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Outline:

1. Background — 1D topological superconductivity

2. Going half a dimension higher — Planar Josephson junction

3. The limit of a narrow junction and the relation to quantum wires

4. The (friendly!) effect of disorder

5. Braiding Majorana zero modes in Josephson junctions



Background |: Topological Superconductivity in Nanowires

Quantum wire with SOC:
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Compelling experimental evidence

figure taken from
Alicea, Rep. Prog. Phys. (2012)



Background 2: Proximity-coupled 2DEGs
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Topological superconductivity in planar Josephson junctions




Going half a dimension higher —
1D topological superconductor in a 2D setting
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v Superconductivity
2 DEG v Magnetic field

New knobs to tune — phase difference, Josephson current,
enclosed magnetic flux

New features:
« Robust topological phase with no fine-tuning (for ¢ =~ n)
« Can tune itself the topological phase!



Robust topological phase with no fine-tuning (for ¢ = m)

Phase difference
(c)

Zeeman energy * traversal time

Only weak dependence on the chemical potential
(Spin orbit energy >> Zeeman energy, wide superconductors)



First order phase transition between trivial and topological state

— the system self tunes to the topological regime

The phase difference at the ground state:
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The transition coincides with a minimum
of the critical current.
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Setup and Model
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Hamiltonian in the normal region:
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We are looking for states within the gap, bound between the

two superconductors
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Almost the particle in the box problem, except the boundary
conditions - Andreev processes
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For distinguishing topological from trivial, we need to look at k,=0

For the ground state energy and energy gap, we need all k,

Topological invariant = fermion parity at k,=0  Iitacv (2001)

= Look for single gap closing at k,=0
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Phase Diagram

k,.=0 bound states: Gap closing lines (for any W):
— T4+ 2 +2—W = (2 1
E, Acos(zivFW) ¢ + - (2n+ Dm
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State is doubly degenerate! Insensitive to u!
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Experiments — Nichele - Marcus group (NBI)

Measuring the tunneling density of states
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Experiments — Yacoby group (Harvard)

Measuring the tunneling density of states
at the end of the junction
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Experiments — Goswami group (Delft)

Measurement of the recovery of the critical current with
increasing parallel magnetic field
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FIG. 2. | Magnotic Acld=driven (-7 transitions. a, YVaration of the switching current, [, with in-plane magnetic field,
By, ai ¥y =0V for the same 1 as in Fig. 1b.e. Two distinet revivals of 1, are visible al 8, = 470 mT and 1350 mT, associated
with 0= transitions. The data is from two cool downs (CDe). The momentum shift. dk/2, of the Fermi surfacs due to
the Zeeman ficld is sketched in the inset, The solid (dashed ) Enes depict the situation at zero (finite) magnetic ficld, and the
nrrows represent the spin orientation. b, [, a8 & function of B, at ¥ = 0 'V for four 1Js with different lengths, For better
wisihility, fs is normalized with respect to [, at b = 0 T. Dashed lines indicate Boee, the Beld at which the transition occours
for each length., The bnset shows a lhsear dependence of Boe on 1L, in agreement with ballistie transporl. e, f va. By at
Lhree dillerent ||-" for the 1] with L = 1.1 pm. Hy o shills to bower values of H; with more negative gale vollages. I, v Vg at
By = 400 mT shows & non-monstonic behavior as deplayed in the insst. The length and gate dependence of panel b and ¢ ans
in qualitative agreement with Eq. 1.



What if the superconductors are narrow (Copenhagen experiment)?
(with Setiawan Wenming and Erez Berg, 2019)

Width of superconductor « induced coherence length hvr/A.
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The effect of disorder on the localization of the zero modes

With Arbel Haim (Cal-Tech)
PRL 2019



Numerically -

For weak disorder, Majoranas get
(significantly) better localized.

In contrast to 1D p-wave superconductors.

Why —

1. ldentify the culprit — large k gap

2. The effect of disorder on that gap —
combination of selection rules and pairing
phases.
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Spectrum of excitations in the topological phase
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Smallest gap at the two Fermi momenta



Think about the spectrum as coming from pairing of several
modes

D1 @9 DN

Effect of disorder - perturbative calculation:
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« To be affected by a channel, need to be able to scatter into it
* Once scattered into it, the phase of its pairing potential
matters.

Particular cases:

« Disorder scattering into the pairing partner — necessarily
reduces A, (phase difference of ).

Apchct., = Ay, =—A_,,

« Delocalizes Majorana modes in p-wave superconductors.



 Different situation for s-wave superconductors
« Selection rule — disorder does not flip spin, so no
scattering to pairing partner.
* No phase difference of pairing potentials.

 Disorder enhances localization



In our case, large k behaves like s-wave, small k behaves like p-
wave

The small k determines topology, the
large k determines localization.




Manipulating and braiding the Majorana zero modes

With Erez Berg (WIS)



Perpendicular magnetic field makes the phase vary along the junction
@
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Four Majorana zero modes —
two at the junction ends, two movable by B,



The two zero modes at the interior may be moved by varying the
magnetic field, or by driving a supercurrent through the junction.
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The current-driven tri-junction braiding scheme:

Braiding in 1 + € dimensions
Alicea et al., many follow-ups

For the planar Josephson junction —
Hell, Flensberg, Leijnse

The knobs:
« Parallel magnetic field
« Perpendicular magnetic field —  fixed

(assume L < 4;, no screening currents) _

* Currents — time dependent




The single junction:

* In the absence of screening currents the phase varies linearly
with position, with the slope determined by the perpendicular
magnetic field.

e Limit ourselves to 0-2 MZMs per arm
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The tri-junction —

1. Quantization of the vorticity at the center

w1(ry =0) + oo =0) + pg(arg =0) = 2mn

2. Continuity of the magnetic field at the center

Irp1(wy = 0) = Oppa(wg = 0) = Ozps(r3 = 0)




The plane of no-vortex at the center
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A topological manipulation — motion along a trajectory that cannot
be contracted to a point
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Current minimizes L, + V(p;)
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Karzig et al. 2016

Can be looked at as six zero modes, out of which two are coupled




Summary

1.

The relative phase is a user-friendly parameter to use
on the way to topological superconductivity.

First-order phase transition where the system self tunes
itself to the topological regime.

When the superconductors are narrow — relation to a
multimode wire

Disorder localizes the Majorana modes.

Scheme for Majorana braiding.






