

eφ4 0

h1
eφ10 + h3

eφ6 + h2
eφ4 h1

eφ10 + h2
eφ6 + h3

eφ4 0

0 0 h1
eφ10 + h2 + h3

eφ4

0 0 h1
eφ10 + h3 + h2

eφ2

1

C

C

C

A

Yukawa hierarchies & non-trivial 1-2 mixing

but no mixing with 3rd family
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2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0

YT
e = Yd

SU(5) relations : good for 3rd

family but bad for 1st & 2nd

families

eigenvalues might be too small
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Explicit string theory exampleZM2 × ZR
2 quantum numbers & implications

quarks and leptons Higgs and exotics

q1 1 1 ū1 1 1
q2 1 1 ū2 1 1
q3 1 0 ū3 1 0

d̄1 1 1 ℓ1 1 1
d̄2 1 1 ℓ2 1 1
d̄3 1 0 ℓ3 1 0
d̄4 1 0 ℓ4 1 0
d1 1 1 ℓ̄1 1 1

ē1 1 1
ē2 1 1
ē3 1 0

h̄1 0 1 h1 0 1
h̄2 0 0 h2 0 1
h̄3 0 0 h3 0 1

δ̄1 0 1 δ1 0 1
δ̄2 0 0 δ2 0 0
δ̄3 0 1 δ3 0 0
δ̄4 0 1 δ4 0 0

qi qj qk ℓm

proton decay operators involve
always 3rd generation field
y proton stable at this level
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☞ ZR
2 turns out to be ‘anomalous’ (partly descends from the

so-called ‘anomalous U(1)’)
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Explicit string theory exampleZR

2
anomaly

☞ ZR
2 turns out to be ‘anomalous’ (partly descends from the

so-called ‘anomalous U(1)’)

➥ Extra terms at the non-perturbative level:

µ term; dominated by 〈W 〉, which appears at
non-perturbative level as well

µ ∼ 〈W 〉 ∼ eφ11
e
−a S

proton decay operators

[q qq ℓ]light generations ∼ eφ15
e
−a S

mixing between first two and third generations

(Yu)13 ∼ eφ4
e
−a S
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Explicit string theory exampleZR

2
anomaly

☞ ZR
2 turns out to be ‘anomalous’ (partly descends from the

so-called ‘anomalous U(1)’)

➥ Extra terms at the non-perturbative level:

µ term; dominated by 〈W 〉, which appears at
non-perturbative level as well

µ ∼ 〈W 〉 ∼ eφ11
e
−a S

proton decay operators

[q qq ℓ]light generations ∼ eφ15
e
−a S

mixing between first two and third generations

(Yu)13 ∼ eφ4
e
−a S

➥ ‘Anomalous’ ZR
2 explains suppressed µ term and relates the

suppression of proton decay operators to mixing between
first two and third generations
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Residual discrete symmetries

Explicit string theory exampleZR

2
anomaly

☞ ZR
2 turns out to be ‘anomalous’ (partly descends from the

so-called ‘anomalous U(1)’)

➥ Extra terms at the non-perturbative level:

µ term; dominated by 〈W 〉, which appears at
non-perturbative level as well

µ ∼ 〈W 〉 ∼ eφ11
e
−a S

proton decay operators

[q qq ℓ]light generations ∼ eφ15
e
−a S

mixing between first two and third generations

(Yu)13 ∼ eφ4
e
−a S

➥ ‘Anomalous’ ZR
2 explains suppressed µ term and relates the

suppression of proton decay operators to mixing between
first two and third generations

☞ Many similar configurations. . .
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☞ Two families reside on two equivalent orbifold fixed points

bcbc

bcbc

SU(5)

10 + 5 + 1 = 16

SU(5)

10 + 5 + 1 = 16

SU(4)× SU(2)L ×U(1)′

SU(4)× SU(2)L ×U(1)′

structure in
mini-landscape
MSSM models

SU(6)

bcbc

bcbc
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Comments on the structure of soft masses

☞ Two families reside on two equivalent orbifold fixed points

bcbc

bcbc

SU(5)

10 + 5 + 1 = 16

SU(5)

10 + 5 + 1 = 16

same structure
in Z2 × Z2

MSSM models
with non-local
GUT breaking
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Comments on the structure of soft masses

☞ Two families reside on two equivalent orbifold fixed points

➥ This leads to a discrete D4 flavor symmetry under which the
first two generations transform as a doublet

Dixon, Harvey, Martinec, Shenker (1987)

.

.

.

