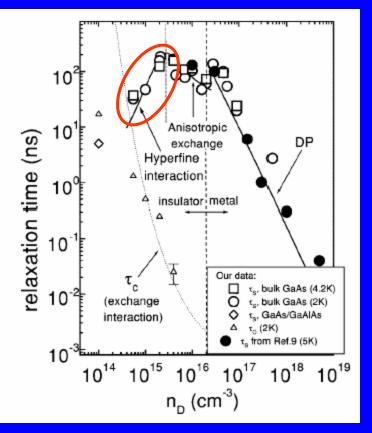
Limiting lifetimes for localized spins in GaAs

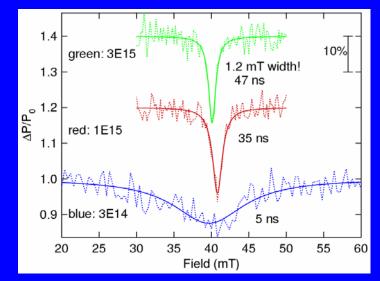
T.A. Kennedy, A.S. Bracker, D. Gammon, A. Shabaev, AI.L. Efros and J. Whitaker (Naval Research Laboratory)

Work supported by ONR and DARPA

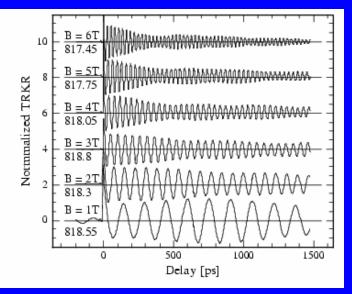
Acknowledgements to Wei Hao (SEAP 2005) & Josh Caldwell


1. Background

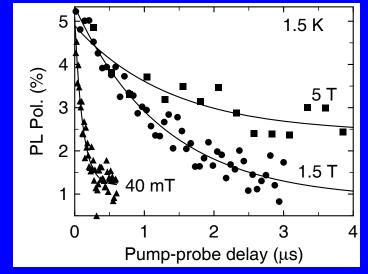
- 1. Long lifetimes for spins in non-magnetic semiconductors
- 2. Work with donor ensembles
- 2. Magnetic resonance detected through Faraday Rotation
 - 1. Method
 - 2. Nuclear effects
 - 3. Probe light effects
 - 4. Higher concentration sample
 - 5. g-factor and Lifetime
- 3. Summary and Future Work

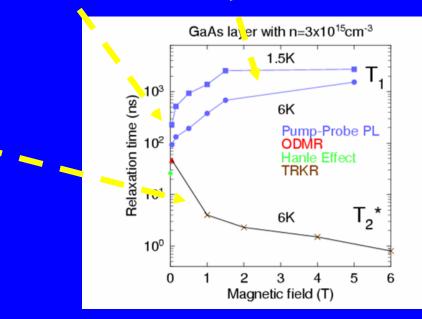

Background

- Long lifetimes in non-magnetic semiconductors
 - Kikkawa and Awschalom, PRL and Science
- Move to localized spins—qubits and quantum information
 - In III-V's—GaAs donors provide a good ensemble
 - Metal-insulator transition is at 2 X 10¹⁶ cm⁻³
 - Isolated donors for $N_D < 4 X$ 10 ¹⁴ cm⁻³ for B = 0 T

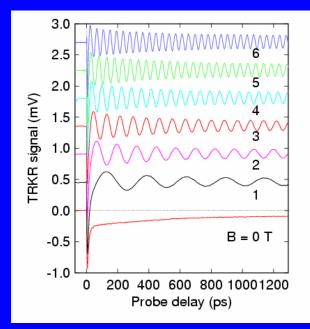


Dzhioev *et al*., Phys. Rev. B **66**, 245204 (2002)


Spin lifetimes for donors in GaAs


J.S. Colton et al., SSC 132, 613 (2004)

Michael Scheibner *et al.*, to be pub. NRL Electronics


J.S. Colton *et al.*, PRB 69, 121307 (2004)

