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spin-polarized currents 

pure spin currents

can be generated all-optically, 
by a host of different schemes

“Take home message”:



These schemes are

ROBUST
Conan the Barbarian
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Effects of spin-orbit coupling
on band structures

They only rely on:

The presence of 
the lattice

Conan the Barbarian
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Disadvantages:
somewhat “embarrassing” for a theorist:
not much more than Fermi’s Golden Rule is required,
…although there are interesting connections with
the theory of nonlinear optics and the theory 
of linear and nonlinear magneto-optics

Advantages:

can employ these schemes in the laboratory 
to study more complicated many-particle
dynamics in condensed matter physics



“tweezers” in spin and
reciprocal space….

…and in real space



Outline:

coherent current control 
Two-colour processes 
One-colour processes
Extensions and new schemes

A quick review
optical orientation







Focus in this talk 
on phenomena 
in bulk, 
room temperature
samples



optical 
orientation
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F. Meier and B.P. Zakharachenya, “Optical Orientation” (1984)
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electrons from 
heavy hole band electrons from 

light hole band

20 meV excess energy
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all electrons injected
20 meV excess energy
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What happens in 
two-photon absorption? 







one-photon
absorption



one-photon
absorption

two-photon absorption
light along <001>



one-photon
absorption

two-photon absorption
light along <001>

light along <111>



one-photon
absorption

two-photon absorption
light along <001>

light along <111>



conduction

heavy 
hole

light 
hole
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For GaAs, not too close to
the gap, spin polarization ≈ 50%

R.D.R. Bhat et al.,
Phys. Rev. B71, 035209 (2005)
theory and experiment



coherent 
current
control
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control parameter
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simple experimental geometry:

control parameter

phase shift due to
e-h interaction



including
e-h interaction

neglecting
e-h interaction



A. Hache’ et al.,
Phys. Rev. Lett. 78, 306 (1997)

[2φ(ω)-φ(2ω)]/π
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Two-colour
processes



direction ∆φ of current from crystal axis 
depends on relative phase parameter 
φ(2ω)-2φ(ω) of optical fields

Same circular polarizations

dt
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magnitude of pure spin current varies as  
cos (φ(2ω)-2φ(ω))

Crossed linear polarizations

only
dt

dK ab

baab SvK ≡

pure spin current

no spin injection 
ωh

ωh

ωh2 [001]
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Pump-probe 
detection:

M.J. Stevens et al.
Phys. Rev. Lett. 90, 136603
(2003)



Photoluminescence 
detection:

Jens Hübner et al.,
Phys. Rev. Lett. 90, 216601 
(2003)



One-colour
processes
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direction of current from crystal axis 
depends on helicity of beam
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direction of current from crystal axis 
depends on helicity of beam

Circular photogalvanic effect

dt
Jd
r ωh
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ωh

[0001]

dt
Jd
r

known since the 1970s
expect current to be spin-polarized



One colour spin-polarized 
current injection is
forbidden in zincblende
crystals



but is allowed in 
wurtzite crystals

Experiment:
N. Laman et al. 
Appl. Phys. Lett. 75, 2581 
(1999)

One colour spin-polarized 
current injection is
forbidden in zincblende
crystals



but is allowed in 
wurtzite crystals

Experiment:
N. Laman et al. 
Appl. Phys. Lett. 75, 2581 
(1999)

…and strained 
zincblende crystals

Lyanda-Geller and Pikus (1989)

One colour spin-polarized 
current injection is
forbidden in zincblende
crystals



but is allowed in 
wurtzite crystals

Experiment:
N. Laman et al. 
Appl. Phys. Lett. 75, 2581 
(1999)

…and strained 
zincblende crystals

Lyanda-Geller and Pikus (1989)

…and GaAs
quantum wells

Ganichev et al. (2001)
Golub (2004)

One colour spin-polarized 
current injection is
forbidden in zincblende
crystals



Spin polarized current

[1,-1,0] [1,1,0]

[0,0,1]

ωh

+σ tensile 
(or compressive) 



0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500
excess photon energy (meV)

-20

0

20

40

100 200 300 400 500

injection velocity 
(km/s)

degree of spin
polarization

1% tensile

1% tensile

0.5% tensile

0.5% compressive

1% compressive



2/)25.0( h

300 meV excess energy 

)(tE
rPure spin current

can be injected
by a single beam   
even in unstrained, 
bulk GaAs !

R.D.R. Bhat et al.,
Phys. Rev. Lett. 94,
096603 (2005)

can be understood 
as interference
effect between
two circular 
components
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Extensions
and

new schemes
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Quantum well geometries
unstrained 2% strain

Ali Najmaie et al.,  Phys. Rev. 
B68, 165348 (2002)

D.H. Marti et al.,  Phys. Rev. 
B69, 035335 (2004)



1s
2p

ground state

Coherent control of exciton superpositions

1s 2p 

excite a superposition... 

will oscillate in time…. 
AC currents and 

AC pure spin currents ! 

I. Rumyantsev et al.,
submitted to Phys. Rev. B.
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doped semiconductor structures 
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Injecting pure spin current in 
doped semiconductor structures 

∆

use spin splitting
of the conduction band 

to inject pure spin current via...



Intersubband absorption 
in the infrared

Appl. Phys. Lett. 86, 122103 (2005)
JETP Lett. 81, 231 (2005)



Intersubband absorption 
in the infrared

Stimulated intersubband
Raman scattering in
the infrared

Appl. Phys. Lett. 86, 122103 (2005)

Phys. Rev. B72, 041304(R) (2005)

JETP Lett. 81, 231 (2005)



Intersubband absorption 
in the infrared

Stimulated intersubband
Raman scattering in
the infrared

Stimulated interband
Raman scattering
in the visible

Appl. Phys. Lett. 86, 122103 (2005)

Phys. Rev. B72, 041304(R) (2005)

Phys. Rev. Lett. 95, 056601 (2005)

JETP Lett. 81, 231 (2005)



A variety of methods for the all-optical injection of 
currents and spin currents in semiconductors have 
been proposed and observed in the laboratory. 



A variety of methods for the all-optical injection of 
currents and spin currents in semiconductors have 
been proposed and observed in the laboratory. 

They permit the all-optical creation of novel 
carrier and spin distributions.



A variety of methods for the all-optical injection of 
currents and spin currents in semiconductors have 
been proposed and observed in the laboratory. 

They permit the all-optical creation of novel 
carrier and spin distributions.

Such scenarios should provide new venues for the 
study of carrier and spin dynamics in 
semiconductors.
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