Kobayashi, Raby, Zhang (2004)

Kobayashi, Nilles, Plöger, Raby, M.R. (2006)

☞ Note: anomalies of non-Abelian discrete symmetries
cancel in string-derived models

Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R., Vaudrevange (2008)
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Comments on the structure of soft masses

☞ Two families reside on two equivalent orbifold fixed points

➥ This leads to a discrete D4 flavor symmetry under which the
first two generations transform as a doublet

☞ At this level, the structure of the soft mass terms is

m̃2 =




a 0 0

0 a 0

0 0 b





☞ The singlet VEVs 〈si〉 that generate the Yukawa coupling
also break D4

➥ MFV-like structure of soft masses

m̃2 ∼ α1+ β Y† Y

MFV = Minimal Flavor Violation
Buras, Gambino, Gorbahn, Jäger, Silvestrini (2000)

D’Ambrosio, Giudice, Isidori, Strumia (2002)
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Example: soft masses of squark doublets
Paradisi, M.R., Schieren, Simonetto (2008)

Colangelo, Nikolidakis, Smith (2008)

☞ Ansatz (@ MGUT):

m̃2
Q = α1 1+ β1 Y

†
uYu + β2 Y

†
dYd + (β3 Y

†
dYd Y

†
uYu + h.c.)
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Comments on the structure of soft masses

Example: soft masses of squark doublets
Paradisi, M.R., Schieren, Simonetto (2008)

Colangelo, Nikolidakis, Smith (2008)

☞ Ansatz (@ MGUT):

m̃2
Q = α1 1+ β1 Y

†
uYu + β2 Y

†
dYd + (β3 Y

†
dYd Y

†
uYu + h.c.)

☞ The form of m̃2
Q is RG invariant, only the coefficients αi & βi

run
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Example: Running of β1

“SPS + MFV”

βi = β0 @ MGUT

αi = m2
0 @ MGUT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-1.0

-0.5

0.0

0.5

1.0

log ���������������
Q

GeV

���������
Β1

Α1

SPS Point m0 m1/2 A tan β
1a 100GeV 250GeV -100GeV 10
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Example: Running of β1

“SPS + MFV”

βi = β0 @ MGUT

αi = m2
0 @ MGUT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-1.0

-0.5

0.0

0.5

1.0

log ���������������
Q

GeV

���������
Β1

Α1

SPS Point m0 m1/2 A tan β
2 1450GeV 300GeV 0 10
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Example: Running of β1

“SPS + MFV”

βi = β0 @ MGUT

αi = m2
0 @ MGUT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-1.0

-0.5

0.0

0.5

1.0

log ���������������
Q

GeV

���������
Β1

Α1

SPS Point m0 m1/2 A tan β
3 90GeV 400GeV 0 10
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Example: Running of β1

“SPS + MFV”

βi = β0 @ MGUT

αi = m2
0 @ MGUT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-1.0

-0.5

0.0

0.5

1.0

log ���������������
Q

GeV

���������
Β1

Α1

SPS Point m0 m1/2 A tan β
3 90GeV 400GeV 0 10

Bottom-line:

SUSY flavor problem(s) may be
avoided/ameliorated because of stringy D4

flavor symmetry

Deviation of m̃2 from unit matrices at MGUT

might not even be measurable at low
energies
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➊ Approximate R symmetries can explain a suppressed
expectation value of the perturbative superpotential

〈W 〉 ∼ 〈φ〉
N

with 〈φ〉 < 1 order of���XXXU(1)R

typical VEV



Summary

Outlook

Summary

➊ Approximate R symmetries can explain a suppressed
expectation value of the perturbative superpotential

➋ Suppressed superpotential VEV can play an important role
in moduli fixing



Summary

Outlook

Summary

➊ Approximate R symmetries can explain a suppressed
expectation value of the perturbative superpotential

➋ Suppressed superpotential VEV can play an important role
in moduli fixing

➌ Suppressed superpotential VEV can provide a solution to
the µ problem



Summary

Outlook

Summary

➊ Approximate R symmetries can explain a suppressed
expectation value of the perturbative superpotential

➋ Suppressed superpotential VEV can play an important role
in moduli fixing

➌ Suppressed superpotential VEV can provide a solution to
the µ problem

➍ Many explicit MSSM models with exact matter parity



Summary

Outlook

Summary

➊ Approximate R symmetries can explain a suppressed
expectation value of the perturbative superpotential

➋ Suppressed superpotential VEV can play an important role
in moduli fixing

➌ Suppressed superpotential VEV can provide a solution to
the µ problem

➍ Many explicit MSSM models with exact matter parity

➎ A simple ‘anomalous’/approximate ZR
2 symmetry can

provide a solution to the µ problem
suppress proton decay operators

➏ D4 symmetry can ameliorate/solve SUSY flavor problems



Summary

Outlook

Summary

➊ Approximate R symmetries can explain a suppressed
expectation value of the perturbative superpotential

➋ Suppressed superpotential VEV can play an important role
in moduli fixing

➌ Suppressed superpotential VEV can provide a solution to
the µ problem

➍ Many explicit MSSM models with exact matter parity

➎ A simple ‘anomalous’/approximate ZR
2 symmetry can

provide a solution to the µ problem
suppress proton decay operators

➏ D4 symmetry can ameliorate/solve SUSY flavor problems

bottom-line:

discrete symmetries appear crucial for realistic pheno
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☞ Many things still need to be done

(verify) moduli stabilization
SUSY breaking
. . .
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. . . might allow us really test the O(100) MSSM candidates
and, in the best case, make detailled
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