

Condensed matter collaborators

High energy collaborators

A. Cortiio

Y. Ferreiros

https://wp.icmm.csic.es/field-theories-in-condensed-matter-physics/

K. Landsteiner

M. Chernodub

Dirac and Weyl fermions

m=0

- 1. Massless fermions in (3+1) dimensions are 4 component Dirac spinors which split into two 2 component Weyl fermions of well defined chirality. $H = \pm v_F \vec{\sigma} \cdot \vec{p}$ (1929)
- 2. These Weyl have very special properties (chiral anomaly).
- 3. There are no Weyl fermions as free particles (neutrinos have mass).

High energy labs

Physics "accesible" at very high energies and temperatures (mass comparatively negligible):

Quark-gluon plasma

- early universe
- heavy ion collisions

Weyl fermions in condensed matter

Effective low energy description around band crossings in 3D crystals.

Special issue NATURE MATERIALS | VOL 15 | NOVEMBER 2016

They exist!
See coming talks on new materials

Advertising

The Washington post

Symmetries and anomalies

Noether theorem: a continuum symmetry of the action implies a **conserved current and a conserved charge**.

Symmetry	Conservation Law
Translation in space	Linear momentum
Translation in time	Energy
Rotation in space	Angular momentum
Gauge transformations	Electric, weak and colour charge

Quantum anomaly: the classical action is invariant under a symmetry transformation that can not stay after quantization.

Chiral anomaly

$$L = \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi , \bar{\Psi} = \gamma^{o} \Psi^{+}$$

$$\Psi = (\Psi_L, \Psi_R)$$

Action classically invariant under independent

L and R rotations:

$$\Psi_{L,R} \rightarrow e^{i\alpha_{L,R}} \Psi_{L,R}$$

Two conserved currents: J_{L,R}.

Define $J_{V,A} = J_{\pm}J_{R}$

$$j^{\mu} = \overline{\Psi} \gamma^{\mu} \Psi$$
, $Q = \int j^{0}(x) d(x)$

$$j_5^{\mu} = \overline{\Psi} \gamma^{\mu} \gamma_5 \Psi$$
, $Q_5 = \int j_5^0(x) d(x)$

Electric (vector) current.

Electric charge: $e(N_L+N_R)$

Axial current.

Axial charge: $e(N_L-N_R)$

$$\partial_{\mu} \rightarrow \partial_{\mu} + ieA_{\mu}$$

The quantum system can not keep both: axial charge not conserved in the presence of an external electromagnetic potential A.

$$\partial_{\mu}J_{\mu}^{A} = \frac{1}{4\pi^{2}}\vec{E}.\vec{B}$$

Dirac versus non-relativistic

Behavior in magnetic field (a digression)

$$\epsilon_n = \frac{\hbar^2 k_z^2}{2m_e} + (n + \frac{1}{2})\hbar\omega_c \quad \omega_c = \frac{eB}{m_e}$$

$$\epsilon_n = \pm \sqrt{\Omega_c^2 n + v_f^2 k_z^2}, \quad \Omega_c = v_F \sqrt{2eB}$$

Very important:

Zero Landau level: (1+1) chiral fermion

$$\varepsilon_{\pm}(k) = \pm vk$$

Physical consequences

(anomay-induced transport phenomena)

The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B'83

$$\partial_{\mu}J_{5}^{\mu}=\frac{1}{2\pi^{2}}\vec{E}.\vec{B}\Longrightarrow$$
 Charge is pumped from L to R points

$$Q_5 = N_L - N_R$$

$$\frac{dQ_5}{dt} = \frac{e^2}{2\pi^2} \vec{E} \cdot \vec{B}$$

It generates large negative MR locked to the B field.

