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Outline

• Introduction: topological insulators, topological metals 
and quantum anomalies. 

• Gapping symmetry-protected topological surface states 
by strong interactions. 

• Chiral anomaly in strongly-interacting Weyl semimetals 
and 3D FQHE. 

            arXiv:1907.02068 



Topological insulators

• Insulators, characterized by quantized topological invariants. 

• In the weakly-interacting case, the invariant may be 
evaluated using the noninteracting band eigenstates.  

Gunnar Möller Cargèse, Juin 2013

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum with Chern 
indices [Avron et al.]
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• Interactions stabilize fractional 
quantum Hall liquids in these bands!

• CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL’s with 
additional pseudospin index
R. Palmer & D. Jaksch PRL 2006
L. Hormozi et al, PRL 2012
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• the Hofstadter spectrum provides bands of all Chern numbers

• This was a model for a 
“quantum Hall effect without 
Landau levels” (FDMH 1988), 
now variously known as the 
“quantum anomalous Hall 
effect” or “Chern insulator”.

• Previously,  Thouless, Kohmoto, 
Nightingale and den Nijs 
(TKNN) had analysed the QHE 
in the Hofstadter model, and 
found the invariant 
subsequently identified by 
Simon as the Chern number.

The 2D Chern insulator as the first “topological insulator”

colored by Avron et al.

• Chern number: C =
1

2⇡

Z
d2k⌦z(k) = ±1



Interacting topological insulators

• Band picture is not applicable with strong interactions. 

S =
e2C

4⇡

Z
d2x dt ✏µ⌫�Aµ@⌫A�

<latexit sha1_base64="DgJ9Qjsa+owUWQUGNuDnjht1qZU="></latexit>

• Chern-Simons action describes electromagnetic 
response of the Haldane Chern insulator:

• More general picture is in terms of response.



Edge states and anomalies

• In the presence of a boundary this leads to a non-
conserved current:

S =
e2C

4⇡

Z
d2x dt⇥(x1) ✏

µ⌫�Aµ@⌫A�
<latexit sha1_base64="XuaPyYBSp8jkGqO0xjYQ7lCdYDQ="></latexit>
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µ
bulk =
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4⇡
�(x1)✏

1⌫�@⌫A�
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Edge states and anomalies

• This is cancelled by the chiral anomaly of the edge 
state:

@µj
µ
bulk =

e2C

4⇡
�(x1)✏

1⌫�@⌫A�
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@µj
µ
edge = �e2C

4⇡
�(x1)✏

1⌫�@⌫A�
<latexit sha1_base64="cEAvg+hzpyzbUEFZpiyfTxpVJ3Q=">AAACXnicbVFdaxQxFM2MWuvW2lVfBF8uLkJ9cJmpBX0RWvviYwW3LWx2h0zmzjZtJhPyIS5h/mTfxJf+lGa3A2rrhXAP59yP5KTUUliXZb+S9MHDRxuPN58Mtp5uP9sZPn9xYltvOE54K1tzVjKLUiicOOEknmmDrCklnpaXRyv99AcaK1r13S01zhq2UKIWnLlIFUNPNTNOMFkE2vgOLubrXASsFtjBZ3gPtDaMB5zvwVEX9oFq0QGtUDq2+7PI3wFFbYVs1TzkQJUHKuP6isWiP6NVHH0Ycy8Vw1E2ztYB90HegxHp47gYXtGq5b5B5bhk1k7zTLtZWM3nErsB9RY145dsgdMIFWvQzsLang7eRqaCujXxKAdr9u+OwBprl00ZKxvmzu1dbUX+T5t6V3+aBaG0d6j47aLaS3AtrLyGShjkTi4jYNyIeFfg5yy66eKPDKIJ+d0n3wcne+P8wzj7tj86+NLbsUlekzdkl+TkIzkgX8kxmRBOfidJMki2kut0I91Od25L06TveUn+ifTVDaxKtU0=</latexit>

@µ(j
µ
edge + jµbulk) = 0

<latexit sha1_base64="Ahd85ePjL9D6sWDDLKD0fET7AGY=">AAACHXicbZDLSsNAFIYn9VbrLerSzWARKkJJtKAboejGZQV7gTaGyeS0HTu5MDMRSsiLuPFV3LhQxIUb8W2cXhBt/WHg4z/ncOb8XsyZVJb1ZeQWFpeWV/KrhbX1jc0tc3unIaNEUKjTiEei5REJnIVQV0xxaMUCSOBxaHqDy1G9eQ9Csii8UcMYnID0QtZllChtuWalExOhGOFu2gmSDJfubsfgpuD3IMNH+MfwEj7IDvE5tlyzaJWtsfA82FMooqlqrvnR8SOaBBAqyomUbduKlZOONlMOWaGTSIgJHZAetDWGJADppOPrMnygHR93I6FfqPDY/T2RkkDKYeDpzoCovpytjcz/au1Edc+clIVxoiCkk0XdhGMV4VFU2GcCqOJDDYQKpv+KaZ8IQpUOtKBDsGdPnofGcdk+KVvXlWL1YhpHHu2hfVRCNjpFVXSFaqiOKHpAT+gFvRqPxrPxZrxPWnPGdGYX/ZHx+Q1jTKIJ</latexit>

-1.5 -1.0 -0.5 0.5 1.0 1.5
ky

-1.0

-0.5

0.5

1.0
�



Higher dimensions

• 3D time-reversal-invariant TI:

• In a sample with boundary this may be written as 
boundary action:

✓ = ⇡
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Higher dimensions

• This violates time-reversal symmetry and is cancelled by 
the corresponding action of the gapless 2D Dirac surface 

state (parity anomaly):

Ssurf = � ✓e2

8⇡2

Z
d2x dt ✏µ⌫�Aµ@⌫A�

<latexit sha1_base64="H/mh15LnAA1/Ic/3TVq0C7krCiY="></latexit>

Sbulk =
✓e2

8⇡2

Z
d2x dt ✏µ⌫�Aµ@⌫A�

<latexit sha1_base64="O23ZgacqaVV4e3CIBx/Tynxk310=">AAACX3icbVFNb9QwEHXCR8u2lBROiIvFCokDWiULEr1UKnDhWATbVlrvRo4z6VrrOJY9rlhF+ZPckLjwT3B2c4CWkcZ6fvPleS6Mkg7T9GcU37v/4OHe/qPRweHjoyfJ8dML13grYCYa1dirgjtQUsMMJSq4MhZ4XSi4LNaf+vjlDVgnG/0NNwYWNb/WspKCY6Dy5OZr3hZerTt6SllluWgZrgA5heW0a08oMzIAyqRGWi6n9Dt7Q0uK4WRgnFSNXras9pTp4CrMLXlHP+Q9F6oMtyi5Clftd/SQkifjdJJujd4F2QDGZLDzPPnBykb4GjQKxZ2bZ6nBRdv3Fwq6EfMODBdrfg3zADWvwS3arT4dfRWYklaNDR722LJ/V7S8dm5TFyGz5rhyt2M9+b/Y3GN1smilNh5Bi92gyiuKDe3FpqW0IFBtAuDCyvBWKlY8qIzhS0ZBhOz2ynfBxXSSvZ1Mv7wbn30c5NgnL8hL8ppk5D05I5/JOZkRQX5FcXQQHUa/4734KE52qXE01Dwj/1j8/A8YRLT+</latexit>



Edge topological metal

• Edge states of the Haldane Chern insulator and 3D TR-
invariant TI are the simplest examples of a topological 

metals: metals whose physical properties are determined 
by topology. 

• Topological metal is very robust: immune to effects of 
disorder and interactions. 

• Protected as long as bulk electronic structure topology is 
intact. 



Bulk topological metals

• Can bulk metals be topologically nontrivial?



Bulk topological metals

• Can bulk metals be topologically nontrivial?

Yes!



Fermi surface invariants

• Flux of the Berry curvature through the 2D Fermi 
surface of a 3D metal is a topological invariant (a Chern 

number). 

1

2⇡

Z
⌦(k) · dS = C



Fermi surface invariants

• Gauss’ theorem: there must be a point source of Berry 
curvature, enclosed by the Fermi surface. 

⌦(k) = ± k

2k3

• Such a point source arises as a 
result of touching of two bands.  



Weyl fermions

• The band Hamiltonian in the 
vicinity of a band-degeneracy 
point has a universal from:

• This coincides with the Hamiltonian for relativistic 
massless chiral fermions, first proposed by Hermann 

Weyl in 1929. 

H = ±� · k



Weyl semimetal

• Weyl node: point contact between two nondegenerate 
bands, which acts as a point-like source of Berry 

curvature (“magnetic monopole” in momentum space). 

✏F

Weyl semimetal

k

�

AAB & Balents, 2011 

Wan et al., 2011 

• This arises naturally as an intermediate phase 
between a topological and ordinary insulator in 3D.  

Murakami, 2007 



Chiral anomaly

• Anomaly in this context means that Weyl nodes can only 
appear in pairs of opposite chirality, “chiral symmetry” 

can not be realized in a 3D lattice Hamiltonian. 

• This leads to various observable penomena in response.



Chiral anomaly

kz

��kz⇥
K
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• Extra Landau level below the 
Fermi energy in between the 

Weyl nodes. 

• “Fractional” Hall conductivity in the 
absence of a Fermi surface inevitably 

implies Weyl nodes. 

�xy = �II
xy = e

@n

@B
= eK2⇡~ @

@B

1

2⇡`2B
=

e2

h

K

2⇡
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“Plateau transition” in 3D

• Plateau transition is sharp in 2D, but broadens into 
Weyl semimetal phase in 3D. 

-3 -2 -1 1 2 3
kzd
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1.0
�(kz)/�S

2k0
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�xy/(e2/hd)

(a) (b)

Figure 3

(a) Electronic structure of the simplest Weyl semimetal, with two nodes of opposite chirality,
separated by a distance of 2k0 along the z-axis in momentum space. (b) The corresponding
anomalous Hall conductivity as a function of b/�S , showing a broadened plateau transition. Weyl
semimetal is an intermediate gapless phase between the quantum anomalous Hall and ordinary
insulators.

where d is the period of the resulting superlattice heterostructure in the z-direction. Mak-

ing the same similarity transformation as above and partially diagonalizing the resulting

Hamiltonian, we obtain

Hr = vF (ẑ ⇥ �) · k+mr(kz)�
z
, (14)

where mr(kz) = b + r
p

�2
S +�2

D + 2�S�D cos(kzd) ⌘ b + r�(kz). Now we see that the

quantum Hall plateau transition we discussed before as a function of b/�S , may now happen

“on its own” in momentum space as kz is swept through the BZ. Indeed m�(kz) will change

sign at k±
z = ⇡/d± k0, where

k0 =
1
d
arccos

✓
�2

S +�2
D � b

2

2�S�D

◆
. (15)

At k = (0, 0, k±
z ), the two nondegenerate bands, corresponding to the eigenvalue r = �

touch each other, i.e. these are locations of two Weyl nodes, see Figure 3.

The nodes exist as long the spin splitting b is in the interval between two critical values

bc1 < b < bc2, where bc1 = |�S � �D| and bc2 = �S + �D. When b < bc1 the system is

an ordinary insulator with �xy = 0, while when b > bc2 it is a 3D quantum anomalous Hall

insulator with �xy = e
2
/hd. In between the heterostructure is in the intermediate Weyl

semimetal phase with

�xy = e
2
k0/⇡h, (16)

which depends only on the distance between the Weyl nodes in momentum space and varies

continuously between 0 and e
2
/hd, see Figure 4. Thus, unlike in 2D, in three dimensions

a direct transition between a topological insulator with nonzero quantized Hall conduc-

tivity and a normal insulator with zero Hall conductivity does not exist. The transition

instead proceeds through an intermediate gapless Weyl semimetal phase. The system, de-

scribed above, constitutes the simplest potential realization, the “hydrogen atom” of Weyl

semimetals. A lot of the general physical properties of Weyl semimetals may be understood

by studying this system.
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Fermi arcs

L =
e2

4⇡h
Kµ✏

µ⌫↵�A⌫@↵A�
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• Equilibrium Hall conductivity leads to a “Chern-Simons” term:

• This is not gauge invariant in a sample with boundaries, which 
means chiral surface states must exist to compensate.



Chiral anomaly and interactions

• Chiral anomaly inevitably implies Weyl nodes in case 
of weak interactions. 

• Does this remain true when the interactions are 
not weak?

• In other words, can we gap out the Weyl nodes 
while preserving the chiral anomaly and while not 

breaking any symmetries?



Analogous question for 3D TI surface states

• Parity anomaly in 3D TR-invariant TI implies the 
existence of gapless 2D Dirac surface states. 

• Can we gap out the surface state without breaking 
TR and while preserving the parity anomaly?

Wang, Potter, Senthil

Chen, Fidkowski, Vishwanath

Metlitskii, Kane, Fisher

Bonderson, Nayak, Qi



Vortex condensation

• Induce superconductivity on the surface: p+ip 
topological SC. 

• Destroy SC coherence by condensing vortices while 
keeping the pairing gap: this produces an insulator. 

• Parity anomaly places strong restrictions on this 
procedure. 



2D Dirac fermions and parity anomaly

• Convenient to deal with actual 2D Dirac fermions, 
not TI surface. 

• This describes a QH plateau transition at which σxy  

jumps by e2/h
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2D Dirac fermions and parity anomaly

• Massless 2D Dirac fermion thus has �xy =
e2
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• This is a manifestation of the parity anomaly. 
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2D Dirac fermions and parity anomaly

• We want to open a gap while keeping �xy =
e2
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• This is clearly impossible without creating a 
fractionalized state with topological order. 
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Superconducting 2D Dirac fermion

• Adding s-wave pairing get a fully gapped topological SC 
(analog of the Read-Green p+ip SC).  

• Φ=hc/2e=π vortex then carries a Majorana zero-energy 
mode in its core. 
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The chiral topological superconductor in two dimensions has a full pairing gap in the bulk and a single chiral
Majorana state at the edge. The vortex of the chiral superconducting state carries a Majorana zero mode which
is responsible for the non-Abelian statistics of the vortices. Despite intensive searches, this superconducting
state has not yet been identified in nature. In this paper, we consider a quantum Hall or a quantum anomalous
Hall state near the plateau transition and in proximity to a fully gapped s-wave superconductor. We show that
this hybrid system may realize the chiral topological superconductor state and propose several experimental
methods for its observation.
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I. INTRODUCTION

There are two basic types of topological states in two
dimensions !2D" which break the time-reversal symmetry T.
The first is the quantum Hall !QH" state which has a full gap
in the bulk and gapless chiral modes at the edge. The integer
number of the chiral edge modes N is a topological invariant
which can be directly related to the bulk topological invari-
ant of the QH state.1 The quantum Hall state is realized in the
presence of a large external magnetic field, however, the
quantized-Hall conductance can, in principle, also be real-
ized in topological insulators which break the T symmetry.2,3

More recently, realistic proposals suggest that doping 2D to-
pological insulators such as HgTe and Bi2Te3 with magnetic
dopants,4,5 can result in the so-called quantum anomalous
Hall !QAH" insulator without an external magnetic field. The
second state is the chiral superconductor which has a full
pairing gap in the 2D bulk and N gapless chiral Majorana
fermions6,7 at the edge. The case of a chiral superconductor
with N=1 is most interesting. The edge state has half the
degrees of freedom of an N=1 QH or QAH state, therefore,
this is the minimal topological state in 2D. The vortex of
such a chiral topological superconductor !TSC" carries a
single Majorana zero mode,8 giving rise to the non-Abelian
statistics9,10 which could provide a platform for topological
quantum computing.11 The simplest model for an N=1 chiral
TSC is realized in the px+ ipy pairing state of spinless
fermions.9 A spinful version of the chiral superconductor has
been predicted to exist in Sr2RuO4,12 however, the experi-
mental situation is far from definitive. Recently, several new
proposals of realizing Majorana fermion state with conven-
tional superconductivity have been investigated by making
use of strong spin-orbital coupling.13,14

In this paper we propose a general and intrinsic relation
between QH states and the chiral TSC state, which leads to a
different method to generate a chiral TSC from a QH or a
QAH parent state. When a QH state is coupled to a conven-
tional s-wave superconductor through the proximity effect,
the topological phase transition between phases with trivial
and nontrivial Hall conductance is, in general, split into two
transitions, between which there is always a chiral TSC

phase. Compared to conventional QH systems, the QAH sys-
tem can realize the QH state and the topological phase tran-
sition without a large external magnetic field, which makes
the proximity effect to a superconductor much easier to re-
alize. Physically, our proposal is based on the observation
that the QAH system with N chiral edge modes in proximity
with a conventional superconductor is already a chiral TSC
with an even number N=2N of chiral Majorana edge modes.
Since the degeneracy among these chiral Majorana modes is
lifted by the proximity to the superconductor, the transition
from the QAH insulator to a topologically trivial insulator
must generically pass through a chiral TSC phase with an
odd number N of chiral Majorana edge modes. This is the
interesting state with non-Abelian statistics. The proposed
device is illustrated in Fig. 1.

