Optical control of the electron spins
Single Spin Optoelectronics

Lu J. Sham
University of California, San Diego

Three key questions

1. Does an electron spin in a quantum dot qualify as a TLQS?
2. Can we make a team of the spins dance prettily?
3. Can one make money from it (by investing or taxing)?

Research funded by ARO/LPS, NSF DMR, DARPA/QuIST/AFOSR
Optical control of electron spins in semiconductor nanodots

UCSD
Theory
Pochung Chen
Carlo Piermarocchi
Yseulte Dale
Sophia Economou
Wang Yao
Renbao Liu
Michael Leuenberger
Clive Granger
Semion Saikin

Nanocavity
UCSD
Shaya Fainman
Yaoming Shen
CalTech
Axel Scherer
T. Yoshie

Univ of Michigan
Quantum Optics
Duncan Steel
Gang Chen
Todd Stievater
Xiaoqin Li
Gurudev Dutt
Jun Cheng
Yanwen Wu

Naval Res Lab
Fabrication & Characterization
Dan Gammon
D.S. Katzer
D. Park
J.G. Tischler
A.S. Bracker
Three Kinds of Semiconductor Quantum Dots

Self-assembled quantum dots (3-10 nm)
\[\Delta E \sim 100 \text{ meV} \]

InAs lattice mismatch

Interface fluctuation quantum dots (30x40x3 nm³)
\[\Delta E \sim 10 \text{ meV} \]

GaAs

GaAs

\[\Delta E \sim 1 \text{ meV} \]

Gated quantum dots (100 nm)

Electrodes

AlGaAs

AlGaAs

Z

X

GaAs
Experimentalists’ view of Quantum Dots

Self-assembled quantum dot

Interface fluctuation quantum dot

Gated quantum dot

A. Zrenner, et al.

Theorists’ view of quantum dots

Square-well quantum dots

Lateral harmonic well quantum dots

Conduction band

States of interest

Electron

Empty

Occupied

Valence band

\[E \]

\[L_z \]

\[Z \]
• Assumption: periodic lattice with no vibrations (low temperature).

• Consideration of e-e interaction, lattice symmetry and semiconductor band gap leads to the spectrum shown for an electron added to the ground state or removed from it.

• Without radiative interaction, the exciton is an exact excited state.

• Confinement of an electron in a quantum dot.

-Im G(k,E)

h e

continuum 0 E

Is an electron in a dot isolated?

N+1 electron problem

Kohn PR (1960)
Sham, PR (1966).
Sham and Rice, PR (1966).

Electron spectral density
Interaction of the dot spin with outside

• Preparation of initial state (initialization)
• Quantum operations by optical control
• Measurement of single spin state
• Decoherence and recovery - KITP Spintronics Program seminar 4/11/06
Optical transitions in a charged dot

Single particle levels

Multi-particle states

Spin State to Trion

Selection rules

Spin +3/2

Spin +1/2

Spin −1/2

Spin −3/2

Trion

Magnetic field along z

σ+

σ−
Trion states in a single dot

Ensemble Luminescence Spectra

Magnetic field along x

J.G. Tischler, D. Gammon and A.S. Bracker, NRL
Single Electron Spin Coherence

$\Gamma \quad \Gamma \quad \Gamma$

χ^-

$\Gamma \quad \Gamma$

χ

$\Gamma \quad \Gamma$

B = 1.1 T

4000psec

CNOS (a. u.)

Single Charged Exciton

Ensemble Charged Excitons

Single Neutral Exciton

LJ Sham 4/25/06
Where does the spin polarization come from?

Initially unpolarized system remains unpolarized.

\[\hat{\rho}_T(t) = e^{-iH/t} \hat{\rho}_T e^{iH/t} = \hat{\rho}_T \]

One shot: 50% success rate, 10^3 cycles to improve to 0.999
Optical Decay of the Trion

\[|t\rangle \]

\[\gamma > 2\omega_B \]

\[|+x\rangle \]

\[|-x\rangle \]

Spontaneous emission creates spin coherence (SGC)

Rotation of single electron spin (single qubit gate)

Single particle levels

Multi-particle states

Spin State to Trion

Adiabatic NR Raman Spin-flip Process

Trion

Magnetic field along x

Theo est. op time $\sim < 10$ ps

Rotation about the optical (growth or z) axis

Initial spin state, \(|\psi\rangle = \alpha |+\rangle + \beta |-\rangle\)

- Pulse \(H\): \(\Omega \text{ sech}(\sigma t) e^{i\omega_0 t}\)
- Bandwidth
- Central frequency

Final state, \(|\psi\rangle = \alpha e^{-i\phi} |+\rangle + \beta |-\rangle\)

\(\Delta\) - detuning

\[
\tan \phi = \frac{2\sigma \Delta}{\Delta^2 - \sigma^2}
\]

Rosen & Zener, PR (1932)

Optical control of general spin rotation

2 pulses, input: amplitudes $\Omega_\uparrow(t)/\Omega_\downarrow(t) = \cot \beta$, relative phase α, and detuning Δ.