A good discussion on the experimental situation in Ong's talk at

Workshop Topological Quantum Matter, KITP-UCSB Oct. 2016
The chiral anomaly in Dirac and Weyl Semimetals

Anomaly related transport

The quark-gluon plasma

• Chiral magnetic effect:

$$\vec{J} = \frac{\mu_5}{2\pi^2} \vec{B}$$

Axial magnetic effect:

$$J_{\varepsilon} = \frac{\mu^2 + \mu_5^2}{4\pi^2} \mathcal{B}_5$$

Chiral vortical effect:

$$\vec{J} = \frac{\mu_5 \mu}{\pi^2} \vec{\omega}$$

Chiral separation effect:

$$\vec{J}_5 = -\frac{e\mu}{\pi^2}\vec{B}$$

No axial gauge fields in particle physics

LETTERS

PUBLISHED ONLINE: 8 FEBRUARY 2016 | DOI: 10.1038/NPHYS3648

physics

Chiral magnetic effect in ZrTe₅

Qiang Li^{1*}, Dmitri E. Kharzeev^{2,3*}, Cheng Zhang¹, Yuan Huang⁴, I. Pletikosić^{1,5}, A. V. Fedorov⁶, R. D. Zhong¹, J. A. Schneeloch¹, G. D. Gu¹ and T. Valla^{1*}

Chiral anomaly with axial gauge fields

The AAA triangle anomaly

$$\partial_{\mu}J_{5}^{\mu}=\frac{1}{2\pi^{2}}\left(\vec{E}\vec{B}+\vec{E}_{5}\vec{B}_{5}\right)$$

No axial fields in particle physics

$$H = \left(\begin{array}{cc} -\vec{\sigma}(\vec{k} - \frac{\vec{b}}{2}) & 0 \\ 0 & \vec{\sigma}(\vec{k} + \frac{\vec{b}}{2}) \end{array} \right).$$

$$\mathcal{L} = \bar{\Psi}\gamma^{\mu}(i\partial_{\mu} + \gamma^{5}b_{\mu})\Psi,$$

The nodes separation acts as a (constant) axial gauge field

How to promote b to a dynamical field?

- 1. Elastic deformations of the lattice
- 2. Boundaries
- 3. Non-uniform magnetization

See talk by R. Ilan

A nice review

Axial magnetic effect

Generation of an energy current in the direction of an axial magnetic field.

$$S = \int d^4k \overline{\Psi}_k (\gamma^{\mu} k_{\mu} - b_{\mu} \gamma^{\mu} \gamma^5) \Psi_k$$

b₀: Energy separation

 b_i : k separation. $b(x) \rightarrow B_5(x)$.

$$\mathbf{b} = \hat{z}b_z\Theta(a-|r|). \ B_{\theta} \sim b_z\delta(|r|-a).$$

$$B_{\theta} \sim b_z \delta(|r| - a).$$

(From boundaries)

$$T^{0i} = J^i_{\epsilon} = \sigma_{AME} B^i_5.$$

$$\sigma_{AME} = \frac{\mu^2 + \mu_5^2}{4\pi^2} + \frac{T^2}{12},$$

$$L_z = \frac{N_f}{6} T^2 b_z \mathcal{V},$$

Experimental confirmation of the gravitational anomaly?

Axial gauge fields from strain

(Effective action)

Building blocks

$$S_0 = \int d^4k \overline{\Psi}_k \gamma^{\mu} [k_{\mu} - \beta \gamma^5 A_{\mu}(x)] \Psi_k$$

$$\sigma_i, k_j, u_{ij}, b_i$$

Elastic gauge field

$$A_i^5 \approx u_{ij}b_j$$

Opposite signs at opposite chiralities: Axial gauge field

A tight binding derivation provides values for the coupling.

A. Cortijo, Y. Ferreiros, K. Landsteiner, M.V.,

- Elastic gauge fields in Weyl semimetals PRL 115, 177202 (2015).
- Visco elasticity in 2D materials, 2D Materials 3, 011002 (2016).

In the presence of b_0 get a new A_0 component (not present in graphene)

$$A_0^{el} \sim \beta b_0 tr(u)$$

A. Cortijo, D. Kharzeev, K. Landsteiner, M.V. Strain-induced CME in Weyl semimetals, PRB**94** (R) (2016).

WSM straintronics (theory)

Pikulin, D. I., Chen, A. & Franz, M. Chiral anomaly from strain-induced gauge fields in dirac and weyl semimetals. *Phys. Rev. X* 6, 041021 (2016).