JSC: $T_1 = 24 \ \mu s$ for 1E15 at 7T

Previous work leads to

Wide Quantum Well— Simplified energy levels through HH/LH splitting

T.A. Kennedy *et al.*, PRB **73**, 045307 (2006)

Goal of Measuring T₂—Use pulsed magnetic resonance

Two challenges

- Low spin concentration
- Well defined nuclear spin state--unpolarized

1. Background

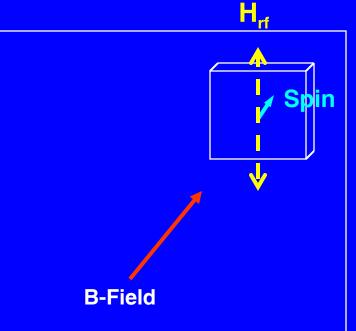
- 1. Long lifetimes for spins in non-magnetic semiconductors
- 2. Work with donor ensembles

2. Magnetic resonance detected through Faraday Rotation

1. Method

- 2. Nuclear effects
- 3. Probe light effects
- 4. Higher concentration sample
- 5. g-factor and Lifetime
- 3. Summary and Future Work

Background to This Approach


- Faraday Rotation and EPR
 - R. Romestain (1980): donors in CdS
- GaAs donors
 - Seck, Potemski and Wyder (1997): EPR—DNP enhanced
 - Karasyuk et al. (1994): Donor-bound excitons
 - Kai-Mei Fu (Stanford), Spin-flip Raman Scattering
- Nuclear Effects: ESR pinning in 2DEG's
 - Olshanetsky et al., Physica B 373, 182 (2006)
 - Hillman and Jiang, PRB 64, 201308 (2001)
 - Dobers et al., PRL 61, 1650 (1988)
- ESE in GaAs
 - Petta et al. Science **309**, 2180 (2005)—T₂ of 1 to 10 μs
 - Loss (Basel), Sham (UCSD), Whaley (UCB), Das Sarma (Maryland), ETH (Zurich), SUNY (Buffalo) and others

ODMR mechanism

off

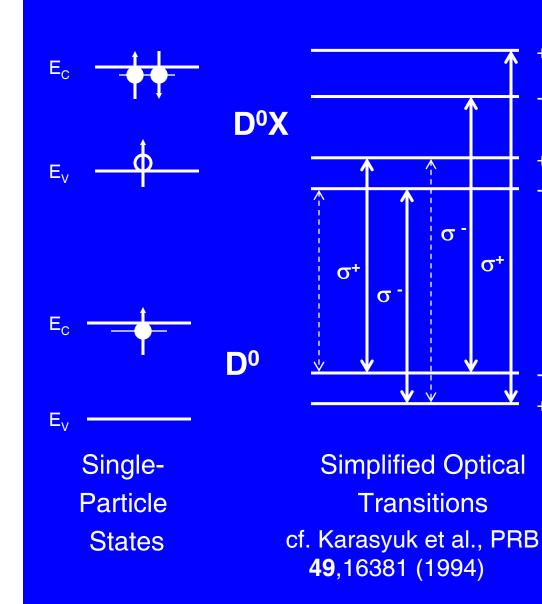
on

- Polarization
 - Thermal: B=6 T and T=1.5 K gβH~kT
 - Off-cycle of microwaves long with respect to T₁
 - Thermalized electron spins: <S_T>
- Resonance with microwaves reduces the polarization
 - $-hv = g\beta B$
 - Frequency v = 35 GHz
 - Decreases the $\langle S \rangle$ from $\langle S_T \rangle$
- Detection...