II. QAH INSULATOR

Our proposal works both for a QH state near the plateau
transition and a QAH state near the topological phase tran-
sition to a trivial insulator. For definiteness, we focus on the

QAH
SC

B-field

FIG. 1. !Color online" Our proposed hybrid device consists of a
QAH insulator layer and a fully gapped superconductor layer on
top. When the QAH insulator is close to the topological quantum
phase transition, the proximity effect to the superconductor generi-
cally induces a chiral topological superconductor phase with an odd
number of chiral Majorana edge modes. In the presence of a mag-
netic field B, vortices carry Majorana zero modes with non-Abelian
statistics. The QAH insulator could also be replaced by a QH state
near the plateau transition.
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HBdG!p" =
1
2#

p
!̃p

†$h+!p"
− h−!− p"! %!̃p

with

h"!p" = $" &#& + Bp2 A!px − ipy"
A!px + ipy" − !" &#& + Bp2" % . !5"

Thus we see that the Hamiltonian is equivalent to two copies
of the QAH Hamiltonian in Eq. !2" but with opposite mass
parameters m= " &#&. The Chern number of h+!p" is trivial
and that of h−!p" is N=1 so that the total Chern number of
this TSC state is N=1. In other words, we have proven that
a TSC phase with odd Chern number N=1 emerges in the
neighborhood of the quantum-critical point between the
QAH insulator and trivial insulator phases.

Next, we consider $!0 in the Hamiltonian in Eq. !4",
which corresponds to proximity induced superconductivity
in a doped QAH system. Practically, the proximity effect is
expected to be stronger in this case due to the finite density
of states at the Fermi level. Similar to the $=0 case, we
determine the phase boundaries by the gapless regions in the
energy spectrum, which leads to the following condition:

#2 + $2 = m2.

The entire phase diagram in the !m ,$ ,#" space is shown in
Fig. 2!b". Except for the metallic phase in the #=0 plane
with &$&%m, and the phase boundaries, there are three-
gapped phases. The Chern number of each phase can be
determined by its adiabatic connection to the $=0 limit. It
can be seen from the phase diagram that a wide TSC phase

with Chern number N=1 emerges between the N=2 and
N=0 phases, which are adiabatically connected to the QAH
and trivial insulator phases, respectively.

IV. EDGE PICTURE

An intuitive way to understand such a TSC phase emerg-
ing near the QAH/NI transition is through the evolution of
the edge states. As was discussed earlier, the edge state of the
QAH state 'e.g., the point A in the phase diagram in Fig.
2!a"( is described by the effective one-dimensional Hamil-
tonian Hedge=#pvp&p

†&p. We can decompose the complex
fermion operator into its real parts, &py

=1 /)2!'py1+ i'py2"
and &py

† =1 /)2!'−py1− i'−py2", where 'pya are Majorana fer-
mion operators satisfying 'pya

† ='−pya and *'−pya ,'py!b+
=(ab(pypy!

. The Hamiltonian now becomes

Hedge = #
py)0

py!'−py1'py1 + '−py2'py2" !6"

up to a trivial shift of the energy. In comparison with the
edge theory of the chiral TSC state, we see that the QAH
edge state can be considered as two identical copies of chiral
Majorana fermions so that the QAH phase with Chern num-
ber N=1 can be considered as a TSC state with Chern num-
ber N=2, even for infinitesimal pairing amplitudes. This is
consistent with the Chern number analysis of the bulk
Hamiltonian discussed earlier.

When #!0, the constraint between the two chiral Majo-
rana modes 'py1 and 'py2 is lifted and they evolve indepen-
dently. An easy way to see this is to consider the width of the
edge states along the direction perpendicular to the edge. At
#=0, the edge state at k=0 has a width15 *,A / &m&.
For finite pairing their width can be estimated by
*1,A / &m−#& , *2,A / &m+#&. As # increases, the localiza-
tion length of one of the edge modes begins to diverge and
the corresponding Majorana modes gradually move into the
bulk, as shown schematically in Fig. 3!b". At the critical
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FIG. 2. !Color online" !a" Phase diagram of the QAH-SC hybrid
system for $=0. The x axis labels the mass parameter m and the y
axis labels the magnitude of #. Integers N label the Chern number
of the superconductor, which is equal to the number of chiral Ma-
jorana edge modes. !b" Phase diagram for finite $ shown only for
#)0. Phases QAH, NI, and Metal !labeled in bold" are well de-
fined only in the #=0 plane.

TSC, !=2

NSC, !=0TSC, !=1

QAH

(a) (b)

(c) (d)

FIG. 3. !Color online" Evolution of the edge states. The four
panels !a", !b", !c", and !d" correspond to the edge state configura-
tion of points A, B, C, and D in Fig. 2!a", respectively. !a" and !b"
show that a single chiral edge mode of the QAH state can be de-
composed into two chiral Majorana edge modes of the TSC state.
Proximity coupling to the SC state lifts the degeneracy and one pair
of the chiral Majorana states can be annihilated in the bulk, giving
rise to a chiral TSC state with a single chiral Majorana edge mode
as shown in !c". Further changes in the parameters can cause a
phase transition into the trivial or normal SC state as shown in !d".
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Condensing vortex composites

• Double Φ=hc/e=2π vortices have a pair of Majorana 
modes, which always get gapped out by perturbations 

(pairing, finite Fermi energy, etc.)  

• Naively, such vortices may be condensed.



Condensing vortex composites

• However, Φ = hc/e = 2π vortex binds a half-electron 
charge, due to the half-quantized Hall conductivity:
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• Two such charges will have semion exchange statistics: 
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Condensing vortex composites

• Two such charges will have semion exchange statistics: 
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• Semions can not be condensed directly. 

• They may transform themselves into bosons by flux 
attachment, but this will also change the Hall 

conductivity. 



Condensing vortex composites

• The smallest vortex that is a boson and may be 
condensed is quadruple vortex Φ = 2hc/e = 4π. 

• Condensation of composite vortices implies charge 
fractionalization and topological order. 



Composite vortices and fractionalization

• Superconductor-insulator (charge-flux) duality:

Flux is quantized in a superconductor, but not well-defined (condensed) 
in an insulator.

Charge is quantized in an insulator, but not well-defined (condensed) in 
a supercoductor. 



Composite vortices and fractionalization

• Flux quantum in an ordinary superconductor 
with paired electrons:
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• The dual picture: pairing vortices leads to charge 
fractionalization. 

• If electrons are condensed in quartets instead of 
pairs, the flux quantum is halved:
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Composite vortices and fractionalization

• The dual picture: pairing vortices leads to charge 
fractionalization.

Q� = hc
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Senthil & Fisher



Composite vortices and fractionalization
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• If we condense vortices with the smallest vorticity, 
we get an ordinary insulator, electron is 

unfractionalized and gapped. 
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• Condensing quadruple vortices fractionalizes the 
chargon:

• Condensing double vortices fractionalizes electron 
into “spinon” and “chargon”:
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Pfaffian-antisemion state

• f inherits the bandstructure of a massive Dirac fermion 
and provides the thermal conductivity:

xy =
1
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• b is a charge-1/2 boson, while f is a neutral fermion. 



Pfaffian-antisemion state

c = b1b2f
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• b is a charge-1/2 boson, while f is a neutral fermion. 
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either charge conservation or translational symmetry and
has an electrical Hall conductivity �xy = e

2
/4⇡ and a

thermal Hall conductivity xy = (1/4⇡)(⇡2
k

2
BT/3). This

is an insulating state that preserves all the symmetries
and both the chiral and the gravitational anomaly of a
Weyl semimetal with 2Q = ⇡.

Condensation of 4⇡/e vortices leaves behind a Z4 topo-
logical order and leads to fractionalization of the electron
quantum numbers [32]. To understand the nature of this
order it is useful to describe the state we have obtained by
vortex condensation, using a parton construction instead,
which may be viewed as dual of the vortex condensa-
tion picture. Z4 gauge symmetry motivates the following
ansatz

c = b1b2f, (16)

where b1,2 are two flavors of charge e/2 spinless boson,
while f is a neutral spin-1/2 fermion. Eq. (16) is invariant
under

b1,2 ! i
n
b1,2, f ! (�1)n

f, n 2 Z4. (17)

The neutral fermion experiences the same electronic
structure as the original Weyl semimetal and is assumed
to form the same FFLO state, that does not violate
translational symmetry. The neutral Fermi arc sur-
face state then leads to the thermal Hall conductivity
xy = (1/4⇡)(⇡2

k
2
BT/3), which is equivalent to a layered

p + ip superconductor [33]. The two-component charge-
e/2 boson forms a layered bosonic integer quantum Hall
state [34, 35], with each layer described by the Chern-
Simons theory
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The layering periodicity coincides with the crystal peri-
odicity of the Weyl semimetal and does not break transla-
tional symmetry. This gives the electrical Hall conductiv-
ity of �xy = 2(e/2)2/2⇡ = e

2
/4⇡ per layer and the ther-

mal Hall conductivity xy = 0. This gapped insulating
state thus reproduces exactly the chiral and the gravita-
tional anomalies of the Weyl semimetal, while preserving
its translational and charge conservation symmetries.

In addition to realizing the chiral and the gravitational
anomalies of the Weyl semimetal, the above state also
provides a realization of the fractional quantum Hall ef-
fect (FQHE) in 3D, which may not be regarded as sim-
ple layering of weakly-coupled 2D FQHE systems. As
discussed above, a magnetic Weyl semimetal with two
Weyl nodes is an intermediate phase between an ordi-
nary 3D insulator with �xy = 0 and an integer quan-
tum Hall insulator with �xy = e

2
/2⇡. We may tune

�xy
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FIG. 2. (Color online) Hall conductivity as a function of

the magnetization with a fractional plateau corresponding to

�xy = e2/4⇡ three-dimensional FQHE.

between the two phases by varying a TR-breaking pa-
rameter, i.e. magnetization m. One may view this as
an analog of tuning the filling factor by an applied mag-
netic field in the case of the 2D quantum Hall e↵ect.
There are two critical values of the magnetization, mc1

and mc2, which correspond to transitions from the ordi-
nary insulator to the Weyl semimetal and from the Weyl
semimetal to the integer quantum Hall insulator corre-
spondingly. The function Q(m), which determines the
separation between the pair of Weyl points and the Hall
conductivity �xy(m) = e

2
Q(m)/2⇡

2 as a function of the
magnetization, is model-dependent, but becomes univer-
sal near each critical point. For noninteracting electrons,
we have [17]

Q(m) ⇠ A1(m � mc1)
1/2

, ⇡ � A2(mc2 � m)1/2
, (20)

where A1,2 are nonuniversal coe�cients. We then claim
that, in the presence of strong electron-electron interac-
tions, a fractional plateau may exist in �xy(m), at which
the Hall conductivity is quantized to half the value of the
integer plateau, �xy = e

2
/4⇡, as shown in Fig. 2. This

state shares some similarities with the recently proposed
fractional excitonic insulator [36], in the sense that it is
realized at stoichiometric band filling by gapping band-
touching points, instead of relying on a fractional filling
of a topologically-nontrivial band.

We would like to note that related issues have been
addressed before in Refs. [37, 38] (see also Refs. [39–41])
using an exactly solvable model of the Mott transition,
the Hatsugai-Kohmoto model [42]. This model is inte-
grable due to the interaction being restricted to satisfy
center-of-mass conservation in real space, which leads to
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either charge conservation or translational symmetry and
has an electrical Hall conductivity �xy = e

2
/4⇡ and a

thermal Hall conductivity xy = (1/4⇡)(⇡2
k

2
BT/3). This

is an insulating state that preserves all the symmetries
and both the chiral and the gravitational anomaly of a
Weyl semimetal with 2Q = ⇡.

Condensation of 4⇡/e vortices leaves behind a Z4 topo-
logical order and leads to fractionalization of the electron
quantum numbers [32]. To understand the nature of this
order it is useful to describe the state we have obtained by
vortex condensation, using a parton construction instead,
which may be viewed as dual of the vortex condensa-
tion picture. Z4 gauge symmetry motivates the following
ansatz

c = b1b2f, (16)

where b1,2 are two flavors of charge e/2 spinless boson,
while f is a neutral spin-1/2 fermion. Eq. (16) is invariant
under

b1,2 ! i
n
b1,2, f ! (�1)n

f, n 2 Z4. (17)

The neutral fermion experiences the same electronic
structure as the original Weyl semimetal and is assumed
to form the same FFLO state, that does not violate
translational symmetry. The neutral Fermi arc sur-
face state then leads to the thermal Hall conductivity
xy = (1/4⇡)(⇡2

k
2
BT/3), which is equivalent to a layered

p + ip superconductor [33]. The two-component charge-
e/2 boson forms a layered bosonic integer quantum Hall
state [34, 35], with each layer described by the Chern-
Simons theory

L =
1

4⇡

X

IJ

✏
µ⌫�

aIµKIJ@⌫aJ� � e

4⇡

X

I

✏
µ⌫�

Aµ@⌫aI�,

(18)
where

K =

✓
0 1
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◆
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The layering periodicity coincides with the crystal peri-
odicity of the Weyl semimetal and does not break transla-
tional symmetry. This gives the electrical Hall conductiv-
ity of �xy = 2(e/2)2/2⇡ = e

2
/4⇡ per layer and the ther-

mal Hall conductivity xy = 0. This gapped insulating
state thus reproduces exactly the chiral and the gravita-
tional anomalies of the Weyl semimetal, while preserving
its translational and charge conservation symmetries.

In addition to realizing the chiral and the gravitational
anomalies of the Weyl semimetal, the above state also
provides a realization of the fractional quantum Hall ef-
fect (FQHE) in 3D, which may not be regarded as sim-
ple layering of weakly-coupled 2D FQHE systems. As
discussed above, a magnetic Weyl semimetal with two
Weyl nodes is an intermediate phase between an ordi-
nary 3D insulator with �xy = 0 and an integer quan-
tum Hall insulator with �xy = e

2
/2⇡. We may tune

�xy
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FIG. 2. (Color online) Hall conductivity as a function of

the magnetization with a fractional plateau corresponding to

�xy = e2/4⇡ three-dimensional FQHE.

between the two phases by varying a TR-breaking pa-
rameter, i.e. magnetization m. One may view this as
an analog of tuning the filling factor by an applied mag-
netic field in the case of the 2D quantum Hall e↵ect.
There are two critical values of the magnetization, mc1

and mc2, which correspond to transitions from the ordi-
nary insulator to the Weyl semimetal and from the Weyl
semimetal to the integer quantum Hall insulator corre-
spondingly. The function Q(m), which determines the
separation between the pair of Weyl points and the Hall
conductivity �xy(m) = e

2
Q(m)/2⇡

2 as a function of the
magnetization, is model-dependent, but becomes univer-
sal near each critical point. For noninteracting electrons,
we have [17]

Q(m) ⇠ A1(m � mc1)
1/2

, ⇡ � A2(mc2 � m)1/2
, (20)

where A1,2 are nonuniversal coe�cients. We then claim
that, in the presence of strong electron-electron interac-
tions, a fractional plateau may exist in �xy(m), at which
the Hall conductivity is quantized to half the value of the
integer plateau, �xy = e

2
/4⇡, as shown in Fig. 2. This

state shares some similarities with the recently proposed
fractional excitonic insulator [36], in the sense that it is
realized at stoichiometric band filling by gapping band-
touching points, instead of relying on a fractional filling
of a topologically-nontrivial band.