$\begin{align*}
\Omega_\uparrow &= \Xi \sin(2\phi) \cos \beta, \\
\Omega_\downarrow &= \Xi \sin(2\phi) \sin \beta, \\
\Delta &= 2\Xi \cos(2\phi).
\end{align*}$

$\Xi = \sqrt{\Omega_\uparrow^2 + \Omega_\downarrow^2 + \left(\frac{\Delta}{2}\right)^2}$.

Rotation axis polar angles $(2\beta, \alpha)$, angle =

$-2 \int dt \; \Xi(t) \sin^2 \phi(t)$

Conditions:
Zeeman \gg pulse duration
Adiabatic, $|\dot{\phi}(t)| \ll 2\Xi(t)$

Optical decoherence 60 ps; spin decoherence longer than 10 ns.
Gaussian pulses of Rabi energy 1 meV, duration 8.74 ps, detuning 5 meV: the fidelity for a π rotation is 0.991.
Imperfection of the selection rule

Heavy and light hole mixing, $J=3/2$, $m_J = \pm 3/2, \pm 1/2$

Hole state $|+3/2\rangle + \varepsilon |-1/2\rangle$

Spin $|-3/2\rangle - \varepsilon'|+1/2\rangle$

Trions

Optical axis is tilted away from the z axis - deterministic.
Spin state preparation by optical pumping

Multi-particle states

allowed $\Gamma > \gamma$ forbidden

A. Kastler (1952)

- Expt of SAQD InAs in GaAs
- Resonant laser excitation for a time (\sim300 ms) $>> 1/\gamma$ (1 µs) but less than T_1 due to tunneling
- Fidelity 0.998 at 3T (or spin $T \sim$20 mK for Zeeman\sim 4K) - at op temp of 4K, B\sim62T, it would takes forever at rate $1/T_1$

Atatürü, Dreiser, Badolato, Högele, Karrai, Imamoğlu, Science Express, 4/6/06
Controlling spin interaction between two electrons in two quantum dots (ORKKY or Bloombergen-Roland)

Effective Heisenberg exchange between the electrons in two dots $J_{s_1 \cdot s_2}$

$J_1 s_1 \cdot s_c$

Continuum exciton

Continuum hole

Continuum electron

laser

photon

local spin

Single particle levels

Effective interaction between two electrons in separate dots under optical excitation (RPA)

\[H = -2J(R)\sigma_1 \cdot \sigma_2. \]

\[\Omega = \text{Rabi energy} \]
\[\Lambda = \text{energy in dot} \]
\[R = \text{interdot distance} \]
\[\delta = \text{detuning} \]

\[\kappa = \sqrt{\frac{\hbar^2}{2m\delta}} \]

Adiabaticity condition: pulse width in time \(\gg \frac{\Omega}{\delta^2} \)

2\(k_f R \) for above gap excitation
Effective exchange interaction vs dot separation R

Adiabatic limit

Host excitons in 2D

$\delta = \text{detuning}$

Excitons

Electron-hole pairs
Effective exchange interaction vs dot separation R

Additional exchange & correlation between local and itinerant spins

Electron-hole pairs

δ = detuning

2D Host

No kinetic exchange

Excitons

1D Host

Ramon, Lyanda-Geller, Reinecke, Sham, PRB 71, 121305R (2005)
Modified ORKKY for two spin qubits in two quantum dots

Exciton over 2 dots

Effective Heisenberg exchange between the electrons in two dots $J_{s_1 \cdot s_2}$

$J_{1s_1 \cdot s_c}$

Excited hole

Single particle levels

Laser

Local spin

Excited electron

Photon

A single photon wave packet of any shape may be produced by a suitable control of pulse shape of laser light.

Thus, a single photon source

Ultrasfast spin cooling using the waveguide as an entropy dump (qubit initialization)

Selection rules

\[
\begin{align*}
|T^+\rangle & \quad g_{cav} \quad |T^+\rangle & \quad |+,C\rangle \\
|T^-\rangle & \quad |T^-\rangle & \quad |-,C\rangle
\end{align*}
\]

\[
\begin{align*}
|X^-\rangle & \quad |X^-\rangle & \quad |+\rangle \\
|X^+\rangle & \quad |X^+\rangle & \quad |+\rangle
\end{align*}
\]

Yao, Liu and Sham, Phys. Rev. Lett. 95, 030504 (2005)
Solid State CQED for Spin State Measurement