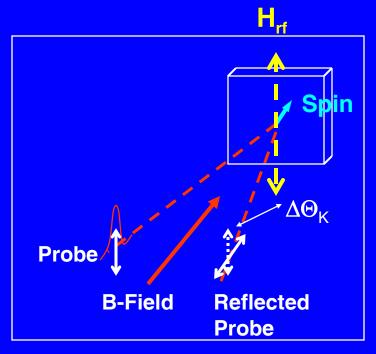
NRL Electronics

Detection by Kerr Rotation

+3/2

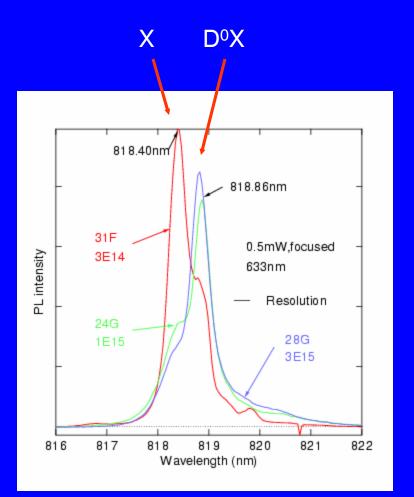

-3/2

+1/2


-1/2

-1/2

+1/2



NRL Electronics

 $\Delta \Theta = -\pi (d/\lambda)(n_+-n_-)$ (in transmission) Kerr rotation is sensitive to D⁰ spin through SOcoupling of hole in D⁰X

Experimental Details

- Samples
 - 1 µm GaAs surrounded by doped and undoped AlGaAs for flatbanding
 - Concentrations of 3E14, 1E15 and 3E15
 - (Metal-insulator transition at 2 X 10¹⁶ cm⁻³)
- Equipment
 - Oxford 7 T magnetocryostat
 - Spectra Physics ps Ti:Sa laser (∆v~1meV (0.5nm))
 - Agilent 250kHz to 40GHz signal generator

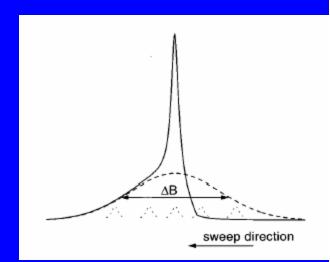
1. Background

- 1. Long lifetimes for spins in non-magnetic semiconductors
- 2. Work with donor ensembles
- 2. Magnetic resonance detected through Faraday Rotation
 - 1. Method
 - 2. Nuclear effects
 - 3. Probe light effects
 - 4. Higher concentration sample
 - 5. g-factor and Lifetime
- 3. Summary and Future Work

Nuclear Spin Effects

1. Without nuclei, the Bloch equations describe the saturation of the ESR amplitude (A) with microwave power (P):

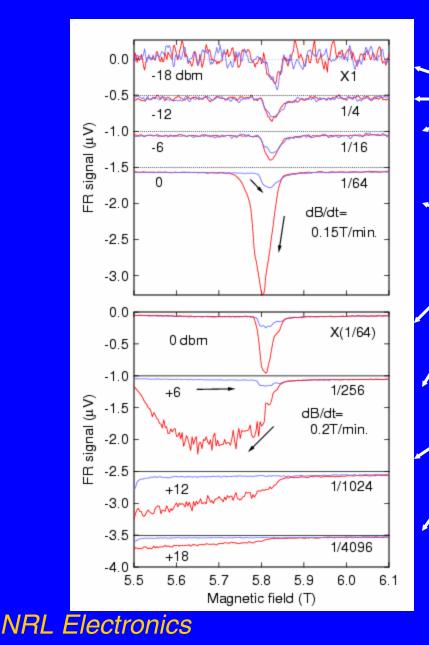
 $\mathsf{A} = (\alpha \mathsf{P}) / (\mathsf{1} + \beta \mathsf{P})$


- With nuclei, Dynamic Nuclear Polarization arises from the Overhauser effect: Saturated e-spins try to relax through the nuclear spins using the (I⁺S⁻ + I⁻S⁺) part of the hyperfine interaction
- 3. Sign of the nuclear field: B_N adds to the external field (B_{ext})

a. $\langle I \rangle = [I(I + 1)/S(S+1)] * [\langle S \rangle - \langle S_T \rangle] < 0$