We would like to note that related issues have been
addressed before in Refs. [37, 38] (see also Refs. [39–41])
using an exactly solvable model of the Mott transition,
the Hatsugai-Kohmoto model [42]. This model is inte-
grable due to the interaction being restricted to satisfy
center-of-mass conservation in real space, which leads to

• b exists in a bosonic IQH state:

�xy = 2(1/2)2/2⇡ = 1/4⇡
<latexit sha1_base64="5lRSLK/KwQaBfEr0fqF5H/GAkGU=">AAACEXicbZDLSsNAFIYnXmu9RV26GSxC3bRJLOhGKLpxWcFeoIlhMp20QycXZiZiCH0FN76KGxeKuHXnzrdx0mahrT8MfPznHM6c34sZFdIwvrWl5ZXVtfXSRnlza3tnV9/b74go4Zi0ccQi3vOQIIyGpC2pZKQXc4ICj5GuN77K6917wgWNwluZxsQJ0DCkPsVIKsvVq7agwwC52UM6gRfQglWzbp3cWXWFdkyVZdYbObl6xagZU8FFMAuogEItV/+yBxFOAhJKzJAQfdOIpZMhLilmZFK2E0FihMdoSPoKQxQQ4WTTiybwWDkD6EdcvVDCqft7IkOBEGngqc4AyZGYr+Xmf7V+Iv1zJ6NhnEgS4tkiP2FQRjCPBw4oJ1iyVAHCnKq/QjxCHGGpQiyrEMz5kxehY9XM05p106g0L4s4SuAQHIEqMMEZaIJr0AJtgMEjeAav4E170l60d+1j1rqkFTMH4I+0zx869Zly</latexit>

xy = 0
<latexit sha1_base64="nkItbLGlkvrH3r0MFcUSh6tmm9k=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0mqoBeh6MVjBfsBbQiT7aZdutmE3Y0YQ3+JFw+KePWnePPfuG1z0NYHA4/3ZpiZFyScKe0439bK6tr6xmZpq7y9s7tXsfcP2ipOJaEtEvNYdgNQlDNBW5ppTruJpBAFnHaC8c3U7zxQqVgs7nWWUC+CoWAhI6CN5NuV/hiSBPz8MZvgK+z4dtWpOTPgZeIWpIoKNH37qz+ISRpRoQkHpXquk2gvB6kZ4XRS7qeKJkDGMKQ9QwVEVHn57PAJPjHKAIexNCU0nqm/J3KIlMqiwHRGoEdq0ZuK/3m9VIeXXs5EkmoqyHxRmHKsYzxNAQ+YpETzzBAgkplbMRmBBKJNVmUTgrv48jJp12vuWa1+d15tXBdxlNAROkanyEUXqIFuURO1EEEpekav6M16sl6sd+tj3rpiFTOH6A+szx/7pJKj</latexit>

Lu & Vishwanath Senthil & Levin



Pfaffian-antisemion state

4

either charge conservation or translational symmetry and
has an electrical Hall conductivity �xy = e
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/4⇡ and a

thermal Hall conductivity xy = (1/4⇡)(⇡2
k
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BT/3). This

is an insulating state that preserves all the symmetries
and both the chiral and the gravitational anomaly of a
Weyl semimetal with 2Q = ⇡.

Condensation of 4⇡/e vortices leaves behind a Z4 topo-
logical order and leads to fractionalization of the electron
quantum numbers [32]. To understand the nature of this
order it is useful to describe the state we have obtained by
vortex condensation, using a parton construction instead,
which may be viewed as dual of the vortex condensa-
tion picture. Z4 gauge symmetry motivates the following
ansatz

c = b1b2f, (16)

where b1,2 are two flavors of charge e/2 spinless boson,
while f is a neutral spin-1/2 fermion. Eq. (16) is invariant
under

b1,2 ! i
n
b1,2, f ! (�1)n

f, n 2 Z4. (17)

The neutral fermion experiences the same electronic
structure as the original Weyl semimetal and is assumed
to form the same FFLO state, that does not violate
translational symmetry. The neutral Fermi arc sur-
face state then leads to the thermal Hall conductivity
xy = (1/4⇡)(⇡2

k
2
BT/3), which is equivalent to a layered

p + ip superconductor [33]. The two-component charge-
e/2 boson forms a layered bosonic integer quantum Hall
state [34, 35], with each layer described by the Chern-
Simons theory
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where
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The layering periodicity coincides with the crystal peri-
odicity of the Weyl semimetal and does not break transla-
tional symmetry. This gives the electrical Hall conductiv-
ity of �xy = 2(e/2)2/2⇡ = e

2
/4⇡ per layer and the ther-

mal Hall conductivity xy = 0. This gapped insulating
state thus reproduces exactly the chiral and the gravita-
tional anomalies of the Weyl semimetal, while preserving
its translational and charge conservation symmetries.

In addition to realizing the chiral and the gravitational
anomalies of the Weyl semimetal, the above state also
provides a realization of the fractional quantum Hall ef-
fect (FQHE) in 3D, which may not be regarded as sim-
ple layering of weakly-coupled 2D FQHE systems. As
discussed above, a magnetic Weyl semimetal with two
Weyl nodes is an intermediate phase between an ordi-
nary 3D insulator with �xy = 0 and an integer quan-
tum Hall insulator with �xy = e

2
/2⇡. We may tune

�xy
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FIG. 2. (Color online) Hall conductivity as a function of

the magnetization with a fractional plateau corresponding to

�xy = e2/4⇡ three-dimensional FQHE.

between the two phases by varying a TR-breaking pa-
rameter, i.e. magnetization m. One may view this as
an analog of tuning the filling factor by an applied mag-
netic field in the case of the 2D quantum Hall e↵ect.
There are two critical values of the magnetization, mc1

and mc2, which correspond to transitions from the ordi-
nary insulator to the Weyl semimetal and from the Weyl
semimetal to the integer quantum Hall insulator corre-
spondingly. The function Q(m), which determines the
separation between the pair of Weyl points and the Hall
conductivity �xy(m) = e

2
Q(m)/2⇡

2 as a function of the
magnetization, is model-dependent, but becomes univer-
sal near each critical point. For noninteracting electrons,
we have [17]

Q(m) ⇠ A1(m � mc1)
1/2

, ⇡ � A2(mc2 � m)1/2
, (20)

where A1,2 are nonuniversal coe�cients. We then claim
that, in the presence of strong electron-electron interac-
tions, a fractional plateau may exist in �xy(m), at which
the Hall conductivity is quantized to half the value of the
integer plateau, �xy = e

2
/4⇡, as shown in Fig. 2. This

state shares some similarities with the recently proposed
fractional excitonic insulator [36], in the sense that it is
realized at stoichiometric band filling by gapping band-
touching points, instead of relying on a fractional filling
of a topologically-nontrivial band.

We would like to note that related issues have been
addressed before in Refs. [37, 38] (see also Refs. [39–41])
using an exactly solvable model of the Mott transition,
the Hatsugai-Kohmoto model [42]. This model is inte-
grable due to the interaction being restricted to satisfy
center-of-mass conservation in real space, which leads to

4

either charge conservation or translational symmetry and
has an electrical Hall conductivity �xy = e

2
/4⇡ and a

thermal Hall conductivity xy = (1/4⇡)(⇡2
k

2
BT/3). This

is an insulating state that preserves all the symmetries
and both the chiral and the gravitational anomaly of a
Weyl semimetal with 2Q = ⇡.

Condensation of 4⇡/e vortices leaves behind a Z4 topo-
logical order and leads to fractionalization of the electron
quantum numbers [32]. To understand the nature of this
order it is useful to describe the state we have obtained by
vortex condensation, using a parton construction instead,
which may be viewed as dual of the vortex condensa-
tion picture. Z4 gauge symmetry motivates the following
ansatz

c = b1b2f, (16)

where b1,2 are two flavors of charge e/2 spinless boson,
while f is a neutral spin-1/2 fermion. Eq. (16) is invariant
under

b1,2 ! i
n
b1,2, f ! (�1)n

f, n 2 Z4. (17)

The neutral fermion experiences the same electronic
structure as the original Weyl semimetal and is assumed
to form the same FFLO state, that does not violate
translational symmetry. The neutral Fermi arc sur-
face state then leads to the thermal Hall conductivity
xy = (1/4⇡)(⇡2

k
2
BT/3), which is equivalent to a layered

p + ip superconductor [33]. The two-component charge-
e/2 boson forms a layered bosonic integer quantum Hall
state [34, 35], with each layer described by the Chern-
Simons theory

L =
1

4⇡

X

IJ

✏
µ⌫�

aIµKIJ@⌫aJ� � e

4⇡

X

I

✏
µ⌫�

Aµ@⌫aI�,

(18)
where

K =

✓
0 1
1 0

◆
. (19)

The layering periodicity coincides with the crystal peri-
odicity of the Weyl semimetal and does not break transla-
tional symmetry. This gives the electrical Hall conductiv-
ity of �xy = 2(e/2)2/2⇡ = e

2
/4⇡ per layer and the ther-

mal Hall conductivity xy = 0. This gapped insulating
state thus reproduces exactly the chiral and the gravita-
tional anomalies of the Weyl semimetal, while preserving
its translational and charge conservation symmetries.

In addition to realizing the chiral and the gravitational
anomalies of the Weyl semimetal, the above state also
provides a realization of the fractional quantum Hall ef-
fect (FQHE) in 3D, which may not be regarded as sim-
ple layering of weakly-coupled 2D FQHE systems. As
discussed above, a magnetic Weyl semimetal with two
Weyl nodes is an intermediate phase between an ordi-
nary 3D insulator with �xy = 0 and an integer quan-
tum Hall insulator with �xy = e

2
/2⇡. We may tune

�xy
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FIG. 2. (Color online) Hall conductivity as a function of

the magnetization with a fractional plateau corresponding to

�xy = e2/4⇡ three-dimensional FQHE.

between the two phases by varying a TR-breaking pa-
rameter, i.e. magnetization m. One may view this as
an analog of tuning the filling factor by an applied mag-
netic field in the case of the 2D quantum Hall e↵ect.
There are two critical values of the magnetization, mc1

and mc2, which correspond to transitions from the ordi-
nary insulator to the Weyl semimetal and from the Weyl
semimetal to the integer quantum Hall insulator corre-
spondingly. The function Q(m), which determines the
separation between the pair of Weyl points and the Hall
conductivity �xy(m) = e

2
Q(m)/2⇡

2 as a function of the
magnetization, is model-dependent, but becomes univer-
sal near each critical point. For noninteracting electrons,
we have [17]

Q(m) ⇠ A1(m � mc1)
1/2

, ⇡ � A2(mc2 � m)1/2
, (20)

where A1,2 are nonuniversal coe�cients. We then claim
that, in the presence of strong electron-electron interac-
tions, a fractional plateau may exist in �xy(m), at which
the Hall conductivity is quantized to half the value of the
integer plateau, �xy = e

2
/4⇡, as shown in Fig. 2. This

state shares some similarities with the recently proposed
fractional excitonic insulator [36], in the sense that it is
realized at stoichiometric band filling by gapping band-
touching points, instead of relying on a fractional filling
of a topologically-nontrivial band.

We would like to note that related issues have been
addressed before in Refs. [37, 38] (see also Refs. [39–41])
using an exactly solvable model of the Mott transition,
the Hatsugai-Kohmoto model [42]. This model is inte-
grable due to the interaction being restricted to satisfy
center-of-mass conservation in real space, which leads to

• b exists in a bosonic IQH state:

�xy = 2(1/2)2/2⇡ = 1/4⇡
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Chiral anomaly and interactions

• Can we gap out the Weyl nodes while preserving 
the chiral anomaly?

�xy =
e2

h

2Q

2⇡
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Weyl semimetal may be thought of as a gapless topological phase protected by the chiral anomaly,
where the symmetries involved in the anomaly are the U(1) charge conservation and the crystal
translational symmetry. The absence of a band gap in a weakly-interacting Weyl semimetal is
mandated by the electronic structure topology and is guaranteed as long as the symmetries and
the anomaly are intact. The nontrivial topology also manifests in the Fermi arc surface states and
topological response, in particular taking the form of an anomalous Hall e↵ect in magnetic Weyl
semimetals, whose magnitude is only determined by the location of the Weyl nodes in the Brillouin
zone. Here we consider the situation when the interactions are not weak and ask whether it is possible
to open a gap in a magnetic Weyl semimetal while preserving its nontrivial electronic structure
topology along with the translational and the charge conservation symmetries. Surprisingly, the
answer turns out to be yes. The resulting topologically ordered state provides a nontrivial realization
of the fractional quantum Hall e↵ect in three spatial dimensions in the absence of an external
magnetic field, which cannot be viewed as a stack of two dimensional states. Our state contains
loop excitations with nontrivial braiding statistics when linked with lattice dislocations.

Weyl semimetal is the first example of a bulk gap-
less topological phase [1–4]. The gaplessness of the bulk
electronic structure in Weyl semimetals is mandated by
topology: there exist closed surfaces in momentum space,
which carry nonzero Chern numbers (flux of Berry cur-
vature through the surface), which makes the presence
of a band-touching point inside the Brillouin zone (BZ)
volume, enclosed by the surface, inevitable. This pic-
ture, however, relies on separation between the individual
Weyl nodes in momentum space, which involves symme-
try considerations. In particular, either inversion or time
reversal (TR) symmetry need to be violated in order for
the Weyl nodes to be separated. In addition, crystal
translational symmetry needs to be present, since other-
wise even separated Weyl nodes may be hybridized and
gapped out.

A very useful viewpoint on topology-mandated gap-
lessness is provided by the concept of quantum anomalies.
The best known example of this is the gapless surface
states of three dimensional (3D) TR-invariant topologi-
cal insulator (TI). The relevant anomaly in this case is
the parity anomaly: the ✓-term topological response of
the bulk 3D TI [5] violates TR (and parity) when evalu-
ated in a sample with a boundary. This anomaly of the
bulk response must be cancelled by the corresponding
anomaly of the gapless surface state [6], which is simply
the parity anomaly of the massless 2D Dirac fermion [7–
9].

Analogously, the gaplessness of the bulk spectrum
in Weyl semimetals may be related to the chiral
anomaly [10, 11]. Suppose we have a magnetic Weyl
semimetal with two band-touching nodes, located at
k± = ±Q = ±Qẑ. Crystal translations in the z-direction
act on the low-energy modes near the Weyl points as chi-

ral rotations

T †
z c

†
±QTz = e⌥iQc†±Q, (1)

where we have taken the lattice constant to be equal to
unity (we will also use ~ = c = e = 1 units throughout
the paper). However, the chiral symmetry of Eq. (1) is
anomalous: an attempt to gauge this symmetry fails and
produces a topological term [12]

S = � 1

4⇡2

Z
dt d3r Qµ✏

µ⌫↵�A⌫@↵A� , (2)

which expresses the impossibility to conserve the chi-
ral charge and underlies all of the interesting observable
properties of Weyl semimetals. In particular, variation of
Eq. (2) with respect to the electromagnetic gauge poten-
tial gives the anomalous Hall conductivity of the Weyl
semimetal

�xy =
1

2⇡

2Q

2⇡
, (3)

which depends only on the separation 2Q between the
Weyl nodes in momentum space. By Wiedemann-Franz
law, Eq. (3) also implies a thermal Hall conductivity

xy = �xy

✓
⇡2k2BT

3

◆
=

Q

2⇡2

✓
⇡2k2BT

3

◆
, (4)

which, alternatively, may also be viewed as a manifesta-
tion of the chiral-gravitational mixed anomaly [13, 14].
In the Supplementary Material we discuss a more for-
mal, but physically equivalent, way to describe the chiral
anomaly in a Weyl semimetal [15].
Tuning the node separation 2Q between 0 and 2⇡ real-

izes the transition between a trivial and an integer quan-
tum Hall insulator in 3D [16, 17], which has to proceed
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Wiedemann-Franz law:

May also view this as a consequence of the gravitational anomaly.
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Vortex condensation

• Start from a superconducting Weyl semimetal and 
attempt to destroy superconductivity by condensing 

vortices and preserving the chiral anomaly.

• If successful, this leads to an insulator with the same 
chiral anomaly as Weyl semimetal. 



Weyl superconductor

• BCS: pairing k and -k states, i.e. internodal pairing. 

k

�



Weyl superconductor

• FFLO: pairing states on the opposite side of each 
Weyl point, i.e. intranodal pairing. 

k

�



BCS pairing 

• BCS pairing can not open a gap, since the two 
chiralities are not mixed by the pairing term:

2

prohibit opening a gap without either breaking the pro-
tecting symmetry or creating an exotic state with topo-
logical order, as was recently discussed extensively in the
context of strongly-interacting surface states of 3D TR-
invariant TI [19–23]. In this Letter, we aim to answer an
analogous question in the case of a 3D Weyl semimetal:
can one open a gap in a Weyl semimetal without break-
ing translational or charge conservation symmetries and
while preserving the chiral and the gravitational anoma-
lies, which lead to the electrical and thermal Hall con-
ductivities of Eqs. (3) and (4)?

To answer this question we will adopt the strategy
of Ref. [19]. Namely, we will start by inducing a
phase-coherent superconducting state in a magnetic Weyl
semimetal (with only a single pair of nodes for simplic-
ity, although the results readily generalize to any odd
number of node pairs), which violates the charge conser-
vation. We then attempt to produce a gapped insulator
by proliferating vortices and restoring the charge conser-
vation symmetry, while keeping the pairing gap intact. In
order to make this procedure well-defined, we will assume
the superconducting pairing to be weak, i.e. the induced
gap is taken to be much smaller than vF Q, where vF is
the Fermi velocity of the Weyl cones. In this case it is
impossible to gap out the Weyl nodes by simply pushing
them to the edge or the center of the BZ, where they
can mutually annihilate without breaking translational
symmetry.

