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Qutline

® [ntroduction: topological insulators, topological metals
and quantum anomalies.

® Gapping symmetry-protected topological surface states
by strong interactions.

® Chiral anomaly in strongly-interacting VWeyl semimetals
and 3D FQHE.
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Topological insulators

® Insulators, characterized by quantized topological invariants.

° In the weakly-interacting case, the invariant may be
evaluated using the noninteracting band eigenstates.
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Interacting topological insulators

® Band picture is not applicable with strong interactions.

® More general picture is in terms of response.

° Chern-Simons action describes electromagnetic
response of the Haldane Chern insulator:
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Edge states and anomalies

® |n the presence of a boundary this leads to a non-
conserved current:
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Edge states and anomalies

® This is cancelled by the chiral anomaly of the edge
state:




Higher dimensions

° 3D time-reversal-invariant Tl:
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° In a sample with boundary this may be written as

boundary action:
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Higher dimensions

® This violates time-reversal symmetry and is cancelled by
the corresponding action of the gapless 2D Dirac surface
state (parity anomaly):
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Edge topological metal

® Edge states of the Haldane Chern insulator and 3D TR-
invariant Tl are the simplest examples of a topological
metals: metals whose physical properties are determined
by topology.

® TJopological metal is very robust: immune to effects of
disorder and interactions.

® Protected as long as bulk electronic structure topology is
Intact.



Bulk topological metals

Can bulk metals be topologically nontrivial?



Bulk topological metals

Can bulk metals be topologically nontrivial?

Yes!



Fermi surface invariants

Flux of the Berry curvature through the 2D Fermi
surface of a 3D metal is a topological invariant (a Chern

number). N ! '
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Fermi surface invariants

® Gauss’ theorem: there must be a point source of Berry
curvature, enclosed by the Fermi surface.
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® Such a point source arises as a »{/
result of touching of two bands. /////‘



Weyl fermions

® The band Hamiltonian in the
vicinity of a band-degeneracy
point has a universal from:

H=+0c-k

® This coincides with the Hamiltonian for relativistic

massless chiral fermions, first proposed by Hermann
Weyl in 1929.



Weyl semimetal

® Weyl node: point contact between two nondegenerate
bands, which acts as a point-like source of Berry
curvature (‘‘magnetic monopole” in momentum space).
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Weyl semimetal Murakami, 2007

CF k Wan et al,, 201 |

AAB & Balents, 201 |

° This arises naturally as an intermediate phase
between a topological and ordinary insulator in 3D.



Chiral anomaly

® Anomaly in this context means that VWeyl nodes can only
appear in pairs of opposite chirality, ‘chiral symmetry”
can not be realized in a 3D lattice Hamiltonian.

® This leads to various observable penomena in response.



Chiral anomaly
e(k,)

Extra Landau level below the
Fermi energy in between the

Weyl nodes.
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®  “Fractional” Hall conductivity in the

absence of a Fermi surface inevitably
implies Weyl nodes.




“Plateau transition” in 3D
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Plateau transition is sharp in 2D, but broadens into
Wey| semimetal phase in 3D.



Fermi arcs

® Equilibrium Hall conductivity leads to a “Chern-Simons” term:
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® This is not gauge invariant in a sample with boundaries, which
means chiral surface states must exist to compensate.
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Chiral anomaly and interactions

® Chiral anomaly inevitably implies Weyl nodes in case
of weak interactions.

® Does this remain true when the interactions are
not weak!?

® In other words, can we gap out the Weyl nodes
while preserving the chiral anomaly and while not
breaking any symmetries!?



Analogous question for 3D Tl surface states

® Parity anomaly in 3D TR-invariant Tl implies the
existence of gapless 2D Dirac surface states.

® (Can we gap out the surface state without breaking
TR and while preserving the parity anomaly?

Wang, Potter, Senthil Metlitskii, Kane, Fisher

Chen, Fidkowski, Vishwanath Bonderson, Nayak, Qi



Vortex condensation

° Induce superconductivity on the surface: p+ip
topological SC.

® Destroy SC coherence by condensing vortices while
keeping the pairing gap: this produces an insulator.

® Parity anomaly places strong restrictions on this
procedure.



2D Dirac fermions and parity anomaly

® Convenient to deal with actual 2D Dirac fermions,
not Tl surface.