b.
$$B_N = A < I > / g_e \beta ; g_e < 0; B_N > 0$$

c. $hv = g\beta (B_{ext} + B_N)$

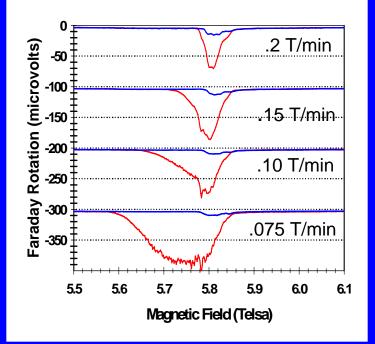

- 4. Enhancement and pinning of the ESR can occur:
 - a. Compare dB_N/dt with dB_{ext}/dt
 - b. DNP \propto P
 - c. Nuclear relaxation time ~ 1 minute
 - d. Strong effects occur for downward field sweeps

Seck et al., 1997 *March 2006*

NRL Electronics Olshanetsky et al., Physica B 373, 182 (2006)

Dependence on Microwave Power

 $dB_N/dt \propto Saturation \propto P$


- Unsaturated limit
 - Down & up are the same
 - Amplitude ∞ power

DNP enhanced: $dB_N/dt \approx |-dB_{ext}/dt|$

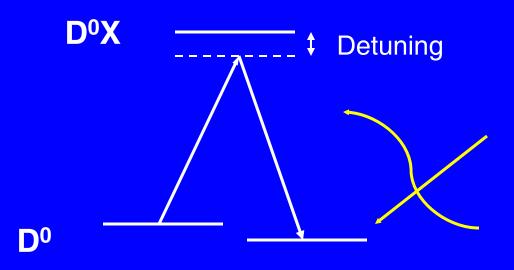
- Strong for down sweeps
- Broadened & shifted
- Up sweeps unaffected
- ESR pinning: dB_N/dt > | -dB_{ext}/dt |
 - Resonance not achieved
 - B_N becomes > 0.3 T

817.8 nm (near res.), 9/20 &9/19 data, 31F, T = 1.5 K, 35 GHz

Dependence on Rate of Change of External Magnetic Field

• 0 dbm, 9/17/05, 817.8 nm

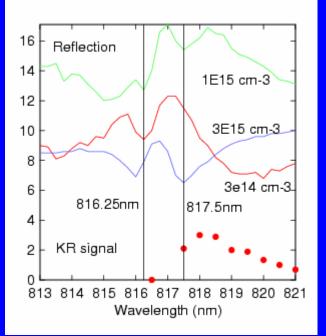
- Dyanamics is again controlled by the relative size of dB_N/dt and -dB_{ext}/dt
- Rate of DNP induced B_N is constant since microwave power (P) is constant.
- Decreasing the sweep rate of magnetic field (-dB_{ext}/dt) changes the response from DNP enhanced to ESR pinning.

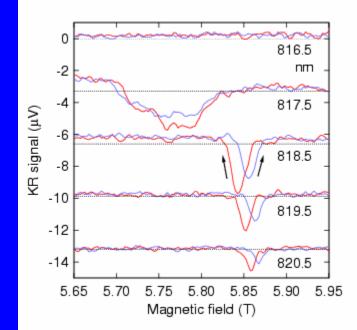

NRL Electronics

1. Background

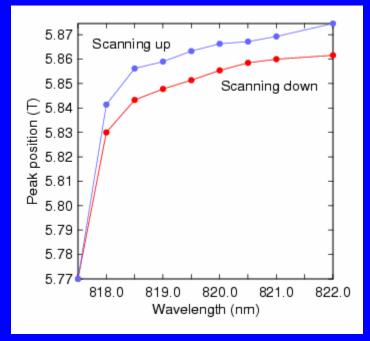
- 1. Long lifetimes for spins in non-magnetic semiconductors
- 2. Work with donor ensembles
- 2. Magnetic resonance detected through Faraday Rotation
 - 1. Method
 - 2. Nuclear effects
 - 3. Probe light effects
 - 4. Higher concentration sample
 - 5. g-factor and Lifetime
- 3. Summary and Future Work

Effects of the Probe Light


The experiment is a double resonance


- Microwave resonance in the ground state—tuned by changing the magnetic field
- Optical resonance to the excited state—tuned by changing the laser wavelength