It is easy to see that, in this situation, a BCS-type
pairing of time-reversed states can not produce a gapped
superconductor [24–27]. Indeed, consider a singlet pair-
ing BCS Hamiltonian for a pair of Weyl nodes

H = vF

X

k

c
†
k⌧

z� ·kck +�
X

k

(c†kRi�
y
c
†
�kL +h.c.), (5)

where the eigenvalues of ⌧z label the chirality of the Weyl
nodes and � is the spin. Introducing a Nambu spinor
 k = (ckR", ckR#, c

†
�kL#,�c

†
�kL"), we obtain

H =
X

k

 
†
k(vF� · k + �⌧x) k, (6)

which means that the superconducting state remains gap-
less as the two Weyl fermions are not mixed by the pair-
ing term.

It is, however, possible to open a gap by inducing
a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type super-
conducting state instead, where states ±Q ± k on each
side of the two Weyl nodes are paired [25, 26]. Since pair-
ing in the FFLO state may (approximately) be taken to
occur independently in each Weyl cone, let us consider a
single (right-handed) Weyl fermion with singlet pairing

H = vF

X

k

c
†
k� · k ck + �

X

k

(c†k"c
†
�k# + c�k#ck"), (7)

Introducing Nambu spinor  k = (ck", ck#, c
†
�k#,�c

†
�k"),

this may be written as

H =
1

2

X

k

 
†
k(vF ⌧

z� · k + �⌧x) k, (8)

which is simply the Hamiltonian of a Dirac fermion
of mass �. This, however, leads to a density modu-
lation and thus broken translational symmetry. Since
�(Q) ⇠ hc†Q+kc

†
Q�ki carries momentum 2Q, a gauge-

invariant density modulation % ⇠ �⇤(�Q)�(Q) will
carry momentum 4Q. In general, this breaks transla-
tional symmetry, which is not restored even when the
superconductivity is destroyed by proliferating vortices.
This is true, except when Q = G/4, where G is the
smallest nonzero reciprocal lattice vector. In this case
a gapped FFLO state does not break translational sym-
metry. We will thus concentrate on the Q = G/4 case
henceforth.

An important question is what happens to the Fermi
arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (8), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [28].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ. This implies that, while the elec-
trical Hall conductivity in the FFLO state is no longer
the same as in the nonsuperconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc
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In other words, the gravitational anomaly is una↵ected
by the formation of the FFLO state.

We now try to restore the charge conservation symme-
try by proliferating vortices in the superconducting or-
der parameter. If the vortices can be condensed, we will
obtain a gapped state that respects the charge conserva-
tion. This state must have �xy = e

2
/4⇡, since the chiral

anomaly must match the gravitational anomaly when the
charge conservation is present. Let us consider a straight-
line vortex of vorticity n along the z-direction, which we
will take to coincide with the direction of the vector 2Q,
separating the pair of Weyl nodes. The corresponding
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prohibit opening a gap without either breaking the pro-
tecting symmetry or creating an exotic state with topo-
logical order, as was recently discussed extensively in the
context of strongly-interacting surface states of 3D TR-
invariant TI [19–23]. In this Letter, we aim to answer an
analogous question in the case of a 3D Weyl semimetal:
can one open a gap in a Weyl semimetal without break-
ing translational or charge conservation symmetries and
while preserving the chiral and the gravitational anoma-
lies, which lead to the electrical and thermal Hall con-
ductivities of Eqs. (3) and (4)?

To answer this question we will adopt the strategy
of Ref. [19]. Namely, we will start by inducing a
phase-coherent superconducting state in a magnetic Weyl
semimetal (with only a single pair of nodes for simplic-
ity, although the results readily generalize to any odd
number of node pairs), which violates the charge conser-
vation. We then attempt to produce a gapped insulator
by proliferating vortices and restoring the charge conser-
vation symmetry, while keeping the pairing gap intact. In
order to make this procedure well-defined, we will assume
the superconducting pairing to be weak, i.e. the induced
gap is taken to be much smaller than vF Q, where vF is
the Fermi velocity of the Weyl cones. In this case it is
impossible to gap out the Weyl nodes by simply pushing
them to the edge or the center of the BZ, where they
can mutually annihilate without breaking translational
symmetry.

It is easy to see that, in this situation, a BCS-type
pairing of time-reversed states can not produce a gapped
superconductor [24–27]. Indeed, consider a singlet pair-
ing BCS Hamiltonian for a pair of Weyl nodes

H = vF
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where the eigenvalues of ⌧z label the chirality of the Weyl
nodes and � is the spin. Introducing a Nambu spinor
 k = (ckR", ckR#, c
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�kL"), we obtain

H =
X
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k(vF� · k + �⌧x) k, (6)

which means that the superconducting state remains gap-
less as the two Weyl fermions are not mixed by the pair-
ing term.

It is, however, possible to open a gap by inducing
a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type super-
conducting state instead, where states ±Q ± k on each
side of the two Weyl nodes are paired [25, 26]. Since pair-
ing in the FFLO state may (approximately) be taken to
occur independently in each Weyl cone, let us consider a
single (right-handed) Weyl fermion with singlet pairing
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this may be written as

H =
1
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z� · k + �⌧x) k, (8)

which is simply the Hamiltonian of a Dirac fermion
of mass �. This, however, leads to a density modu-
lation and thus broken translational symmetry. Since
�(Q) ⇠ hc†Q+kc

†
Q�ki carries momentum 2Q, a gauge-

invariant density modulation % ⇠ �⇤(�Q)�(Q) will
carry momentum 4Q. In general, this breaks transla-
tional symmetry, which is not restored even when the
superconductivity is destroyed by proliferating vortices.
This is true, except when Q = G/4, where G is the
smallest nonzero reciprocal lattice vector. In this case
a gapped FFLO state does not break translational sym-
metry. We will thus concentrate on the Q = G/4 case
henceforth.

An important question is what happens to the Fermi
arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (8), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [28].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ. This implies that, while the elec-
trical Hall conductivity in the FFLO state is no longer
the same as in the nonsuperconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc
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In other words, the gravitational anomaly is una↵ected
by the formation of the FFLO state.

We now try to restore the charge conservation symme-
try by proliferating vortices in the superconducting or-
der parameter. If the vortices can be condensed, we will
obtain a gapped state that respects the charge conserva-
tion. This state must have �xy = e

2
/4⇡, since the chiral

anomaly must match the gravitational anomaly when the
charge conservation is present. Let us consider a straight-
line vortex of vorticity n along the z-direction, which we
will take to coincide with the direction of the vector 2Q,
separating the pair of Weyl nodes. The corresponding
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prohibit opening a gap without either breaking the pro-
tecting symmetry or creating an exotic state with topo-
logical order, as was recently discussed extensively in the
context of strongly-interacting surface states of 3D TR-
invariant TI [19–23]. In this Letter, we aim to answer an
analogous question in the case of a 3D Weyl semimetal:
can one open a gap in a Weyl semimetal without break-
ing translational or charge conservation symmetries and
while preserving the chiral and the gravitational anoma-
lies, which lead to the electrical and thermal Hall con-
ductivities of Eqs. (3) and (4)?

To answer this question we will adopt the strategy
of Ref. [19]. Namely, we will start by inducing a
phase-coherent superconducting state in a magnetic Weyl
semimetal (with only a single pair of nodes for simplic-
ity, although the results readily generalize to any odd
number of node pairs), which violates the charge conser-
vation. We then attempt to produce a gapped insulator
by proliferating vortices and restoring the charge conser-
vation symmetry, while keeping the pairing gap intact. In
order to make this procedure well-defined, we will assume
the superconducting pairing to be weak, i.e. the induced
gap is taken to be much smaller than vF Q, where vF is
the Fermi velocity of the Weyl cones. In this case it is
impossible to gap out the Weyl nodes by simply pushing
them to the edge or the center of the BZ, where they
can mutually annihilate without breaking translational
symmetry.

It is easy to see that, in this situation, a BCS-type
pairing of time-reversed states can not produce a gapped
superconductor [24–27]. Indeed, consider a singlet pair-
ing BCS Hamiltonian for a pair of Weyl nodes

H = vF

X

k

c
†
k⌧

z� ·kck +�
X
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(c†kRi�
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where the eigenvalues of ⌧z label the chirality of the Weyl
nodes and � is the spin. Introducing a Nambu spinor
 k = (ckR", ckR#, c

†
�kL#,�c

†
�kL"), we obtain

H =
X

k

 
†
k(vF� · k + �⌧x) k, (6)

which means that the superconducting state remains gap-
less as the two Weyl fermions are not mixed by the pair-
ing term.

It is, however, possible to open a gap by inducing
a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type super-
conducting state instead, where states ±Q ± k on each
side of the two Weyl nodes are paired [25, 26]. Since pair-
ing in the FFLO state may (approximately) be taken to
occur independently in each Weyl cone, let us consider a
single (right-handed) Weyl fermion with singlet pairing
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this may be written as
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1
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which is simply the Hamiltonian of a Dirac fermion
of mass �. This, however, leads to a density modu-
lation and thus broken translational symmetry. Since
�(Q) ⇠ hc†Q+kc

†
Q�ki carries momentum 2Q, a gauge-

invariant density modulation % ⇠ �⇤(�Q)�(Q) will
carry momentum 4Q. In general, this breaks transla-
tional symmetry, which is not restored even when the
superconductivity is destroyed by proliferating vortices.
This is true, except when Q = G/4, where G is the
smallest nonzero reciprocal lattice vector. In this case
a gapped FFLO state does not break translational sym-
metry. We will thus concentrate on the Q = G/4 case
henceforth.

An important question is what happens to the Fermi
arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (8), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [28].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ. This implies that, while the elec-
trical Hall conductivity in the FFLO state is no longer
the same as in the nonsuperconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc

xy =
Q

2⇡2

✓
⇡

2
k

2
BT

3

◆
=

1

4⇡

✓
⇡

2
k

2
BT

3

◆
. (9)

In other words, the gravitational anomaly is una↵ected
by the formation of the FFLO state.

We now try to restore the charge conservation symme-
try by proliferating vortices in the superconducting or-
der parameter. If the vortices can be condensed, we will
obtain a gapped state that respects the charge conserva-
tion. This state must have �xy = e

2
/4⇡, since the chiral

anomaly must match the gravitational anomaly when the
charge conservation is present. Let us consider a straight-
line vortex of vorticity n along the z-direction, which we
will take to coincide with the direction of the vector 2Q,
separating the pair of Weyl nodes. The corresponding
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FFLO pairing

• FFLO does open a gap, but breaks translational 
symmetry:

2

prohibit opening a gap without either breaking the pro-
tecting symmetry or creating an exotic state with topo-
logical order, as was recently discussed extensively in the
context of strongly-interacting surface states of 3D TR-
invariant TI [19–23]. In this Letter, we aim to answer an
analogous question in the case of a 3D Weyl semimetal:
can one open a gap in a Weyl semimetal without break-
ing translational or charge conservation symmetries and
while preserving the chiral and the gravitational anoma-
lies, which lead to the electrical and thermal Hall con-
ductivities of Eqs. (3) and (4)?

To answer this question we will adopt the strategy
of Ref. [19]. Namely, we will start by inducing a
phase-coherent superconducting state in a magnetic Weyl
semimetal (with only a single pair of nodes for simplic-
ity, although the results readily generalize to any odd
number of node pairs), which violates the charge conser-
vation. We then attempt to produce a gapped insulator
by proliferating vortices and restoring the charge conser-
vation symmetry, while keeping the pairing gap intact. In
order to make this procedure well-defined, we will assume
the superconducting pairing to be weak, i.e. the induced
gap is taken to be much smaller than vF Q, where vF is
the Fermi velocity of the Weyl cones. In this case it is
impossible to gap out the Weyl nodes by simply pushing
them to the edge or the center of the BZ, where they
can mutually annihilate without breaking translational
symmetry.

It is easy to see that, in this situation, a BCS-type
pairing of time-reversed states can not produce a gapped
superconductor [24–27]. Indeed, consider a singlet pair-
ing BCS Hamiltonian for a pair of Weyl nodes
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where the eigenvalues of ⌧z label the chirality of the Weyl
nodes and � is the spin. Introducing a Nambu spinor
 k = (ckR", ckR#, c
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�kL#,�c

†
�kL"), we obtain

H =
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k(vF� · k + �⌧x) k, (6)

which means that the superconducting state remains gap-
less as the two Weyl fermions are not mixed by the pair-
ing term.

It is, however, possible to open a gap by inducing
a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type super-
conducting state instead, where states ±Q ± k on each
side of the two Weyl nodes are paired [25, 26]. Since pair-
ing in the FFLO state may (approximately) be taken to
occur independently in each Weyl cone, let us consider a
single (right-handed) Weyl fermion with singlet pairing
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which is simply the Hamiltonian of a Dirac fermion
of mass �. This, however, leads to a density modu-
lation and thus broken translational symmetry. Since
�(Q) ⇠ hc†Q+kc

†
Q�ki carries momentum 2Q, a gauge-

invariant density modulation % ⇠ �⇤(�Q)�(Q) will
carry momentum 4Q. In general, this breaks transla-
tional symmetry, which is not restored even when the
superconductivity is destroyed by proliferating vortices.
This is true, except when Q = G/4, where G is the
smallest nonzero reciprocal lattice vector. In this case
a gapped FFLO state does not break translational sym-
metry. We will thus concentrate on the Q = G/4 case
henceforth.

An important question is what happens to the Fermi
arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (8), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [28].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ. This implies that, while the elec-
trical Hall conductivity in the FFLO state is no longer
the same as in the nonsuperconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc
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In other words, the gravitational anomaly is una↵ected
by the formation of the FFLO state.

We now try to restore the charge conservation symme-
try by proliferating vortices in the superconducting or-
der parameter. If the vortices can be condensed, we will
obtain a gapped state that respects the charge conserva-
tion. This state must have �xy = e

2
/4⇡, since the chiral

anomaly must match the gravitational anomaly when the
charge conservation is present. Let us consider a straight-
line vortex of vorticity n along the z-direction, which we
will take to coincide with the direction of the vector 2Q,
separating the pair of Weyl nodes. The corresponding2
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which means that the superconducting state remains gap-
less as the two Weyl fermions are not mixed by the pair-
ing term.

It is, however, possible to open a gap by inducing
a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type super-
conducting state instead, where states ±Q ± k on each
side of the two Weyl nodes are paired [25, 26]. Since pair-
ing in the FFLO state may (approximately) be taken to
occur independently in each Weyl cone, let us consider a
single (right-handed) Weyl fermion with singlet pairing
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which is simply the Hamiltonian of a Dirac fermion
of mass �. This, however, leads to a density modu-
lation and thus broken translational symmetry. Since
�(Q) ⇠ hc†Q+kc

†
Q�ki carries momentum 2Q, a gauge-

invariant density modulation % ⇠ �⇤(�Q)�(Q) will
carry momentum 4Q. In general, this breaks transla-
tional symmetry, which is not restored even when the
superconductivity is destroyed by proliferating vortices.
This is true, except when Q = G/4, where G is the
smallest nonzero reciprocal lattice vector. In this case
a gapped FFLO state does not break translational sym-
metry. We will thus concentrate on the Q = G/4 case
henceforth.

An important question is what happens to the Fermi
arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (8), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [28].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ. This implies that, while the elec-
trical Hall conductivity in the FFLO state is no longer
the same as in the nonsuperconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc
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In other words, the gravitational anomaly is una↵ected
by the formation of the FFLO state.

We now try to restore the charge conservation symme-
try by proliferating vortices in the superconducting or-
der parameter. If the vortices can be condensed, we will
obtain a gapped state that respects the charge conserva-
tion. This state must have �xy = e

2
/4⇡, since the chiral

anomaly must match the gravitational anomaly when the
charge conservation is present. Let us consider a straight-
line vortex of vorticity n along the z-direction, which we
will take to coincide with the direction of the vector 2Q,
separating the pair of Weyl nodes. The corresponding
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ity, although the results readily generalize to any odd
number of node pairs), which violates the charge conser-
vation. We then attempt to produce a gapped insulator
by proliferating vortices and restoring the charge conser-
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carry momentum 4Q. In general, this breaks transla-
tional symmetry, which is not restored even when the
superconductivity is destroyed by proliferating vortices.
This is true, except when Q = G/4, where G is the
smallest nonzero reciprocal lattice vector. In this case
a gapped FFLO state does not break translational sym-
metry. We will thus concentrate on the Q = G/4 case
henceforth.