® This describes a QH plateau transition at which Oxy
jumps by 62/h

m > 0 m = m < 0
e(k) e(k) e(k)
\/k k \/k
_ e ¢?
Oy =0 AT Oey = 7

Haldane Ludwig, Fisher, Shankar, Grinstein



2D Dirac fermions and parity anomaly

e(k)

Massless 2D Dirac fermion thus has ¢, = o

This is a manifestation of the parity anomaly.



2D Dirac fermions and parity anomaly
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We want to open a gap while keeping

(k) e(k)
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This is clearly impossible without creating a
fractionalized state with topological order.



Superconducting 2D Dirac fermion

® Adding s-wave pairing get a fully gapped topological SC
(analog of the Read-Green p+ip SC).

® ®=hc/2e=TT vortex then carries a Majorana zero-energy
mode in its core.

Qi, Hughes, Zhang

Fu & Kane




Condensing vortex composites

® Double ®=hc/e=2TT vortices have a pair of Majorana
modes, which always get gapped out by perturbations
(pairing, finite Fermi energy, etc.)

° Naively, such vortices may be condensed.



Condensing vortex composites

® However,® = hc/e = 21T vortex binds a half-electron
charge, due to the half-quantized Hall conductivity:
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® Two such charges will have semion exchange statistics:

T



Condensing vortex composites

® Two such charges will have semion exchange statistics:
T

2
0 =210, = =

° Semions can not be condensed directly.

®  They may transform themselves into bosons by flux
attachment, but this will also change the Hall
conductivity.



Condensing vortex composites

The smallest vortex that is a boson and may be
condensed is quadruple vortex @ = 2hc/e = 4TT.

Condensation of composite vortices implies charge
fractionalization and topological order.



Composite vortices and fractionalization

® Superconductor-insulator (charge-flux) duality:

Flux is quantized in a superconductor, but not well-defined (condensed)
in an insulator.

Charge is quantized in an insulator; but not well-defined (condensed) in
a supercoductor.



Composite vortices and fractionalization

® Flux quantum in an ordinary superconductor
with paired electrons:

o e
2e

® |[f electrons are condensed in quartets instead of
pairs, the flux quantum is halved:

_hc
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4de

® The dual picture: pairing vortices leads to charge
fractionalization.



Composite vortices and fractionalization

® The dual picture: pairing vortices leads to charge
fractionalization.

QP = hc

Senthil & Fisher



Composite vortices and fractionalization

® |f we condense vortices with the smallest vorticity, he
we get an ordinary insulator, electron is b= —
unfractionalized and gapped. 2¢

® Condensing double vortices fractionalizes electron he
into “spinon” and “chargon”: O = —

e

c=0bf

® Condensing quadruple vortices fractionalizes the 2he
chargon: b= —

C — blbgf



Pfaffian-antisemion state

C — blbgf

® bisacharge-1/2 boson, while f is a neutral fermion.

® finherits the bandstructure of a massive Dirac fermion
and provides the thermal conductivity:

Wang, Potter, Senthil
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Pfaffian-antisemion state

c=0b1baf

® bisacharge-1/2 boson, while f is a neutral fermion.

® b exists in a bosonic IQH state:
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Lu & Vishwanath Senthil & Levin



Pfaffian-antisemion state

® b exists in a bosonic IQH state:
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Chiral anomaly and interactions

® (Can we gap out the Weyl nodes while preserving
the chiral anomaly?
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May also view this as a consequence of the gravitational anomaly.



Vortex condensation

® Start from a superconducting VWeyl semimetal and
attempt to destroy superconductivity by condensing
vortices and preserving the chiral anomaly.

® If successful, this leads to an insulator with the same
chiral anomaly as Weyl semimetal.



Weyl superconductor

e BCS: pairing k and -k states, i.e. internodal pairing.

€
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Weyl superconductor

® FFLO: pairing states on the opposite side of each
Weyl point, i.e. intranodal pairing.

€
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BCS pairing

° BCS pairing can not open a gap, since the two
chiralities are not mixed by the pairing term:

H =uvr Z CIT{TZO' ke, + A Z(CI{RiaycT_kL + h.c.)
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FFLO pairing

FFLO does open a gap, but breaks translational
symmetry:
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FFLO pairing

® FFLO does open a gap, but breaks translational
symmetry:

A(Q) ~ Zk<cg+kcg_k>

carries momentum 2Q.

Q(Q) ~ A*(—Q)A(Q) carries momentum 4Q.