Grushin, A. G., Venderbos, J. W. F., Vishwanath, A. & Ilan, R. Inhomogeneous weyl and dirac semimetals: Transport in axial magnetic fields and fermi arc surface states from pseudo-landau levels. *Phys. Rev. X* 6, 041046 (2016).

Liu, T., Pikulin, D. I. & Franz, M. Quantum oscillations without magnetic field. Phys. Rev. B 95, 041201 (2017).

Arjona, V., Castro, E. V. & Vozmediano, M. A. H. Collapse of landau levels in weyl semimetals. *Phys. Rev. B* **96**, 081110 (2017). arXiv:1703.05399.

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Pseudomagnetic lens as chirality spectrometer in weyl materials. *Phys. Rev. B* **95**, 241114(R) (2017).

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Pseudomagnetic helicons. *Phys. Rev. B* 95, 115422 (2017).

Gorbar, E. V., Miransky, V. A., Shovkovy, I. A. & Sukhachov, P. O. Chiral response in lattice models of weyl materials. arXiv:1706.04919 (2017).

Zabolotskiy, A. D. & Lozovik, Y. E. Strain-induced pseudomagnetic and scalar fields in symmetry-enforced dirac nodes. arXiv:1707.02781 (2017).

And a long etc. including bosonic analogs: magnons, phonons, photons...

Experimental evidence?

Generation of strain-induced pseudo-magnetic field in a doped type-II Weyl semimetal

Suman Kamboj¹, Partha Sarathi Rana², Anshu Sirohi¹, Aastha Vasdev¹, Manasi arXiv:1903.06224

Landau levels from strain

$$\vec{B}_5 = \vec{\nabla} \times \vec{A}_5$$

1.8 - (b) 1.5 - (x) 0.9 - (x) 0.9 - (x) 0.0 -

Hydro aspects of Dirac matter

 $\tau_{ee} >> \tau_{anv}$ | Fermi liquids in ultrapure crystals

Negative magnetoresistivity in chiral fluids and holography Karl Landsteiner, Yan Liu and Ya-Wen Sun

Negative local resistance caused by viscous electron backflow in graphene SCIENCE 4 MARCH 2016

D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, 5 A. Principi, G. H. Auton, E. Khestanova, J. K. S. Novoselov, I. V. Grigorieva, 1 L. A. Ponomarenko, 1,3 A. K. Geim, 1* M. Polini7*

ELECTRON TRANSPORT

Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene

Jesse Crossno, 1,2 Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, 1 Andrew Lucas, 1 Subir Sachdev, 1,3 Philip Kim, 1,2* Takashi Taniguchi, 4 Kenji Watanabe, 4 Thomas A. Ohki, 5 Kin Chung Fong 5*

Evidence for hydrodynamic electron flow in PdCoO₂

Philip J. W. Moll, 1,2,3 Pallavi Kushwaha, Nabhanila Nandi, 3 Burkhard Schmidt, 3 Andrew P. Mackenzie 3,4*

SCIENCE

4 MARCH 2016

ARTICLE

NATURE COMMUNICATIONS (2018)

DOI: 10.1038/s41467-018-06688-

Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide

Sooth 12, F. Menges 1,4, N. Kumar 2, V. Süβ 2, C. Shekhar 🕦 2, Y. Sun 🕦 2, U. Drechsler 1, R. Zierold 3, C. Felser © 2 & B. Gotsmann¹

Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals

Andrew Lucas a,1 Richard A. Davisona,1, and Subir Sachdeva,b,1

August 23, 2016

Collective modes in chiral fluids

PHYSICAL REVIEW D **83**, 085007 2011

Chiral magnetic wave

Dmitri E. Kharzeev and Ho-Ung Yee

CME

CSE

$$\vec{J} = \frac{\mu_5}{2\pi^2} \vec{B}$$

$$\vec{J} = \frac{\mu_5}{2\pi^2} \vec{B} \qquad \vec{J}_5 = \frac{\mu}{2\pi^2} \vec{B}$$

$$\left(\partial_t^2 - v_{\text{CMW}}^2 \partial_z^2\right) \rho_V(x) = 0$$

$$\left(\partial_t^2 - v_{\text{cmw}}^2 \partial_z^2\right) \rho_A(x) = 0$$

PRL 114, 252302 (2015)

PHYSICAL REVIEW LETTERS 26 JUNE 2015

Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions (STAR Collaboration)

The overdamped chiral magnetic wave

I. Shovkovy et al, arXiv 1811:10635

Hybridization with standard EM wave-> CMW diffusive.

Chiral sound wave

Static torsional strain and dynamical longitudinal phonons

$$\vec{u} = \theta z (\vec{r} \times \hat{z})$$

$$u_{13} = \theta y ; u_{23} = -\theta x . \vec{A}_i^5 = u_{ij}b_j.$$

 $\vec{A}^5 = b(\theta y, -\theta x, 0) . \vec{B}_3^5 = b\theta .$

Static torsional strain induces a constant B₅ along the rod¹

$$\partial_{\mu} j_5^{\mu} = \frac{1}{3} \frac{1}{2\pi^2} E_5 . B_5$$

$$oldsymbol{j}_5=rac{\mu_5}{2\pi^2}oldsymbol{B}_5,$$

$$\rho_5 = \frac{\mu_5}{3v_F^3} \left(T^2 + \frac{3\mu^2}{\pi^2} \right)$$

$$\left(\frac{\partial}{\partial t} + v_{\text{CSW}} \frac{\partial}{\partial z}\right) \rho_5 = 0,$$

$$v_{\text{CSW}} = \frac{3B_5 v_F^3}{2(\pi^2 T^2 + 3\mu^2)}$$

- Not direct coupling to em fields.
- Damping regulated by τ_5 .

1. Pikulin et al, PRX (2016).

Experimental signature

It mixes with standard acoustic phonons

$$\delta v = |v_{+}| - |v_{-}| \simeq \frac{v_{p}^{2}}{v_{\text{csw}}} \simeq \frac{\kappa \theta b^{3}}{2\pi^{2} v_{F}},$$

Change θ and measure asymmetry in the phonon branches

Chiral thermal transport?

Very preliminary results!!

Other very interesting new developments:

Strain-induced nonlinear spin Hall effect in topological Dirac semimetal

Ya sufumi Araki^{1,2}

Scientific ReportS I (2018) 8:15236

Elastic gauge fields and Hall viscosity of Dirac magnons

Yago Ferreiros^{1,*} and María A. H. Vozmediano² PHYSICAL REVIEW B **97**, 054404 (2018) Hear the Sound of Weyl Fermions

Zhida Song and Xi Dai
Phys. Rev. X 9, 021053 – Published 17 June 2019

TOPOLOGICAL SEMIMETALS

Sound of Weyl
Nature Physics 15, 522 (2019)

Yun Li

Designer Curved-Space Geometry for Relativistic Fermions in Weyl Metamaterials

Alex Westström and Teemu Ojanen* PHYSICAL REVIEW X 7, 041026 (2017)

Axial-field-induced chiral channels in an acoustic Weyl system

Open Access

Valerio Peri, Marc Serra-Garcia, Roni Ilan 8 Sebastian D. Huber ⊠

Nature Physics 15, 357–361(2019) | Cite this article

ACOUSTICS

Audible Landau levels

Featured in Physics

Boundaries Elastic deformations Magnetic moments

Elasticity

Axial gauge fields

Hydro

Weyl crystals

QFT

Effective actions

Anomalies

Chiral waves

New transport phenomena

DIRAC MATTER grand unification

Quantum field theory particle physics

String theory
(holography)
ADS/CMT

Condensed matter solid state+stat. physics

Elasticity

Relativity and cosmology

Plasma physics

Hydrodynamics