An important question is what happens to the Fermi
arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (8), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [28].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ. This implies that, while the elec-
trical Hall conductivity in the FFLO state is no longer
the same as in the nonsuperconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc

xy =
Q

2⇡2

✓
⇡

2
k

2
BT

3

◆
=

1

4⇡

✓
⇡

2
k

2
BT

3

◆
. (9)

In other words, the gravitational anomaly is una↵ected
by the formation of the FFLO state.

We now try to restore the charge conservation symme-
try by proliferating vortices in the superconducting or-
der parameter. If the vortices can be condensed, we will
obtain a gapped state that respects the charge conserva-
tion. This state must have �xy = e

2
/4⇡, since the chiral

anomaly must match the gravitational anomaly when the
charge conservation is present. Let us consider a straight-
line vortex of vorticity n along the z-direction, which we
will take to coincide with the direction of the vector 2Q,
separating the pair of Weyl nodes. The corresponding
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through the intermediate Weyl semimetal phase [18], un-
like in 2D, where there is a critical point (plateau tran-
sition). The chiral anomaly also leads to the appearance
of Fermi arc surface states, since the action in Eq. (2)
fails to be gauge invariant in the presence of a boundary,
which makes the existence of a boundary-localized state
necessary [19].

Apart from giving rise to topological response and pro-
tected surface states, anomalies can also place strong re-
strictions on the possible e↵ect of electron-electron in-
teractions. In particular, anomalies prohibit opening
a gap without either breaking the protecting symme-
try or creating an exotic state with topological order,
as was recently discussed extensively in the context of
strongly-interacting 2D surface states of 3D symmetry-
protected topological orders [20, 21] in bosonic [22] and
fermionic [23–30] systems. In this Letter, we aim to
answer analogous questions in the case of a 3D Weyl
semimetal: can one open a gap in a Weyl semimetal with-
out breaking translational or charge conservation sym-
metries while preserving the chiral and the gravitational
anomalies, which lead to the electrical and thermal Hall
conductivities of Eqs. (3) and (4)? What would be the
universal properties of such gapped phases? We note here
that e↵ects of strong correlations in topological semimet-
als have been addressed before in Refs. [31–35], but from
di↵erent viewpoints.

To answer these questions we will adopt the strategy
known as “vortex condensation”, which has been suc-
cessful in the context of 2D surface states of 3D bulk
TI [24, 25]. We will start by inducing a phase-coherent
superconducting state in a magnetic Weyl semimetal
(with only a single pair of nodes for simplicity, although
the results readily generalize to any odd number of node
pairs), which violates the charge conservation. We then
attempt to produce a gapped insulator by proliferating
vortices and restoring the charge conservation symmetry,
while keeping the pairing gap intact. In order to make
this procedure well-defined, we will assume the supercon-
ducting pairing to be weak, i.e. the induced gap is taken
to be much smaller than vFQ, where vF is the Fermi ve-
locity of the Weyl cones. In this case it is impossible to
gap out the Weyl nodes by simply pushing them to the
edge or the center of the BZ, where they can mutually
annihilate without breaking translational symmetry. In
the language of the anomaly, we are demanding that the
coe�cient of the anomaly Q, which takes continuous val-
ues and is thus not strictly protected, is fixed throughout
the procedure.

It is easy to see that, in this situation, a BCS-type
pairing of time-reversed states can not produce a gapped
superconductor [36–39]. It is, however, possible to open
a gap by inducing a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO)-type superconducting state instead, where states
on each side of the two Weyl nodes are paired [37, 38].
Since pairing in the FFLO state may (approximately) be

taken to occur independently in each Weyl cone, let us
consider a single (right-handed) Weyl fermion with sin-
glet pairing

H = vF
X

k
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†
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Introducing Nambu spinor  k = (ck", ck#, c
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�k#,�c†�k"),

this may be written as

H =
1

2

X

k

 †
k(vF ⌧

z� · k+�⌧x) k, (6)

which is simply the Hamiltonian of a Dirac fermion
of mass �. This, however, leads to a density modu-
lation and thus broken translational symmetry. Since
�(Q) ⇠

P
khc

†
Q+kc

†
Q�ki carries momentum 2Q, a gauge-

invariant density modulation %(Q) ⇠ �⇤(�Q)�(Q) will
carry momentum 4Q. In general, this breaks transla-
tional symmetry, which may not be restored even when
the superconductivity is destroyed by proliferating vor-
tices. This is true, except when Q = G/4, where G
is the smallest nonzero reciprocal lattice vector. In this
case a gapped FFLO state does not break translational
symmetry. We will thus concentrate on the Q = G/4
case henceforth.
An important question is what happens to the Fermi

arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (6), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [40].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ [15]. This implies that, while the
electrical Hall conductivity in the FFLO state is no longer
the same as in the non-superconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc
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In other words, the chiral-gravitational mixed anomaly
is una↵ected by the formation of the FFLO state.
We now try to restore the charge conservation sym-

metry by proliferating vortices in the superconducting
order parameter while keeping the pairing gap for the
Weyl fermions. If the vortices can be condensed with-
out breaking the translational symmetry, we will obtain

carries momentum 2Q. 
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through the intermediate Weyl semimetal phase [18], un-
like in 2D, where there is a critical point (plateau tran-
sition). The chiral anomaly also leads to the appearance
of Fermi arc surface states, since the action in Eq. (2)
fails to be gauge invariant in the presence of a boundary,
which makes the existence of a boundary-localized state
necessary [19].

Apart from giving rise to topological response and pro-
tected surface states, anomalies can also place strong re-
strictions on the possible e↵ect of electron-electron in-
teractions. In particular, anomalies prohibit opening
a gap without either breaking the protecting symme-
try or creating an exotic state with topological order,
as was recently discussed extensively in the context of
strongly-interacting 2D surface states of 3D symmetry-
protected topological orders [20, 21] in bosonic [22] and
fermionic [23–30] systems. In this Letter, we aim to
answer analogous questions in the case of a 3D Weyl
semimetal: can one open a gap in a Weyl semimetal with-
out breaking translational or charge conservation sym-
metries while preserving the chiral and the gravitational
anomalies, which lead to the electrical and thermal Hall
conductivities of Eqs. (3) and (4)? What would be the
universal properties of such gapped phases? We note here
that e↵ects of strong correlations in topological semimet-
als have been addressed before in Refs. [31–35], but from
di↵erent viewpoints.

To answer these questions we will adopt the strategy
known as “vortex condensation”, which has been suc-
cessful in the context of 2D surface states of 3D bulk
TI [24, 25]. We will start by inducing a phase-coherent
superconducting state in a magnetic Weyl semimetal
(with only a single pair of nodes for simplicity, although
the results readily generalize to any odd number of node
pairs), which violates the charge conservation. We then
attempt to produce a gapped insulator by proliferating
vortices and restoring the charge conservation symmetry,
while keeping the pairing gap intact. In order to make
this procedure well-defined, we will assume the supercon-
ducting pairing to be weak, i.e. the induced gap is taken
to be much smaller than vFQ, where vF is the Fermi ve-
locity of the Weyl cones. In this case it is impossible to
gap out the Weyl nodes by simply pushing them to the
edge or the center of the BZ, where they can mutually
annihilate without breaking translational symmetry. In
the language of the anomaly, we are demanding that the
coe�cient of the anomaly Q, which takes continuous val-
ues and is thus not strictly protected, is fixed throughout
the procedure.

It is easy to see that, in this situation, a BCS-type
pairing of time-reversed states can not produce a gapped
superconductor [36–39]. It is, however, possible to open
a gap by inducing a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO)-type superconducting state instead, where states
on each side of the two Weyl nodes are paired [37, 38].
Since pairing in the FFLO state may (approximately) be
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carry momentum 4Q. In general, this breaks transla-
tional symmetry, which may not be restored even when
the superconductivity is destroyed by proliferating vor-
tices. This is true, except when Q = G/4, where G
is the smallest nonzero reciprocal lattice vector. In this
case a gapped FFLO state does not break translational
symmetry. We will thus concentrate on the Q = G/4
case henceforth.
An important question is what happens to the Fermi

arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (6), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [40].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ [15]. This implies that, while the
electrical Hall conductivity in the FFLO state is no longer
the same as in the non-superconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc
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In other words, the chiral-gravitational mixed anomaly
is una↵ected by the formation of the FFLO state.
We now try to restore the charge conservation sym-

metry by proliferating vortices in the superconducting
order parameter while keeping the pairing gap for the
Weyl fermions. If the vortices can be condensed with-
out breaking the translational symmetry, we will obtain
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through the intermediate Weyl semimetal phase [18], un-
like in 2D, where there is a critical point (plateau tran-
sition). The chiral anomaly also leads to the appearance
of Fermi arc surface states, since the action in Eq. (2)
fails to be gauge invariant in the presence of a boundary,
which makes the existence of a boundary-localized state
necessary [19].

Apart from giving rise to topological response and pro-
tected surface states, anomalies can also place strong re-
strictions on the possible e↵ect of electron-electron in-
teractions. In particular, anomalies prohibit opening
a gap without either breaking the protecting symme-
try or creating an exotic state with topological order,
as was recently discussed extensively in the context of
strongly-interacting 2D surface states of 3D symmetry-
protected topological orders [20, 21] in bosonic [22] and
fermionic [23–30] systems. In this Letter, we aim to
answer analogous questions in the case of a 3D Weyl
semimetal: can one open a gap in a Weyl semimetal with-
out breaking translational or charge conservation sym-
metries while preserving the chiral and the gravitational
anomalies, which lead to the electrical and thermal Hall
conductivities of Eqs. (3) and (4)? What would be the
universal properties of such gapped phases? We note here
that e↵ects of strong correlations in topological semimet-
als have been addressed before in Refs. [31–35], but from
di↵erent viewpoints.

To answer these questions we will adopt the strategy
known as “vortex condensation”, which has been suc-
cessful in the context of 2D surface states of 3D bulk
TI [24, 25]. We will start by inducing a phase-coherent
superconducting state in a magnetic Weyl semimetal
(with only a single pair of nodes for simplicity, although
the results readily generalize to any odd number of node
pairs), which violates the charge conservation. We then
attempt to produce a gapped insulator by proliferating
vortices and restoring the charge conservation symmetry,
while keeping the pairing gap intact. In order to make
this procedure well-defined, we will assume the supercon-
ducting pairing to be weak, i.e. the induced gap is taken
to be much smaller than vFQ, where vF is the Fermi ve-
locity of the Weyl cones. In this case it is impossible to
gap out the Weyl nodes by simply pushing them to the
edge or the center of the BZ, where they can mutually
annihilate without breaking translational symmetry. In
the language of the anomaly, we are demanding that the
coe�cient of the anomaly Q, which takes continuous val-
ues and is thus not strictly protected, is fixed throughout
the procedure.
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pairing of time-reversed states can not produce a gapped
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a gap by inducing a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO)-type superconducting state instead, where states
on each side of the two Weyl nodes are paired [37, 38].
Since pairing in the FFLO state may (approximately) be

taken to occur independently in each Weyl cone, let us
consider a single (right-handed) Weyl fermion with sin-
glet pairing
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which is simply the Hamiltonian of a Dirac fermion
of mass �. This, however, leads to a density modu-
lation and thus broken translational symmetry. Since
�(Q) ⇠

P
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†
Q�ki carries momentum 2Q, a gauge-

invariant density modulation %(Q) ⇠ �⇤(�Q)�(Q) will
carry momentum 4Q. In general, this breaks transla-
tional symmetry, which may not be restored even when
the superconductivity is destroyed by proliferating vor-
tices. This is true, except when Q = G/4, where G
is the smallest nonzero reciprocal lattice vector. In this
case a gapped FFLO state does not break translational
symmetry. We will thus concentrate on the Q = G/4
case henceforth.
An important question is what happens to the Fermi

arc surface modes of the Weyl semimetal in the FFLO
state. The Fermi arc is in principle una↵ected by pair-
ing since it is spin-polarized. However, due to the e↵ec-
tive doubling of degrees of freedom, induced by pairing,
which is corrected by the factor of 1/2 in Eq. (6), the
Fermi arc get copied to the part of the BZ outside of the
Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the
translational symmetry breaking in the FFLO state [40].
When Q = G/4, however, this range is identical to the
size of the original BZ, which is another way to see why
the FFLO state does not break translational symmetry
when and only when the Weyl node separation is exactly
half the size of the BZ [15]. This implies that, while the
electrical Hall conductivity in the FFLO state is no longer
the same as in the non-superconducting Weyl semimetal
due to the breaking of the charge conservation symmetry,
the thermal Hall conductivity remains una↵ected and is
determined by the length of the Fermi (Majorana) arc
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In other words, the chiral-gravitational mixed anomaly
is una↵ected by the formation of the FFLO state.
We now try to restore the charge conservation sym-

metry by proliferating vortices in the superconducting
order parameter while keeping the pairing gap for the
Weyl fermions. If the vortices can be condensed with-
out breaking the translational symmetry, we will obtain

carries momentum 4Q. 

• In other words, FFLO does not break translational 
symmetry when Weyl node separation is exactly 

half the BZ size. 

Q = G/4
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Vortex condensation in FFLO state

• n-fold vortex (Φ=nhc/2e) in FFLO paired state: get n 
chiral Majorana modes in the vortex core.

3

where r =
p
x2 + y2, �(r) is the real magnitude of the

superconducting order parameter and ✓ is the azimuthal
angle in the xy-plane. The eigenstates ofH may be easily
found explicitly if one assumes �(r) = � = const [8]. In
this case one finds exactly n chiral modes, localized in
the vortex core, with the following wavefunctions

 pkz (r) =
(�r/vF )

n
2

p
Np

0

BBBB@

ei
⇡
4 ei(p�1)✓Kn

2 �p+1

⇣
�r
vF

⌘

0
0

e�i⇡
4 e�i(n�p)✓Kn

2 �p

⇣
�r
vF

⌘

1

CCCCA
,

(11)

where Np is a normalization factor given by

Np =
⇡3/2v2F
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, (12)

which is finite and positive when p = 1, . . . , n. As men-
tioned above, these localized modes are chiral with the
dispersion ✏p(kz) = vF kz. The degeneracy of the chiral
modes with respect to the eigenvalue p is not protected
and is lifted when perturbations, such as a finite Fermi
energy, are introduced. A finite Fermi energy leads to a
term �✏F ⌧z in the BdG Hamiltonian Eq. (10). The prob-
lem may no longer be solved exactly (except at kz = 0),
but may be solved perturbatively. At first order one ob-
tains

✏p(kz) = ✏F

✓
1� 2p

n+ 1

◆
+ vF kz. (13)

Thus, even though the degeneracy is lifted, exactly n
fermionic modes are still always present at zero energy
in the core of an n-fold vortex. This is in contrast to
the analogous problem of vortex bound states in a su-
perconducting 2D Dirac fermion [9], in which case there
is always a single zero mode for odd vorticities and no
zero modes for even vorticities. The left-handed Weyl
node will have an identical set of modes, but with the
left-handed dispersion (simply send vF ! �vF ).

The nontrivial helical Majorana modes in a straight,
vertical vortex with odd vorticity can also be understood
using the argument in the main text. Recall that a Ma-
jorana zero mode is induced whenever a odd vortex pen-
etrates the xy-plane. For a straight, vertical vortex the

translation Tz is a good symmetry. We can therefore view
the vortex line as a 1D translationally-invariant chain
with one Majorana zero mode per unit cell. Such a sys-
tem has a Lieb-Schultz-Mattis type of constraints on the
low energy theory, and cannot be gapped without break-
ing translation symmetry [10].

For even vorticity, taking ✏F = 0, pairs of Majorana
modes may be combined into chiral 1D Weyl modes.
Since the charge conservation is already violated, pairing
terms are always present for these Weyl modes, and they
are gapped out by the ordinary BCS pairing interaction
of the form

H = vF
X

kz

[kzc
†
kz
⌧zckz

+�(c†kz
i⌧yc†�kz

+ h.c.)/2], (14)

where the eigenvalues of ⌧z label the chirality of the 1D
Weyl modes. This state is also stable to small fluctua-
tions in ✏F since it is gapped. Thus vortices with even
vorticity do not have zero modes in their cores.
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Vortex condensation in FFLO state

• Any even number 2n of Majorana vortex modes may be 
combined into n 1D Weyl fermion modes, which are 

gapped out by pairing:
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Vortex condensation in FFLO state

• Any even number 2n of Majorana vortex modes may be 
combined into n 1D Weyl fermion modes, which are 

gapped out by pairing:
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angle in the xy-plane. The eigenstates ofH may be easily
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fermionic modes are still always present at zero energy
in the core of an n-fold vortex. This is in contrast to
the analogous problem of vortex bound states in a su-
perconducting 2D Dirac fermion [9], in which case there
is always a single zero mode for odd vorticities and no
zero modes for even vorticities. The left-handed Weyl
node will have an identical set of modes, but with the
left-handed dispersion (simply send vF ! �vF ).