FFLO pairing

0(Q) ~ A% (-Q)A(Q)
_Q Q
k
carries momentum 4Q.
° This breaks translational symmetry, unless Q = G/4

® |n other words, FFLO does not break translational

symmetry when Weyl node separation is exactly
half the BZ size.



Vortex condensation in FFLO state

® n-fold vortex (P=nhc/2e) in FFLO paired state: get n
chiral Majorana modes in the vortex core.

-3 =2 \~1 ; 1 2 3 Callan & Harvey
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Vortex condensation in FFLO state

® Any even number 2n of Majorana vortex modes may be
combined into n | D Weyl fermion modes, which are
gapped out by pairing:




Vortex condensation in FFLO state

® Any even number 2n of Majorana vortex modes may be
combined into n | D Weyl fermion modes, which are
gapped out by pairing:

H =vp Z[kzc};z’rzckz + A(c,iziTycT_kz + h.c.)/2]
k-

° An odd number of Majorana modes can not be
eliminated without breaking translational symmetry, thus
a fundamental SC vortex may not be condensed.
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Vortex condensation in FFLO state

® A double vortex does not have Majorana modes, but
may still not be condensed.

® This follows from the fact that the insulating state we
want to obtain must preserve the chiral anomaly, i.e.
must have a Hall conductivity of half conductivity
quantum per atomic plane:
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Vortex condensation in FFLO state

° A vortex will induce a charge when intersecting an
atomic plane:

L= J;”y e A 0, Ay
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® Since vortex is a loop, it will always intersect any atomic
plane twice, inducing a pair of opposite charges, whose
effect will thus cancel.



Vortex condensation in FFLO state

° But consider a crystal with a dislocation.

(a)

® |n this case vortex loop may intersect the extra half-
plane only once, inducing uncompensated |/2 charge.



Vortex condensation in FFLO state

® |n this case vortex loop may intersect the extra half-
plane only once, inducing uncompensated |/2 charge.

Wang & Levin 3-loop braiding

® Two such charges will have semion exchange statistics:
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Vortex condensation in FFLO state

(b) —n

® Two such charges will have semion exchange statistics.

® This means that, inserting a dislocation in a crystal with
condensed vortices will cost an energy O(LQ)

° This implies broken translational symmetry.



Vortex condensation in FFLO state

° Following the same logic, quadruple vortices have
bosonic statistics and thus may be condensed without
breaking any symmetries.

° This is an insulating state that preserves the chiral
anomaly and does not break any symmetries.
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Nature of the insulating state

® f{ experiences the same electronic structure as the VWeyl
FFLO superconductor.
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Nature of the insulating state

c=0b1baf

® bisacharge-1/2 boson, while f is a neutral fermion.

° b exists in a layered bosonic IQH state:

0wy = 2(1/2)% /21 = 1/4m Kay = 0



Nature of the insulating state

C — blbgf

b is a charge-1/2 boson, while f is a neutral fermion.

b exists in a layered bosonic IQH state.

b and f are coupled to a Z4 gauge field which results
from the 4-fold vortex condensation.

This state is the 3D analog of the “Pfaffian-antisemion”
state, described before.



Nontrivial generalization of FQHE to 3D
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® Quasiparticles carry flux of 21T/m and thus are anyons with
the braiding phase:
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Nontrivial generalization of FQHE to 3D

(b)

® |n our case the analog of this is that 27T vortices, when linked
with a dislocation, have the abelian braiding phase:
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where Oxy is the Hall conductivity per atomic plane.



Nontrivial generalization of FQHE to 3D
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® |n the presence of interactions, smooth evolution of the Hall
conductivity with the magnetization in a Weyl semimetal may
be interrupted by a half-quantized plateau.



Nontrivial generalization of FQHE to 3D
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® Changing magnetization in this case is analogous to changing
the magnetic field and moving the Landau levels through the
Fermi energy in the case of the ordinary 2D FQHE.



Conclusions

Concepts of nontrivial electronic structure topology may be extended
to metals.

Gaplessness may be mandated by topology, which may be understood
from the viewpoint of quantum anomalies.

In weakly-interacting VWeyl semimetals these lead, in particular, to novel
macroscopic quantum transport phenomena, such as intrinsic AHE,
strong AMR and spectral weight transfer in optical conductivity.

With strong interactions, gap may be opened without destroying the
chiral anomaly, but only at the expense of introduing nontrivial
topological order, which may be regarded as nontrivial generalization of

FQHE to 3D.
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