# Signatures of the chiral anomaly in lattice vibrations

Ion Garate

Institut Quantique and Département de physique, Université de Sherbrooke

KITP, December 5th 2019





#### Collaborators



Pedro Lopes



Sanghita Sengupta



Pierre Rinkel



Nabil Lhachemi

## Outline

#### I. Motivation

- 2. Signatures of the chiral anomaly in optical phonons
  - 2.1) Infrared absorption
  - 2.2) Hybridization between optical phonons and electronic excitations
- 3. Signatures of the chiral anomaly in acoustic phonons
  - 3. I) Sound velocity
  - 3.2) Phonon magnetochiral effect

#### 4. Conclusions

## Motivation: chiral anomaly in Weyl semimetals (WSM)

- Collinear electric and magnetic fields induce a charge transfer between Weyl nodes of opposite chirality.
  - Axion term in the electromagnetic Lagrangian:

$$\mathcal{L}_{ax} = \theta \mathbf{E} \cdot \mathbf{B} \text{, where } \theta = \frac{\alpha}{4\pi^2} \left( \mathbf{b} \cdot \mathbf{r} - b_0 t \right)$$
  
momentum separation  
(needs broken time-reversal) energy separation  
(needs broken time-reversal) (needs broken inversion and mirrors)

• Leading experimental signature: negative longitudinal magnetoresistance.

Problem: current jetting  $\rightarrow$  the measured resistivity is not the intrinsic resistivity

Things may be better with thermal conductivity.

• Nonelectronic probes of the chiral anomaly?

#### Lattice vibrations

• Equation of motion: driven harmonic oscillator



- The internal (phonon-induced) electric field approximately parallel to **q**
- What is the influence of Weyl fermions and the chiral anomaly on the phonon charge and dispersion?

# Theoretical approach

• Two methods:

Integrate-out electrons to get an effective action for phonons.
 Semiclassical analysis: Boltzmann equation plus elasticity theory.

- External magnetic field (perturbatively or through Landau levels)
- Interactions: electron-phonon, electron-electron.
- Disorder.

## Signatures of the chiral anomaly in optical phonons

Rinkel, Lopes and Garate, PRL <u>119</u>, 107401 (2017). Rinkel, Lopes and Garate, Phys. Rev. B <u>99</u>, 144301 (2019). See also: Song et al., PRB <u>94</u>, 214306 (2016)

# Phonon effective charge: Definition

Stroscio and Dutta,

(Cambridge, 2001)

Phonons in Nanostructures

• Change in the unit cell dipole moment due to ion vibrations



• Condition for photon absorption:  $\mathbf{Q}u \cdot \mathbf{E}_{em} \neq 0$ 

## Phonon charge: Macroscopic considerations

• Total phonon charge:



• Contribution from the chiral anomaly to the phonon charge:

$$\mathbf{Q}_{\mathrm{ax}} = \frac{\partial^2 \mathcal{L}_{\mathrm{ax}}}{\partial u \,\partial \mathbf{E}} = \begin{bmatrix} \partial \theta \\ \partial u \\ \partial u \end{bmatrix} \mathbf{B}$$

$$\mathbf{f}$$

$$\mathbf{F} = \mathbf{0} \text{ for pseudoscalar or pseudovector phonons}$$

• Where can one find pseudoscalar/pseudovector phonons?

# Phonon charge: Group theoretical considerations

- B-induced Q is not by itself a signature of chiral anomaly.
- Crystals of any symmetry *may* have a pseudoscalar phonon. Anastassakis *et al.*, J. Phys. Chem Solids <u>33</u>, 1091 (1972).
- If the crystal is chiral (no inversion and no mirrors), then  $A_1$  phonons are pseudoscalar.
- If the crystal is nonchiral, then pseudoscalar phonons exist provided that the atoms of the crystal sit a low-symmetry locations.

Song et al., PRB <u>94</u>, 214306 (2016)

• For pseudovector phonons, the crystal needs to break time reversal symmetry.

## Phonon charge: Microscopic considerations

• Example: pseudoscalar phonon in time-reversal symmetric WSM, at weak B:



• Origin of the denominator: triangle diagram



## Field-induced infrared absorption

• Consider a long-wavelength pseudoscalar optical phonon of frequency  $\omega_0$  that is IR inactive in the absence of a magnetic field.