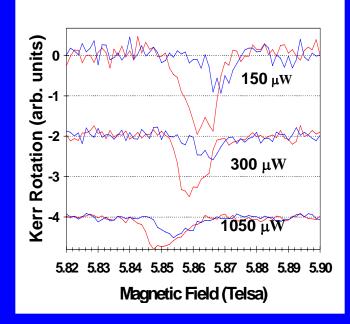
Dependence on Wavelength of the Probe Light


- Optical Resonances for B = 6T
 - D⁰X at 817.5 nm
 - X at 816.25 nm

-6dbm, 34.694, 300 uW probe, 9/20/05 data

NRL Electronics

- On resonance
 - Large shift
 - Extra line
- Detuned to lower E (longer λ)
 - Sharp single line
 - Decreasing amplitude
 - Slow shift


Peak Position versus probe wavelength and power

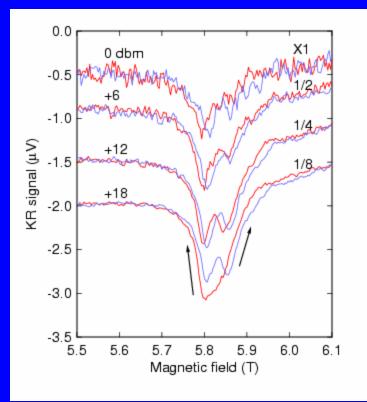
Position versus wavelength

 Approaches a limit offresonance

9/20/05 data—31F, light unfocussed NRL Electronics

Position versus power

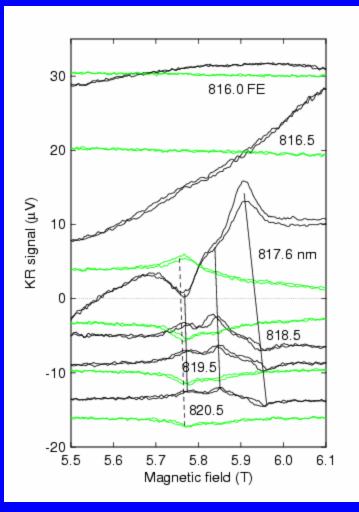
- Shifts to lower fields with increasing power
- DNP by slight depolarization of <S> by the linearly polarized light


```
9/21/05 data, 820.5nm,-6dbm
```

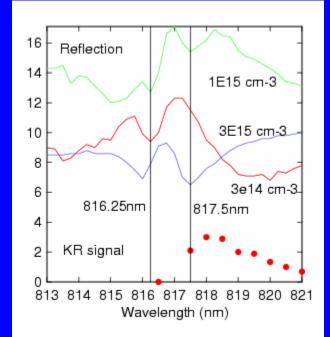
1. Background

- 1. Long lifetimes for spins in non-magnetic semiconductors
- 2. Work with donor ensembles
- 2. Magnetic resonance detected through Faraday Rotation
 - 1. Method
 - 2. Nuclear effects
 - 3. Probe light effects
 - 4. Higher concentration sample
 - 5. g-factor and Lifetime
- 3. Summary and Future Work

Dependence on Microwave Power for 3E15


28G, 818.6nm, 8/9/05, no offset added

- Two lines
- Strong signals in quadrature
- DNP enhanced for high-field line at highest power
- Localized and delocalized electrons

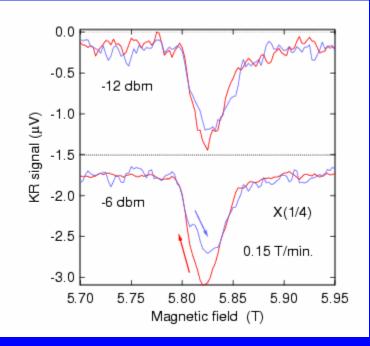

NRL Electronics

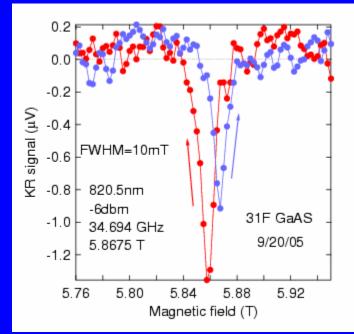
Dependence on wavelength of probe

24 G, 3E15, 8/11/05, +6dbm,0.15 T/min

NRL Electronics

- Black: in phase; Green: in quadrature
- In Phase
 - 2 or 3 resonances
 - phase changes
- In Quadrature
 - one resonance
 - reveals dynamics ~ 3 khzrch 2006