The nontrivial helical Majorana modes in a straight,
vertical vortex with odd vorticity can also be understood
using the argument in the main text. Recall that a Ma-
jorana zero mode is induced whenever a odd vortex pen-
etrates the xy-plane. For a straight, vertical vortex the

translation Tz is a good symmetry. We can therefore view
the vortex line as a 1D translationally-invariant chain
with one Majorana zero mode per unit cell. Such a sys-
tem has a Lieb-Schultz-Mattis type of constraints on the
low energy theory, and cannot be gapped without break-
ing translation symmetry [10].

For even vorticity, taking ✏F = 0, pairs of Majorana
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Since the charge conservation is already violated, pairing
terms are always present for these Weyl modes, and they
are gapped out by the ordinary BCS pairing interaction
of the form

H = vF
X

kz

[kzc
†
kz
⌧zckz

+�(c†kz
i⌧yc†�kz

+ h.c.)/2], (14)

where the eigenvalues of ⌧z label the chirality of the 1D
Weyl modes. This state is also stable to small fluctua-
tions in ✏F since it is gapped. Thus vortices with even
vorticity do not have zero modes in their cores.

[1] R. Thorngren and D. V. Else, Phys. Rev. X 8, 011040
(2018).

[2] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A.
Pesin, and A. Vishwanath, Phys. Rev. X 4, 031035
(2014).

[3] E. Lieb, T. Schultz, and D. Mattis, Annals of Physics
16, 407 (1961).

[4] M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000).
[5] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
[6] X.-Y. Song, Y.-C. He, A. Vishwanath, and C. Wang, To

appear (2019).
[7] L. Hao, R. Wang, P. Hosur, and C. S. Ting, Phys. Rev.

B 96, 094530 (2017).
[8] T. Schuster, T. Iadecola, C. Chamon, R. Jackiw, and

S.-Y. Pi, Phys. Rev. B 94, 115110 (2016).
[9] T. Fukui and T. Fujiwara, Phys. Rev. B 82, 184536

(2010).
[10] T. H. Hsieh, G. B. Halász, and T. Grover, Phys. Rev.

Lett. 117, 166802 (2016).

• An odd number of Majorana modes can not be 
eliminated without breaking translational symmetry, thus 

a fundamental SC vortex may not be condensed. 

� =
hc

2e
= ⇡

<latexit sha1_base64="OYHtRWr2iGDYTBLCPR9mftn7Egg=">AAACBnicbVDLSsNAFL3xWesr6lKEwSK4KkkVdCMU3bisYB/QhDKZTpqhkwczE6GErNz4K25cKOLWb3Dn3zhps9DWAxcO59zLvfd4CWdSWda3sbS8srq2Xtmobm5t7+yae/sdGaeC0DaJeSx6HpaUs4i2FVOc9hJBcehx2vXGN4XffaBCsji6V5OEuiEeRcxnBCstDcwjpxUwdIUcX2CSBYigPGsgmhdSwgZmzapbU6BFYpekBiVaA/PLGcYkDWmkCMdS9m0rUW6GhWKE07zqpJImmIzxiPY1jXBIpZtN38jRiVaGyI+Frkihqfp7IsOhlJPQ050hVoGc9wrxP6+fKv/SzViUpIpGZLbITzlSMSoyQUMmKFF8ogkmgulbEQmwDkTp5Ko6BHv+5UXSadTts3rj7rzWvC7jqMAhHMMp2HABTbiFFrSBwCM8wyu8GU/Gi/FufMxal4xy5gD+wPj8AWIdlyc=</latexit>

~ = c = e = 1
<latexit sha1_base64="EQ+ifeuMDkPjtaprWPZdbWRNaYA=">AAAB+nicbVDLSgNBEOz1GeNro0cvg0HwFHajoBch6MVjBPOAZAmzk95kyOyDmVklrPkULx4U8eqXePNvnCR70MSCgqKqm+kpPxFcacf5tlZW19Y3Ngtbxe2d3b19u3TQVHEqGTZYLGLZ9qlCwSNsaK4FthOJNPQFtvzRzTRvPaBUPI7u9ThBL6SDiAecUW2snl3qDn0qyRVhhmjo9uyyU3FmIMvCzUUZctR79le3H7M0xEgzQZXquE6ivYxKzZnASbGbKkwoG9EBdoyMaIjKy2anT8iJcfokiKVhpMnM/b2R0VCpceibyZDqoVrMpuZ/WSfVwaWX8ShJNUZs/lCQCqJjMu2B9LlEpsXYCMokN7cSNqSSMm3aKpoS3MUvL4tmteKeVap35+XadV5HAY7gGE7BhQuowS3UoQEMHuEZXuHNerJerHfrYz66YuU7h/AH1ucP0WSRwg==</latexit>



Vortex condensation in FFLO state

• A double vortex does not have Majorana modes, but 
may still not be condensed. 

• This follows from the fact that the insulating state we 
want to obtain must preserve the chiral anomaly, i.e. 

must have a Hall conductivity of half conductivity 
quantum per atomic plane:
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Vortex condensation in FFLO state

• A vortex will induce a charge when intersecting an 
atomic plane:

L =
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• Since vortex is a loop, it will always intersect any atomic 
plane twice, inducing a pair of opposite charges, whose 

effect will thus cancel. 



Vortex condensation in FFLO state

• But consider a crystal with a dislocation. 3

FIG. 1. (a) A vortex loop linked with a dislocation with the
Burgers vector B = ẑ. Fractional quantum numbers and non-
trivial braiding statistics can emerge in such a configuration.
(b) A pair of vortex loops linked with a dislocation with the
Burgers vector B = ẑ. Braiding the two loops may be accom-
plished by adiabatically shrinking the left loop, then moving
it to the right by crossing the disc, enclosed by the right loop,
then expanding and moving it back to the original place with-
out crossing the disc, enclosed by the second loop.

a gapped state that is fully symmetric. This state must
have �xy = 1/4⇡ to match the chiral anomaly. To accom-
plish this, we need to understand carefully what does it
mean to condense vortices, which form loops in 3D, with-
out breaking the translational symmetry. In the simpler
case of condensing particles, we would want the particle
to carry zero momentum (up to a gauge choice). Now
we want to achieve the same goal for vortex loops, which
means that we want to condense vortex loops that trans-
form trivially under translation. A good way to probe the
properties of a loop under translation is to link the loop
to a lattice dislocation with the Burgers vector B = ẑ,
which inserts a half xy-plane, ending on a dislocation line,
as shown in Fig. 1(a). If a vortex is truly trivial under
translation, such a link should not create any nontrivial
e↵ect.

Consider first a vortex loop with an odd vorticity, trap-
ping a magnetic flux � = (2n + 1)⇡. A straightforward
calculation shows that each time the vortex penetrates
an atomic xy-plane, a Majorana zero mode is trapped at
the intersection [15]. An ordinary closed loop contains
an even number of such zero modes since the xy-plane
is penetrated an even number of times. However when
linked with a dislocation with B = ẑ, the total number
of such penetrations becomes odd and the vortex now
carries an unpaired Majorana zero mode.

The e↵ect becomes more drastic when two vortices
with an odd vorticity are simultaneously linked to a
B = ẑ dislocation. In this configuration we can con-
sider braiding between the two vortices, as illustrated in
Fig. 1(b). This process was first discussed in Ref. [41]
and is known as three-loop braiding – the only di↵erence
in our case is that the “base” loop is a static dislocation
rather than a dynamical excitation. Because of the Majo-
rana zero modes, carried by the vortices when linked with
the dislocation, the loop braiding process is non-abelian.

The above reasoning shows that odd vortices should
be considered nontrivial under translation symmetry and
cannot be condensed without breaking the symmetry.

Yet another way to see this is that if we were to con-
dense such vortices, inserting a dislocation into the sys-
tem would require the inserted half-plane to be out of
the bulk ground state to cancel the nontrivial braiding
statistics of the linked vortices (only then a condensate
is possible). This implies an energy cost ⇠ O(L2) in-
stead of ⇠ O(L) for an ordinary dislocation, where L is
the system size. This simply means that the translation
symmetry has actually been broken in the process.
Now what about vortices with even vorticity? There is

no unpaired Majorana zero mode in this case, even when
linked with a dislocation [15]. But the braiding statistics
between two such vortices, linked with the same dislo-
cation, can still be nontrivial (though must be abelian).
Since to match the chiral anomaly we need the Hall con-
ductivity of �xy = 1/4⇡ per layer, a two-fold vortex (with
flux � = 2⇡) will induce a semionic particle with the
self-statistical phase ✓ = ⇡�xy/(1/2⇡) = ⇡/2 each time
it penetrates the xy-plane. As before, an ordinary two-
fold vortex loop will not possess nontrivial self-statistics
since the xy-plane is penetrated twice. But when linked
with a B = ẑ dislocation, each vortex traps an unpaired
semion, which leads to semion braiding statistics for the
two-loop braiding process in Fig. 1(b). This nontrivial
abelian braiding of 2⇡ vortices, linked to dislocations, is
the fingerprint of the chiral anomaly when the U(1) sym-
metry is broken. We thus come to the conclusion that
two-fold vortices are also nontrivial under translations
and cannot be condensed.
Analogous considerations imply that four-fold (� =

4⇡) vortex loops have bosonic statistics even when linked
with dislocations and thus may be condensed. This pro-
duces an insulating state, which does not break either the
charge conservation or the translational symmetry and
has an electrical Hall conductivity �xy = 1/4⇡ and a ther-
mal Hall conductivity xy = (1/4⇡)(⇡2k2BT/3) per layer.
This is an insulating state that preserves all the symme-
tries and both the chiral and the gravitational anomaly
of a Weyl semimetal with 2Q = ⇡.

The insulator thus obtained is not a trivial one – it
possesses a Z4 topological order [42, 43]. The uncon-
densed one-, two- and three-fold vortices survive as non-
trivial gapped loop excitations in the topological order,
with inherited nontrivial braiding statistics when linked
with dislocations. There are also nontrivial particle ex-
citations. The Bogoliubov fermion in the paired state
survives as a neutral fermion excitation. The conden-
sation of 4⇡ vortices also leads to the emergence of a
charge-1/2 boson as a gapped excitation – this can be
understood as a point defect which, when taken around
the condensed 4⇡ vortex loop, acquires a Berry phase of
2⇡. Furthermore, due to a nontrivial mutual braiding
statistical phase of ⇡ between a ⇡ vortex and a 4⇡ vor-
tex, when linked with a dislocation, the condensation of
4⇡ vortices will also bind a 1/4-charge on a ⇡ vortex.

In fact, all of the above properties are closely related

• In this case vortex loop may intersect the extra half-
plane only once, inducing uncompensated 1/2 charge. 
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• In this case vortex loop may intersect the extra half-
plane only once, inducing uncompensated 1/2 charge. 3

FIG. 1. (a) A vortex loop linked with a dislocation with the
Burgers vector B = ẑ. Fractional quantum numbers and non-
trivial braiding statistics can emerge in such a configuration.
(b) A pair of vortex loops linked with a dislocation with the
Burgers vector B = ẑ. Braiding the two loops may be accom-
plished by adiabatically shrinking the left loop, then moving
it to the right by crossing the disc, enclosed by the right loop,
then expanding and moving it back to the original place with-
out crossing the disc, enclosed by the second loop.

a gapped state that is fully symmetric. This state must
have �xy = 1/4⇡ to match the chiral anomaly. To accom-
plish this, we need to understand carefully what does it
mean to condense vortices, which form loops in 3D, with-
out breaking the translational symmetry. In the simpler
case of condensing particles, we would want the particle
to carry zero momentum (up to a gauge choice). Now
we want to achieve the same goal for vortex loops, which
means that we want to condense vortex loops that trans-
form trivially under translation. A good way to probe the
properties of a loop under translation is to link the loop
to a lattice dislocation with the Burgers vector B = ẑ,
which inserts a half xy-plane, ending on a dislocation line,
as shown in Fig. 1(a). If a vortex is truly trivial under
translation, such a link should not create any nontrivial
e↵ect.

Consider first a vortex loop with an odd vorticity, trap-
ping a magnetic flux � = (2n + 1)⇡. A straightforward
calculation shows that each time the vortex penetrates
an atomic xy-plane, a Majorana zero mode is trapped at
the intersection [15]. An ordinary closed loop contains
an even number of such zero modes since the xy-plane
is penetrated an even number of times. However when
linked with a dislocation with B = ẑ, the total number
of such penetrations becomes odd and the vortex now
carries an unpaired Majorana zero mode.

The e↵ect becomes more drastic when two vortices
with an odd vorticity are simultaneously linked to a
B = ẑ dislocation. In this configuration we can con-
sider braiding between the two vortices, as illustrated in
Fig. 1(b). This process was first discussed in Ref. [41]
and is known as three-loop braiding – the only di↵erence
in our case is that the “base” loop is a static dislocation
rather than a dynamical excitation. Because of the Majo-
rana zero modes, carried by the vortices when linked with
the dislocation, the loop braiding process is non-abelian.

The above reasoning shows that odd vortices should
be considered nontrivial under translation symmetry and
cannot be condensed without breaking the symmetry.

Yet another way to see this is that if we were to con-
dense such vortices, inserting a dislocation into the sys-
tem would require the inserted half-plane to be out of
the bulk ground state to cancel the nontrivial braiding
statistics of the linked vortices (only then a condensate
is possible). This implies an energy cost ⇠ O(L2) in-
stead of ⇠ O(L) for an ordinary dislocation, where L is
the system size. This simply means that the translation
symmetry has actually been broken in the process.
Now what about vortices with even vorticity? There is

no unpaired Majorana zero mode in this case, even when
linked with a dislocation [15]. But the braiding statistics
between two such vortices, linked with the same dislo-
cation, can still be nontrivial (though must be abelian).
Since to match the chiral anomaly we need the Hall con-
ductivity of �xy = 1/4⇡ per layer, a two-fold vortex (with
flux � = 2⇡) will induce a semionic particle with the
self-statistical phase ✓ = ⇡�xy/(1/2⇡) = ⇡/2 each time
it penetrates the xy-plane. As before, an ordinary two-
fold vortex loop will not possess nontrivial self-statistics
since the xy-plane is penetrated twice. But when linked
with a B = ẑ dislocation, each vortex traps an unpaired
semion, which leads to semion braiding statistics for the
two-loop braiding process in Fig. 1(b). This nontrivial
abelian braiding of 2⇡ vortices, linked to dislocations, is
the fingerprint of the chiral anomaly when the U(1) sym-
metry is broken. We thus come to the conclusion that
two-fold vortices are also nontrivial under translations
and cannot be condensed.
Analogous considerations imply that four-fold (� =

4⇡) vortex loops have bosonic statistics even when linked
with dislocations and thus may be condensed. This pro-
duces an insulating state, which does not break either the
charge conservation or the translational symmetry and
has an electrical Hall conductivity �xy = 1/4⇡ and a ther-
mal Hall conductivity xy = (1/4⇡)(⇡2k2BT/3) per layer.
This is an insulating state that preserves all the symme-
tries and both the chiral and the gravitational anomaly
of a Weyl semimetal with 2Q = ⇡.

The insulator thus obtained is not a trivial one – it
possesses a Z4 topological order [42, 43]. The uncon-
densed one-, two- and three-fold vortices survive as non-
trivial gapped loop excitations in the topological order,
with inherited nontrivial braiding statistics when linked
with dislocations. There are also nontrivial particle ex-
citations. The Bogoliubov fermion in the paired state
survives as a neutral fermion excitation. The conden-
sation of 4⇡ vortices also leads to the emergence of a
charge-1/2 boson as a gapped excitation – this can be
understood as a point defect which, when taken around
the condensed 4⇡ vortex loop, acquires a Berry phase of
2⇡. Furthermore, due to a nontrivial mutual braiding
statistical phase of ⇡ between a ⇡ vortex and a 4⇡ vor-
tex, when linked with a dislocation, the condensation of
4⇡ vortices will also bind a 1/4-charge on a ⇡ vortex.