# Field-induced infrared absorption

• Experimental data in NbAs Courtesy of Xiang Yuan (Fudan University) et al.; unpublished



#### Field-induced features in phonon dispersion



- The hybridization between optical phonon and the pole of the triangle diagram when **B** is parallel to the phonon's **E**-field is a smoking gun signature of the chiral anomaly.
- Calculation done to 1<sup>st</sup> order in perturbation theory in B, at zero temperature and zero chemical potential.

## Field-induced features in phonon dispersion

• At strong B field, the character of the anticrossing changes. The hybridization is now between the optical phonon and the plasmon.



Phonon spectral function (fixed q)

Hybridization gap: 
$$\frac{D_z}{\pi a} \sqrt{\frac{eB}{2\rho v_F}}$$
  
mass density

Estimate of gap: 0.5 meV at strong fields

## Signatures of the chiral anomaly in acoustic phonons

Rinkel, Lopes and Garate, Phys. Rev. B <u>99</u>, 144301 (2019).

Sengupta, Lhachemi and Garate, in preparation.

See also: Spivak and Andreev, Phys. Rev. B <u>93</u>, 085107 (2016).

Cortijo et al., Phys. Rev. Lett. <u>115</u>, 177202 (2015).

Chernodub and Vozmediano, arXiv: 1904.09113.

# Sound velocity in a piezoelectric WSM (e.g.TaAs)

• Consider scalar phonons in a nonchiral WSM



• Link between sound velocity and conductivity:

$$\epsilon = 1 + i \frac{\mathbf{q} \cdot \boldsymbol{\sigma} \cdot \mathbf{q}}{\omega |\mathbf{q}|^2 \epsilon_{\infty}}$$

# Signatures of chiral anomaly in sound velocity

• Acoustic counterpart of negative longitudinal magnetoresistance:





Sound velocity decreases with B

Sound velocity increases with B (or at least decreases much more slowly)

• Contribution from chiral Landau levels to screening:

$$\epsilon_{CLL} = 1 + i\sigma_{zz}\cos^2\theta/(\epsilon_{\infty}\omega)$$
Angle between **B** and **c**

 $\rightarrow$ At very high B, expect sound velocity to be higher when B and q are perpendicular.

# Signatures of chiral anomaly in sound velocity

• Ultrasound velocity measurements in TaAs: Laliberté et al., arXiv: 1909.04270



- At high B, sound travels more slowly along **B** than perpendicular to **B**
- No evidence for acoustic counterpart of negative longitudinal magnetoresistance.

## Phonon magnetochiral effect



Sound velocity: v Sound attenuation: A Sound velocity:  $v' \neq v$ 

Sound attenuation:  $A' \neq A$ 

First experimental observation: Nomura et al., Phys. Rev. Lett. 122, 145910 (2019) •

Chiral ferromagnet Cu<sub>2</sub>OSeO<sub>3</sub>. Chiral magnons  $\rightarrow$  chiral phonons Magnon-phonon hybridization

## Phonon magnetochiral effect in chiral WSM

• Candidates: CoSi, RhSi, SrSi<sub>2</sub>...

Chiral electrons  $\rightarrow$  chiral phonons (not restricted to Weyl semimetals)

Pseudoscalar part of the acoustic deformation potential  $A' - A \propto B|C|D_z q_z^2 \mathrm{sg}(q_z) \tau_E$  Internode relaxation time

Absolute value of Chern number



Some parameter values:

B = 1T $D_0 = 1.25 eV$  $D_z = 0.25 eV$  $\hbar/\tau_E = 0.01 meV$ 

### Conclusions

• We have investigated the influence of chiral anomaly in phonons.

Rinkel, Lopes and Garate, PRL <u>119</u>, 107401 (2017).

Rinkel, Lopes and Garate, Phys. Rev. B 99, 144301 (2019).

Sengupta, Lhachemi and Garate (manuscript in preparation)

• To do: find out phonon signatures in more generic topological phases.

• ion.garate@usherbrooke.ca