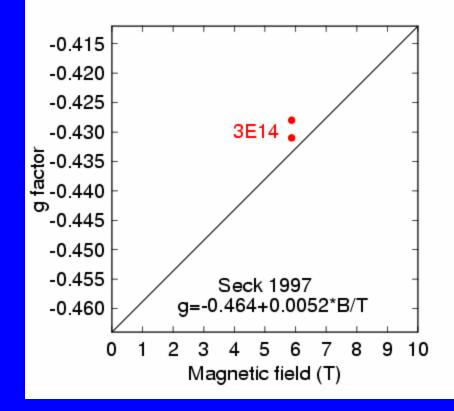

1. Background


- 1. Long lifetimes for spins in non-magnetic semiconductors
- 2. Work with donor ensembles
- 2. Magnetic resonance detected through Faraday Rotation
 - 1. Method
 - 2. Sample dependence
 - 3. Nuclear effects
 - 4. Probe light effects
 - 5. Higher concentration sample
 - 6. g-factor and Lifetime
- 3. Summary and Future Work

g-factor and linewidth

Near resonance—817.8 nm

- g = 0.431; FWHM = 49 mT
- Real transitions
 - D⁰X: holes
 - X: electrons and holes

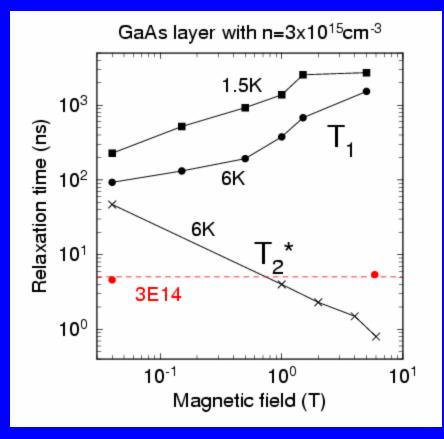

Off resonance—820.5 nm

- g = 0.428; FWHM = 10 mT
- Dispersive part of the index

Sweep rate 0.15 T/min

NRL Electronics

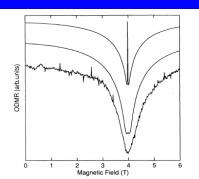
Comparison of g-factors with other work


• Negative sign added

• 31F shown for near resonance & off-resonance

T_2^* for donors in GaAs

- ~5 ns for low and high magnetic fields
- Limited by fluctuation in nuclear spin
- Good starting point for measuring T₂



Lifetimes for donors at high magnetic fields

	Sample	∆B FWHM (mT)	T ₂ *
This work	$N_{D}-N_{A} =$ 3X10 ¹⁴ cm ⁻³	10	5.4 ns
Kai-Mei Fu et al. (06)	N _D -N _A = 5X10 ¹³ cm ⁻³		2.3 ns
Seck et al. (1997)	$N_{\rm D}$ - $N_{\rm A}$ = 6.6X10 ¹⁴ cm ⁻³	50	1.1 ns
Kikkawa & Awschalom (1998)	Semi- insulating		100 ps
Trombetta & Kennedy (1993)	Semi- insulating	900	60 ps

g-broadening is small, possibly negligible

Summary and Future Work

- Kerr rotation provides adequate sensitivity to work with isolated donors
- Nuclear effects
 - Resonance without DNP enhancement –unpolarized nuclei
 - DNP enhancement—good for finding ESR
 - ESR-pinning—possibly good for polarizing nuclei
- Linewidth near or at the hyperfine limit—little or no gbroadening

• Measuring T₂ with electron-spin-echo in ensembles