In fact, all of the above properties are closely related

• Two such charges will have semion exchange statistics: 

✓ = 2⇡2�xy =
⇡

2
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FIG. 1. (a) A vortex loop linked with a dislocation with the
Burgers vector B = ẑ. Fractional quantum numbers and non-
trivial braiding statistics can emerge in such a configuration.
(b) A pair of vortex loops linked with a dislocation with the
Burgers vector B = ẑ. Braiding the two loops may be accom-
plished by adiabatically shrinking the left loop, then moving
it to the right by crossing the disc, enclosed by the right loop,
then expanding and moving it back to the original place with-
out crossing the disc, enclosed by the second loop.

a gapped state that is fully symmetric. This state must
have �xy = 1/4⇡ to match the chiral anomaly. To accom-
plish this, we need to understand carefully what does it
mean to condense vortices, which form loops in 3D, with-
out breaking the translational symmetry. In the simpler
case of condensing particles, we would want the particle
to carry zero momentum (up to a gauge choice). Now
we want to achieve the same goal for vortex loops, which
means that we want to condense vortex loops that trans-
form trivially under translation. A good way to probe the
properties of a loop under translation is to link the loop
to a lattice dislocation with the Burgers vector B = ẑ,
which inserts a half xy-plane, ending on a dislocation line,
as shown in Fig. 1(a). If a vortex is truly trivial under
translation, such a link should not create any nontrivial
e↵ect.

Consider first a vortex loop with an odd vorticity, trap-
ping a magnetic flux � = (2n + 1)⇡. A straightforward
calculation shows that each time the vortex penetrates
an atomic xy-plane, a Majorana zero mode is trapped at
the intersection [15]. An ordinary closed loop contains
an even number of such zero modes since the xy-plane
is penetrated an even number of times. However when
linked with a dislocation with B = ẑ, the total number
of such penetrations becomes odd and the vortex now
carries an unpaired Majorana zero mode.

The e↵ect becomes more drastic when two vortices
with an odd vorticity are simultaneously linked to a
B = ẑ dislocation. In this configuration we can con-
sider braiding between the two vortices, as illustrated in
Fig. 1(b). This process was first discussed in Ref. [41]
and is known as three-loop braiding – the only di↵erence
in our case is that the “base” loop is a static dislocation
rather than a dynamical excitation. Because of the Majo-
rana zero modes, carried by the vortices when linked with
the dislocation, the loop braiding process is non-abelian.

The above reasoning shows that odd vortices should
be considered nontrivial under translation symmetry and
cannot be condensed without breaking the symmetry.

Yet another way to see this is that if we were to con-
dense such vortices, inserting a dislocation into the sys-
tem would require the inserted half-plane to be out of
the bulk ground state to cancel the nontrivial braiding
statistics of the linked vortices (only then a condensate
is possible). This implies an energy cost ⇠ O(L2) in-
stead of ⇠ O(L) for an ordinary dislocation, where L is
the system size. This simply means that the translation
symmetry has actually been broken in the process.
Now what about vortices with even vorticity? There is

no unpaired Majorana zero mode in this case, even when
linked with a dislocation [15]. But the braiding statistics
between two such vortices, linked with the same dislo-
cation, can still be nontrivial (though must be abelian).
Since to match the chiral anomaly we need the Hall con-
ductivity of �xy = 1/4⇡ per layer, a two-fold vortex (with
flux � = 2⇡) will induce a semionic particle with the
self-statistical phase ✓ = ⇡�xy/(1/2⇡) = ⇡/2 each time
it penetrates the xy-plane. As before, an ordinary two-
fold vortex loop will not possess nontrivial self-statistics
since the xy-plane is penetrated twice. But when linked
with a B = ẑ dislocation, each vortex traps an unpaired
semion, which leads to semion braiding statistics for the
two-loop braiding process in Fig. 1(b). This nontrivial
abelian braiding of 2⇡ vortices, linked to dislocations, is
the fingerprint of the chiral anomaly when the U(1) sym-
metry is broken. We thus come to the conclusion that
two-fold vortices are also nontrivial under translations
and cannot be condensed.
Analogous considerations imply that four-fold (� =

4⇡) vortex loops have bosonic statistics even when linked
with dislocations and thus may be condensed. This pro-
duces an insulating state, which does not break either the
charge conservation or the translational symmetry and
has an electrical Hall conductivity �xy = 1/4⇡ and a ther-
mal Hall conductivity xy = (1/4⇡)(⇡2k2BT/3) per layer.
This is an insulating state that preserves all the symme-
tries and both the chiral and the gravitational anomaly
of a Weyl semimetal with 2Q = ⇡.

The insulator thus obtained is not a trivial one – it
possesses a Z4 topological order [42, 43]. The uncon-
densed one-, two- and three-fold vortices survive as non-
trivial gapped loop excitations in the topological order,
with inherited nontrivial braiding statistics when linked
with dislocations. There are also nontrivial particle ex-
citations. The Bogoliubov fermion in the paired state
survives as a neutral fermion excitation. The conden-
sation of 4⇡ vortices also leads to the emergence of a
charge-1/2 boson as a gapped excitation – this can be
understood as a point defect which, when taken around
the condensed 4⇡ vortex loop, acquires a Berry phase of
2⇡. Furthermore, due to a nontrivial mutual braiding
statistical phase of ⇡ between a ⇡ vortex and a 4⇡ vor-
tex, when linked with a dislocation, the condensation of
4⇡ vortices will also bind a 1/4-charge on a ⇡ vortex.

In fact, all of the above properties are closely related

• Two such charges will have semion exchange statistics. 

• This means that, inserting a dislocation in a crystal with 
condensed vortices will cost an energy O(L2)
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• This implies broken translational symmetry. 
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• Following the same logic, quadruple vortices have 
bosonic statistics and thus may be condensed without 

breaking any symmetries. 

• This is an insulating state that preserves the chiral 
anomaly and does not break any symmetries.
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Nature of the insulating state

• f experiences the same electronic structure as the Weyl 
FFLO superconductor.
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ized Hamiltonian

H0 = sin kx�
x + sin ky�

y � (cos kz � cosQ)�z

+m (2� cos kx � cos ky)�
z , (2)

where Q = ⇡/2 and the lattice constant has been set to
one.
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FIG. 1. Energy eigenstates for ky = 0 slice along kz cor-
responding to Nambu Hamiltonians given by Eq. 4 (a) and
9 (b). (a) The zero mode spans the entire Brillouin zone
due to doubling of degrees of freedom in the Nambu picture.
(b) Intranodal interaction gaps out the bulk Weyl nodes but
leaves the surface states unaltered. For both figures m = 1.1,
Nx = 50 and for (b) � = 0.5.

The superconducting s-wave coupling occurs intran-
odally, i.e. coupling states with momentum k to those of
momentum 2Q�k, where Q = (0, 0,⇡/2). This situation
requires a Nambu basis �†

k = (c†k", c
†
k#, c2Q�k", c2Q�k#)

and the Nambu Hamiltonian then takes the form

HNambu
0 =

1

2

X

k

�†
k

✓
H0(k) 0

0 �HT
0 (2Q� k)

◆
�k .

(3)

In order to calculate the Fermi arc surface states, we
break the translational symmetry along the x-direction,
leaving a finite-size sample of Nx atomic layers. This
leaves ky and kz as good quantum numbers. Fourier
transforming kx to a real-space coordinates nx, the

Hamiltonian takes the form

HNambu
0 =

1

2

X

nxkykz

�†
nxkykz

⇥
h(ky, kz)�nxkykz

+ h+�nx+1kykz + h��nx�1kykz

⇤
.

(4)

with

h(ky, kz) =

✓
h0(ky, kz) 0

0 �hT
0 (�ky, 2Q� kz)

◆
, (5)

h+ = �1

2
(i�x +m⌧z�z) = h†

� , (6)

where h0(ky, kz) = sin ky�y+
⇥
� (cos kz�cosQ)+m(2�

cos ky)
⇤
�z, and ⌧ are Pauli matrices in the Nambu pseu-

dospin space. Diagonalizing this Hamiltonian at every
kz for the ky = 0 slice gives eigenenergies as shown in
Fig. 1a. Since the components of the Nambu spinor in-
volve states at momenta k and 2Q�k, the set of eigenen-
ergies e↵ectively involve states, shifted by 2Q = ⇡ rela-
tive to each other. The same principle applies to the
Fermi surface states which now span the whole Brillouin
zone. Notice that this is purely the result of the doubling
of degrees of freedom in the Nambu formalism. Naturally
this has no e↵ect on the bulk Weyl nodes at kz = ±Q.
Now let us observe what happens when we couple the

two Nambu copies in Eq. 3 with the FFLO pairing inter-
action of the form

Hint =
1

2

X

k

�†
k�⌧y�y�k . (7)

Under a Fourier transform of kx, we arrive at

Hint =
�

2

X

nxkykz

�†
nxkykz

⌧y�y�nxkykz , (8)

such that our full Hamiltonian is now given by

H = HNambu
0 +Hint . (9)

When this full Hamiltonian is now diagonalised at every
kz for the ky = 0 slice we arrive at Fig. 1b. While the
bulk states are now gapped, the Fermi arc, spanning the
whole Brillouin zone, remains una↵ected.

HELICAL MAJORANA FERMIONS IN A
VERTICAL VORTEX LINE

Let us consider a straight-line vortex of vorticity n
along the z-direction, which we will take to coincide with
the direction of the vector 2Q, separating the pair of
Weyl nodes. The corresponding Bogoliubov-de Gennes
(BdG) Hamiltonian is given by

H = �ivF ⌧
z(�x@x + �y@y) + vF ⌧

z�zkz

+ �(r)[cos(n✓)⌧x � sin(n✓)⌧y], (10)
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ized Hamiltonian

H0 = sin kx�
x + sin ky�

y � (cos kz � cosQ)�z

+m (2� cos kx � cos ky)�
z , (2)

where Q = ⇡/2 and the lattice constant has been set to
one.
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FIG. 1. Energy eigenstates for ky = 0 slice along kz cor-
responding to Nambu Hamiltonians given by Eq. 4 (a) and
9 (b). (a) The zero mode spans the entire Brillouin zone
due to doubling of degrees of freedom in the Nambu picture.
(b) Intranodal interaction gaps out the bulk Weyl nodes but
leaves the surface states unaltered. For both figures m = 1.1,
Nx = 50 and for (b) � = 0.5.

The superconducting s-wave coupling occurs intran-
odally, i.e. coupling states with momentum k to those of
momentum 2Q�k, where Q = (0, 0,⇡/2). This situation
requires a Nambu basis �†

k = (c†k", c
†
k#, c2Q�k", c2Q�k#)

and the Nambu Hamiltonian then takes the form

HNambu
0 =

1

2
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0 �HT
0 (2Q� k)
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(3)

In order to calculate the Fermi arc surface states, we
break the translational symmetry along the x-direction,
leaving a finite-size sample of Nx atomic layers. This
leaves ky and kz as good quantum numbers. Fourier
transforming kx to a real-space coordinates nx, the

Hamiltonian takes the form

HNambu
0 =

1
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⇥
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where h0(ky, kz) = sin ky�y+
⇥
� (cos kz�cosQ)+m(2�

cos ky)
⇤
�z, and ⌧ are Pauli matrices in the Nambu pseu-

dospin space. Diagonalizing this Hamiltonian at every
kz for the ky = 0 slice gives eigenenergies as shown in
Fig. 1a. Since the components of the Nambu spinor in-
volve states at momenta k and 2Q�k, the set of eigenen-
ergies e↵ectively involve states, shifted by 2Q = ⇡ rela-
tive to each other. The same principle applies to the
Fermi surface states which now span the whole Brillouin
zone. Notice that this is purely the result of the doubling
of degrees of freedom in the Nambu formalism. Naturally
this has no e↵ect on the bulk Weyl nodes at kz = ±Q.
Now let us observe what happens when we couple the

two Nambu copies in Eq. 3 with the FFLO pairing inter-
action of the form

Hint =
1

2

X

k

�†
k�⌧y�y�k . (7)

Under a Fourier transform of kx, we arrive at

Hint =
�

2

X

nxkykz

�†
nxkykz

⌧y�y�nxkykz , (8)

such that our full Hamiltonian is now given by

H = HNambu
0 +Hint . (9)

When this full Hamiltonian is now diagonalised at every
kz for the ky = 0 slice we arrive at Fig. 1b. While the
bulk states are now gapped, the Fermi arc, spanning the
whole Brillouin zone, remains una↵ected.

HELICAL MAJORANA FERMIONS IN A
VERTICAL VORTEX LINE

Let us consider a straight-line vortex of vorticity n
along the z-direction, which we will take to coincide with
the direction of the vector 2Q, separating the pair of
Weyl nodes. The corresponding Bogoliubov-de Gennes
(BdG) Hamiltonian is given by

H = �ivF ⌧
z(�x@x + �y@y) + vF ⌧

z�zkz

+ �(r)[cos(n✓)⌧x � sin(n✓)⌧y], (10)

�xy = 0
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c = b1b2f
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• b is a charge-1/2 boson, while f is a neutral fermion. 

• b exists in a layered bosonic IQH state:

�xy = 2(1/2)2/2⇡ = 1/4⇡
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• b is a charge-1/2 boson, while f is a neutral fermion. 

• b exists in a layered bosonic IQH state.

• This state is the 3D analog of the “Pfaffian-antisemion” 
state, described before. 

• b and f are coupled to a Z4 gauge field which results 
from the 4-fold vortex condensation. 



Nontrivial generalization of FQHE to 3D

• Quasiparticles carry flux of 2π/m and thus are anyons with 
the braiding phase:

L =
m

4⇡
✏µ⌫�aµ@⌫a� � 1

2⇡
✏µ⌫�Aµ@⌫a� + aµj

µ
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Nontrivial generalization of FQHE to 3D

• In our case the analog of this is that 2π vortices, when linked 
with a dislocation, have the abelian braiding phase:

3

FIG. 1. (a) A vortex loop linked with a dislocation with the
Burgers vector B = ẑ. Fractional quantum numbers and non-
trivial braiding statistics can emerge in such a configuration.
(b) A pair of vortex loops linked with a dislocation with the
Burgers vector B = ẑ. Braiding the two loops may be accom-
plished by adiabatically shrinking the left loop, then moving
it to the right by crossing the disc, enclosed by the right loop,
then expanding and moving it back to the original place with-
out crossing the disc, enclosed by the second loop.

a gapped state that is fully symmetric. This state must
have �xy = 1/4⇡ to match the chiral anomaly. To accom-
plish this, we need to understand carefully what does it
mean to condense vortices, which form loops in 3D, with-
out breaking the translational symmetry. In the simpler
case of condensing particles, we would want the particle
to carry zero momentum (up to a gauge choice). Now
we want to achieve the same goal for vortex loops, which
means that we want to condense vortex loops that trans-
form trivially under translation. A good way to probe the
properties of a loop under translation is to link the loop
to a lattice dislocation with the Burgers vector B = ẑ,
which inserts a half xy-plane, ending on a dislocation line,
as shown in Fig. 1(a). If a vortex is truly trivial under
translation, such a link should not create any nontrivial
e↵ect.

Consider first a vortex loop with an odd vorticity, trap-
ping a magnetic flux � = (2n + 1)⇡. A straightforward
calculation shows that each time the vortex penetrates
an atomic xy-plane, a Majorana zero mode is trapped at
the intersection [15]. An ordinary closed loop contains
an even number of such zero modes since the xy-plane
is penetrated an even number of times. However when
linked with a dislocation with B = ẑ, the total number
of such penetrations becomes odd and the vortex now
carries an unpaired Majorana zero mode.

The e↵ect becomes more drastic when two vortices
with an odd vorticity are simultaneously linked to a
B = ẑ dislocation. In this configuration we can con-
sider braiding between the two vortices, as illustrated in
Fig. 1(b). This process was first discussed in Ref. [41]
and is known as three-loop braiding – the only di↵erence
in our case is that the “base” loop is a static dislocation
rather than a dynamical excitation. Because of the Majo-
rana zero modes, carried by the vortices when linked with
the dislocation, the loop braiding process is non-abelian.

The above reasoning shows that odd vortices should
be considered nontrivial under translation symmetry and
cannot be condensed without breaking the symmetry.