Quantum Non-Demolition Measurement

The three steps may be recycled

Quantum Non-Demolition Measurement

What is not a QND:

- Measure x of a free particle at time $t=0$
 - Uncertainty $\Delta x(0)$ leads to uncertainty $\Delta p(0) \sim h/\Delta x(0)$
- Then measure x again at time t
 - $x = tp/m$
 - $\Delta x(t) \sim t \frac{h}{m\Delta x(0)}$ -- back-action noise

What is a QND:

- Measured observable A
 - $A(0)$ commutes with $A(t)$

Evidence for Strong Coupling CQED

Yoshie, Schere, Hendrickson, Khitrova, Gibbs, Ruppe, Ell, Shchekin, Deppe, Nature
Proposed applications

- Optical control for a quantum processor and a scalable system of SAQDs for QC
- Distributed quantum computation with a quantum network of nodes of QD and microcavity connected by wave guides
- Using QD as strong nonlinear elements to provide photon-photon interaction for devices
Spin coherence time ~ 10\(\mu\)s
Optical gate time ~ 10 ps

Energy Level Schematics for Optical Operations

- ORKKY
- Raman
- AC Stark
- Cooling

Architecture of a 7 bit QC

0.2 μm

Within each zipcode, each dot is addressed by its frequency

Resource estimate

TABLE I: Gates, pulses, and time-consumption required for factoring 15 with Shor’s quantum algorithm

<table>
<thead>
<tr>
<th></th>
<th># of one-bit gates(^a)</th>
<th># of swap gates</th>
<th># of phase gates</th>
<th># of pulses(^b)</th>
<th>time-consumption(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>48</td>
<td>0.8 ns</td>
</tr>
<tr>
<td>a=13 (Toffoli gate)</td>
<td>19</td>
<td>8</td>
<td>15</td>
<td>159</td>
<td>1.2 ns</td>
</tr>
<tr>
<td>a=13 (S- Toffoli gate)</td>
<td>12</td>
<td>6</td>
<td>7</td>
<td>102</td>
<td>1.0 ns</td>
</tr>
</tbody>
</table>

\(^a\)All one-bit gates between two controlled gates are counted as one gate requiring 4 pulses which can be done within 10 ps

\(^b\)including 21 pulses for initialization

\(^c\)including the time for initialization, estimated as 100 ps per bit
Distributed QIP or QC Hardware & Operations

<table>
<thead>
<tr>
<th>Qubits</th>
<th>Operations (clock speed 10 ps or 1 THz)</th>
<th>Write (initialization)</th>
<th>Readout</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Stationary: spins in semiconductor nanodots or excitons</td>
<td>- Optical control by lasers</td>
<td>- Optical pumping and decay</td>
<td>- Aims for one shot measurement</td>
</tr>
<tr>
<td>- Flying: photons (number states or polarization states) in fiber</td>
<td>- Photon-electron interaction in vacuum and in cavity</td>
<td>- Control of cavity electrodynamics</td>
<td>- Requires high efficiency single photon detector</td>
</tr>
</tbody>
</table>

Single Photon Source from semiconductors

LJ Sham 4/25/06
Quantum network with solid-state nodes

Full Raman Cycle

Initialize receiving node.

Map spin qubit to photon qubit by a full Raman Cycle at the sending node.

Photon qubit propagate in the quantum channel.

Map the photon qubit to the spin qubit at the receiving node by a full Raman Cycle.

Remote operations: swap & entanglement designed and simulated

Yao, Liu and Sham, Phys. Rev. Lett. 95, 030504 (2005)
A proposal for a solid-state phase gate for two-photon entanglement

Aim

• Strong interaction between flying qubits for a logic gate
• Mediation by semiconductors
 – photon polarization qubit and electron spin in quantum dot or exciton qubit
 – connection via cavity photon

Possible strengths

• Stable structures which are easy to integrate with electronics and photonics
• Strong nonlinearity from microcavity-quantum dot coupled system
 – Small cavity volume
 – Large transition dipole matrix element of quantum dot
• Qubit by polarization
 |X>, |Y>

• Cavity Modes

• Gate Transformation
 |XX> → e^{i\phi} |XX>
 |XY> → |XY>
 |YX> → |YX>
 |YY> → |YY>

• Linear reflection?
 Reduced by EIT which also yields laser cooling.

• Nonlinearity?
 Coupling to dot

Yao, Liu and Sham, PRL 92, 217402 (2004).
Summary

• An electron spin in a quantum dot is a sufficiently robust quantum system.

• Optical control shows significant experimental progress and provides potentially a broad range of operations with favorable clock speed and versatility for QIP and QC.

• Possibility of applications by a combination quantum optics and semiconductor nano-system is limited only by our imagination.