Yet another way to see this is that if we were to con-
dense such vortices, inserting a dislocation into the sys-
tem would require the inserted half-plane to be out of
the bulk ground state to cancel the nontrivial braiding
statistics of the linked vortices (only then a condensate
is possible). This implies an energy cost ⇠ O(L2) in-
stead of ⇠ O(L) for an ordinary dislocation, where L is
the system size. This simply means that the translation
symmetry has actually been broken in the process.
Now what about vortices with even vorticity? There is

no unpaired Majorana zero mode in this case, even when
linked with a dislocation [15]. But the braiding statistics
between two such vortices, linked with the same dislo-
cation, can still be nontrivial (though must be abelian).
Since to match the chiral anomaly we need the Hall con-
ductivity of �xy = 1/4⇡ per layer, a two-fold vortex (with
flux � = 2⇡) will induce a semionic particle with the
self-statistical phase ✓ = ⇡�xy/(1/2⇡) = ⇡/2 each time
it penetrates the xy-plane. As before, an ordinary two-
fold vortex loop will not possess nontrivial self-statistics
since the xy-plane is penetrated twice. But when linked
with a B = ẑ dislocation, each vortex traps an unpaired
semion, which leads to semion braiding statistics for the
two-loop braiding process in Fig. 1(b). This nontrivial
abelian braiding of 2⇡ vortices, linked to dislocations, is
the fingerprint of the chiral anomaly when the U(1) sym-
metry is broken. We thus come to the conclusion that
two-fold vortices are also nontrivial under translations
and cannot be condensed.
Analogous considerations imply that four-fold (� =

4⇡) vortex loops have bosonic statistics even when linked
with dislocations and thus may be condensed. This pro-
duces an insulating state, which does not break either the
charge conservation or the translational symmetry and
has an electrical Hall conductivity �xy = 1/4⇡ and a ther-
mal Hall conductivity xy = (1/4⇡)(⇡2k2BT/3) per layer.
This is an insulating state that preserves all the symme-
tries and both the chiral and the gravitational anomaly
of a Weyl semimetal with 2Q = ⇡.

The insulator thus obtained is not a trivial one – it
possesses a Z4 topological order [42, 43]. The uncon-
densed one-, two- and three-fold vortices survive as non-
trivial gapped loop excitations in the topological order,
with inherited nontrivial braiding statistics when linked
with dislocations. There are also nontrivial particle ex-
citations. The Bogoliubov fermion in the paired state
survives as a neutral fermion excitation. The conden-
sation of 4⇡ vortices also leads to the emergence of a
charge-1/2 boson as a gapped excitation – this can be
understood as a point defect which, when taken around
the condensed 4⇡ vortex loop, acquires a Berry phase of
2⇡. Furthermore, due to a nontrivial mutual braiding
statistical phase of ⇡ between a ⇡ vortex and a 4⇡ vor-
tex, when linked with a dislocation, the condensation of
4⇡ vortices will also bind a 1/4-charge on a ⇡ vortex.

In fact, all of the above properties are closely related

where σxy is the Hall conductivity per atomic plane. 

✓ = 4⇡2�xy = ⇡
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either charge conservation or translational symmetry and
has an electrical Hall conductivity �xy = e

2
/4⇡ and a

thermal Hall conductivity xy = (1/4⇡)(⇡2
k

2
BT/3). This

is an insulating state that preserves all the symmetries
and both the chiral and the gravitational anomaly of a
Weyl semimetal with 2Q = ⇡.

Condensation of 4⇡/e vortices leaves behind a Z4 topo-
logical order and leads to fractionalization of the electron
quantum numbers [32]. To understand the nature of this
order it is useful to describe the state we have obtained by
vortex condensation, using a parton construction instead,
which may be viewed as dual of the vortex condensa-
tion picture. Z4 gauge symmetry motivates the following
ansatz

c = b1b2f, (16)

where b1,2 are two flavors of charge e/2 spinless boson,
while f is a neutral spin-1/2 fermion. Eq. (16) is invariant
under

b1,2 ! i
n
b1,2, f ! (�1)n

f, n 2 Z4. (17)

The neutral fermion experiences the same electronic
structure as the original Weyl semimetal and is assumed
to form the same FFLO state, that does not violate
translational symmetry. The neutral Fermi arc sur-
face state then leads to the thermal Hall conductivity
xy = (1/4⇡)(⇡2

k
2
BT/3), which is equivalent to a layered

p + ip superconductor [33]. The two-component charge-
e/2 boson forms a layered bosonic integer quantum Hall
state [34, 35], with each layer described by the Chern-
Simons theory

L =
1

4⇡

X

IJ

✏
µ⌫�

aIµKIJ@⌫aJ� � e

4⇡

X

I

✏
µ⌫�

Aµ@⌫aI�,

(18)
where

K =

✓
0 1
1 0

◆
. (19)

The layering periodicity coincides with the crystal peri-
odicity of the Weyl semimetal and does not break transla-
tional symmetry. This gives the electrical Hall conductiv-
ity of �xy = 2(e/2)2/2⇡ = e

2
/4⇡ per layer and the ther-

mal Hall conductivity xy = 0. This gapped insulating
state thus reproduces exactly the chiral and the gravita-
tional anomalies of the Weyl semimetal, while preserving
its translational and charge conservation symmetries.

In addition to realizing the chiral and the gravitational
anomalies of the Weyl semimetal, the above state also
provides a realization of the fractional quantum Hall ef-
fect (FQHE) in 3D, which may not be regarded as sim-
ple layering of weakly-coupled 2D FQHE systems. As
discussed above, a magnetic Weyl semimetal with two
Weyl nodes is an intermediate phase between an ordi-
nary 3D insulator with �xy = 0 and an integer quan-
tum Hall insulator with �xy = e

2
/2⇡. We may tune

�xy
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FIG. 2. (Color online) Hall conductivity as a function of

the magnetization with a fractional plateau corresponding to

�xy = e2/4⇡ three-dimensional FQHE.

between the two phases by varying a TR-breaking pa-
rameter, i.e. magnetization m. One may view this as
an analog of tuning the filling factor by an applied mag-
netic field in the case of the 2D quantum Hall e↵ect.
There are two critical values of the magnetization, mc1

and mc2, which correspond to transitions from the ordi-
nary insulator to the Weyl semimetal and from the Weyl
semimetal to the integer quantum Hall insulator corre-
spondingly. The function Q(m), which determines the
separation between the pair of Weyl points and the Hall
conductivity �xy(m) = e

2
Q(m)/2⇡

2 as a function of the
magnetization, is model-dependent, but becomes univer-
sal near each critical point. For noninteracting electrons,
we have [17]

Q(m) ⇠ A1(m � mc1)
1/2

, ⇡ � A2(mc2 � m)1/2
, (20)

where A1,2 are nonuniversal coe�cients. We then claim
that, in the presence of strong electron-electron interac-
tions, a fractional plateau may exist in �xy(m), at which
the Hall conductivity is quantized to half the value of the
integer plateau, �xy = e

2
/4⇡, as shown in Fig. 2. This

state shares some similarities with the recently proposed
fractional excitonic insulator [36], in the sense that it is
realized at stoichiometric band filling by gapping band-
touching points, instead of relying on a fractional filling
of a topologically-nontrivial band.

We would like to note that related issues have been
addressed before in Refs. [37, 38] (see also Refs. [39–41])
using an exactly solvable model of the Mott transition,
the Hatsugai-Kohmoto model [42]. This model is inte-
grable due to the interaction being restricted to satisfy
center-of-mass conservation in real space, which leads to

• In the presence of interactions, smooth evolution of the Hall 
conductivity with the magnetization in a Weyl semimetal may 

be interrupted by a half-quantized plateau. 
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Figure 3

(a) Electronic structure of the simplest Weyl semimetal, with two nodes of opposite chirality,
separated by a distance of 2k0 along the z-axis in momentum space. (b) The corresponding
anomalous Hall conductivity as a function of b/�S , showing a broadened plateau transition. Weyl
semimetal is an intermediate gapless phase between the quantum anomalous Hall and ordinary
insulators.

where d is the period of the resulting superlattice heterostructure in the z-direction. Mak-

ing the same similarity transformation as above and partially diagonalizing the resulting

Hamiltonian, we obtain

Hr = vF (ẑ ⇥ �) · k+mr(kz)�
z
, (14)

where mr(kz) = b + r
p

�2
S +�2

D + 2�S�D cos(kzd) ⌘ b + r�(kz). Now we see that the

quantum Hall plateau transition we discussed before as a function of b/�S , may now happen

“on its own” in momentum space as kz is swept through the BZ. Indeed m�(kz) will change

sign at k±
z = ⇡/d± k0, where

k0 =
1
d
arccos

✓
�2

S +�2
D � b

2

2�S�D

◆
. (15)

At k = (0, 0, k±
z ), the two nondegenerate bands, corresponding to the eigenvalue r = �

touch each other, i.e. these are locations of two Weyl nodes, see Figure 3.

The nodes exist as long the spin splitting b is in the interval between two critical values

bc1 < b < bc2, where bc1 = |�S � �D| and bc2 = �S + �D. When b < bc1 the system is

an ordinary insulator with �xy = 0, while when b > bc2 it is a 3D quantum anomalous Hall

insulator with �xy = e
2
/hd. In between the heterostructure is in the intermediate Weyl

semimetal phase with

�xy = e
2
k0/⇡h, (16)

which depends only on the distance between the Weyl nodes in momentum space and varies

continuously between 0 and e
2
/hd, see Figure 4. Thus, unlike in 2D, in three dimensions

a direct transition between a topological insulator with nonzero quantized Hall conduc-

tivity and a normal insulator with zero Hall conductivity does not exist. The transition

instead proceeds through an intermediate gapless Weyl semimetal phase. The system, de-

scribed above, constitutes the simplest potential realization, the “hydrogen atom” of Weyl

semimetals. A lot of the general physical properties of Weyl semimetals may be understood

by studying this system.
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Nontrivial generalization of FQHE to 3D 4

either charge conservation or translational symmetry and
has an electrical Hall conductivity �xy = e

2
/4⇡ and a

thermal Hall conductivity xy = (1/4⇡)(⇡2
k

2
BT/3). This

is an insulating state that preserves all the symmetries
and both the chiral and the gravitational anomaly of a
Weyl semimetal with 2Q = ⇡.

Condensation of 4⇡/e vortices leaves behind a Z4 topo-
logical order and leads to fractionalization of the electron
quantum numbers [32]. To understand the nature of this
order it is useful to describe the state we have obtained by
vortex condensation, using a parton construction instead,
which may be viewed as dual of the vortex condensa-
tion picture. Z4 gauge symmetry motivates the following
ansatz

c = b1b2f, (16)

where b1,2 are two flavors of charge e/2 spinless boson,
while f is a neutral spin-1/2 fermion. Eq. (16) is invariant
under

b1,2 ! i
n
b1,2, f ! (�1)n

f, n 2 Z4. (17)

The neutral fermion experiences the same electronic
structure as the original Weyl semimetal and is assumed
to form the same FFLO state, that does not violate
translational symmetry. The neutral Fermi arc sur-
face state then leads to the thermal Hall conductivity
xy = (1/4⇡)(⇡2

k
2
BT/3), which is equivalent to a layered

p + ip superconductor [33]. The two-component charge-
e/2 boson forms a layered bosonic integer quantum Hall
state [34, 35], with each layer described by the Chern-
Simons theory

L =
1

4⇡

X

IJ

✏
µ⌫�

aIµKIJ@⌫aJ� � e

4⇡

X

I

✏
µ⌫�

Aµ@⌫aI�,

(18)
where

K =

✓
0 1
1 0

◆
. (19)

The layering periodicity coincides with the crystal peri-
odicity of the Weyl semimetal and does not break transla-
tional symmetry. This gives the electrical Hall conductiv-
ity of �xy = 2(e/2)2/2⇡ = e

2
/4⇡ per layer and the ther-

mal Hall conductivity xy = 0. This gapped insulating
state thus reproduces exactly the chiral and the gravita-
tional anomalies of the Weyl semimetal, while preserving
its translational and charge conservation symmetries.

In addition to realizing the chiral and the gravitational
anomalies of the Weyl semimetal, the above state also
provides a realization of the fractional quantum Hall ef-
fect (FQHE) in 3D, which may not be regarded as sim-
ple layering of weakly-coupled 2D FQHE systems. As
discussed above, a magnetic Weyl semimetal with two
Weyl nodes is an intermediate phase between an ordi-
nary 3D insulator with �xy = 0 and an integer quan-
tum Hall insulator with �xy = e

2
/2⇡. We may tune

�xy
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FIG. 2. (Color online) Hall conductivity as a function of

the magnetization with a fractional plateau corresponding to

�xy = e2/4⇡ three-dimensional FQHE.

between the two phases by varying a TR-breaking pa-
rameter, i.e. magnetization m. One may view this as
an analog of tuning the filling factor by an applied mag-
netic field in the case of the 2D quantum Hall e↵ect.
There are two critical values of the magnetization, mc1

and mc2, which correspond to transitions from the ordi-
nary insulator to the Weyl semimetal and from the Weyl
semimetal to the integer quantum Hall insulator corre-
spondingly. The function Q(m), which determines the
separation between the pair of Weyl points and the Hall
conductivity �xy(m) = e

2
Q(m)/2⇡

2 as a function of the
magnetization, is model-dependent, but becomes univer-
sal near each critical point. For noninteracting electrons,
we have [17]

Q(m) ⇠ A1(m � mc1)
1/2

, ⇡ � A2(mc2 � m)1/2
, (20)

where A1,2 are nonuniversal coe�cients. We then claim
that, in the presence of strong electron-electron interac-
tions, a fractional plateau may exist in �xy(m), at which
the Hall conductivity is quantized to half the value of the
integer plateau, �xy = e

2
/4⇡, as shown in Fig. 2. This

state shares some similarities with the recently proposed
fractional excitonic insulator [36], in the sense that it is
realized at stoichiometric band filling by gapping band-
touching points, instead of relying on a fractional filling
of a topologically-nontrivial band.

We would like to note that related issues have been
addressed before in Refs. [37, 38] (see also Refs. [39–41])
using an exactly solvable model of the Mott transition,
the Hatsugai-Kohmoto model [42]. This model is inte-
grable due to the interaction being restricted to satisfy
center-of-mass conservation in real space, which leads to

• Changing magnetization in this case is analogous to changing 
the magnetic field and moving the Landau levels through the 

Fermi energy in the case of the ordinary 2D FQHE. 
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Figure 3

(a) Electronic structure of the simplest Weyl semimetal, with two nodes of opposite chirality,
separated by a distance of 2k0 along the z-axis in momentum space. (b) The corresponding
anomalous Hall conductivity as a function of b/�S , showing a broadened plateau transition. Weyl
semimetal is an intermediate gapless phase between the quantum anomalous Hall and ordinary
insulators.

where d is the period of the resulting superlattice heterostructure in the z-direction. Mak-

ing the same similarity transformation as above and partially diagonalizing the resulting

Hamiltonian, we obtain

Hr = vF (ẑ ⇥ �) · k+mr(kz)�
z
, (14)

where mr(kz) = b + r
p

�2
S +�2

D + 2�S�D cos(kzd) ⌘ b + r�(kz). Now we see that the

quantum Hall plateau transition we discussed before as a function of b/�S , may now happen

“on its own” in momentum space as kz is swept through the BZ. Indeed m�(kz) will change

sign at k±
z = ⇡/d± k0, where

k0 =
1
d
arccos

✓
�2

S +�2
D � b

2

2�S�D

◆
. (15)

At k = (0, 0, k±
z ), the two nondegenerate bands, corresponding to the eigenvalue r = �

touch each other, i.e. these are locations of two Weyl nodes, see Figure 3.

The nodes exist as long the spin splitting b is in the interval between two critical values

bc1 < b < bc2, where bc1 = |�S � �D| and bc2 = �S + �D. When b < bc1 the system is

an ordinary insulator with �xy = 0, while when b > bc2 it is a 3D quantum anomalous Hall

insulator with �xy = e
2
/hd. In between the heterostructure is in the intermediate Weyl

semimetal phase with

�xy = e
2
k0/⇡h, (16)

which depends only on the distance between the Weyl nodes in momentum space and varies

continuously between 0 and e
2
/hd, see Figure 4. Thus, unlike in 2D, in three dimensions

a direct transition between a topological insulator with nonzero quantized Hall conduc-

tivity and a normal insulator with zero Hall conductivity does not exist. The transition

instead proceeds through an intermediate gapless Weyl semimetal phase. The system, de-

scribed above, constitutes the simplest potential realization, the “hydrogen atom” of Weyl

semimetals. A lot of the general physical properties of Weyl semimetals may be understood

by studying this system.
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Conclusions

• Concepts of nontrivial electronic structure topology may be extended 
to metals. 

• Gaplessness may be mandated by topology, which may be understood 
from the viewpoint of quantum anomalies.

• In weakly-interacting Weyl semimetals these lead, in particular, to novel 
macroscopic quantum transport phenomena, such as intrinsic AHE, 
strong AMR and spectral weight transfer in optical conductivity. 

• With strong interactions, gap may be opened without destroying the 
chiral anomaly, but only at the expense of introduing nontrivial 
topological order, which may be regarded as nontrivial generalization of 
FQHE to 3D. 
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