
Microscopic theory of spin dynamics in transition
metal nanostructures and the role of spin-orbit

coupling

Antonio T. Costa

Instituto de Física
Universidade Federal Fluminense

Niterói - RJ

October, 2013

A. T. Costa (IF-UFF) Spin Dynamics and SOC KITP 1 / 1



Plan

Motivation
Formalism
Spin waves in ultrathin films
FMR, dynamic coupling and spin pumping
Spin excitations and SOC

A. T. Costa (IF-UFF) Spin Dynamics and SOC KITP 2 / 1



Main motivation

Understanding spin dynamics from the microscopic point of view
Simple but realistic models
Everything must come from the electronic structure
Quantitative comparison to experimental results
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Phenomena

Intrinsic damping mechanism.
Anisotropy gap in the spectra of spin excitations
Dzyaloshinskii-Moriya coupling
Anisotropic g-factors
spin signal - charge signal interconversion*
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Typical Systems

Ultrathin films Trilayers Adatoms

All substrates are metallic and non-magnetic.
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Formalism

Semi-empirical description of the electronic structure

H =
∑

l,l′;µ,ν;σ
Tµν

ll′ a†lµσal′νσ +

∑
l

∑
µ,ν,µ′ν

∑
σ,σ′

Uµνµ′ν′

l a†lµσa†lνσ′alν′σ′alµ′σ

Linear response theory
Random Phase Approximation

χll′(Ω) = χ0
ll′(Ω) +

∑
m
χ0

lm(Ω)Umχml′(Ω)
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Spin wave spectra of ultrathin films - 8Co/Cu(001)
J. RAJESWARI et al. PHYSICAL REVIEW B 86, 165436 (2012)

FIG. 2. (a) Spin wave spectrum measured for 8-ML Co deposited
on Cu(100) for in-plane wave vector transfer q‖ = −0.305 Å−1 along
[011] direction. The primary beam energy is E0 = 7.1 eV. Loss and
gain peaks correspond to creation and annihilation of spin waves. (b)
Data as in (a), however, divided by the Bose occupation number
n(h̄ω,T ) on the gain side and by n(h̄ω,T ) + 1 on the loss side.
Spin wave losses 1 and 2 are fitted by Gaussians (dotted line) after
subtraction of a Gaussian for the tail of the elastic line and constant
background (dashed line).

gain and loss side, respectively. The energy, intensity, and
eventually the width of the spin wave peaks (Sec. IV) are
then determined by fitting the loss side of the spectrum to one
or two Gaussians [dotted lines in Fig. 2(b)] after subtraction
of a Gaussian background tail of the elastic peak and a
constant [dashed line in Fig. 2(b)]. The solid line represents
the complete fitting function consisting of the background and
the two Gaussians for the spin wave peaks. The diffuse elastic
peak is also fitted by a Gaussian (short dashed line) to serve as
reference for energy resolution.

III. RESULTS

A series of high-resolution spectra for wave vectors in [011]
("̄X̄) direction ranging from q‖ = 0.235 to 0.434 Å−1 is shown
in Fig. 3(a). The FWHM of the diffuse elastic peak is about
7 meV. The primary electron energy is E0 = 7.1 eV. The
spin wave peaks are clearly seen as separate peaks down to
q‖ = 0.235 Å−1 corresponding to a spin wave energy of about
20 meV. The spectra are measured with gate times of 2–6 s
in 1-meV intervals. For smaller wave vectors (<0.3 Å−1), one
sees a distinct peak with a shoulder on the high-energy side.
The distinct peak is the surface spin wave. As discussed in

FIG. 3. (a) Series of spin wave spectra measured along [011]
direction with high resolution. Spectra are corrected for the Bose
occupation number. Two modes of spin waves are clearly visible for
low q ||. (b) A selection of spectra for larger q || obtained with the
same spectrometer setting. The Rayleigh phonons and spin waves are
clearly distinguished. The incident beam energy in all cases is 7.1 eV.

Sec. V theory identifies the second peak as a standing spin
wave mode of the film.

Spectra measured under the same conditions, yet for larger
q‖, are displayed in Fig. 3(b). The spin wave signals are rather
weak now but clearly discernible in higher magnification (see
inset). Strong loss features appear at low energies. These
energy losses are due to the excitation of Rayleigh phonons
(surface acoustic phonons polarized in the sagittal plane).30

The relatively low energies of Rayleigh phonons (compared
to spin waves) combined with the energy resolution of 7 meV
used in the experiments allowed for unambiguous distinction
between Rayleigh phonons and spin waves.

As seen in Fig. 3(b) the intensities of the spin wave losses
are rather low for larger q‖. This is partly due to the fact
that the spin wave features become broad. For larger wave
vectors between 0.4 and 1.0 Å−1 we have therefore performed
a series of experiments with lower energy resolution. The
typical FWHM of the diffuse elastic peak for this set is about
34 meV. The spectra were recorded along the "̄X̄ and the
"̄M̄ direction of the SBZ [Fig. 1(b)]. Because of the higher
intensities, gate times of 1 s were used for smaller q‖ and
2 s for q‖ > 0.85Å−1. The measurements were performed for
both positive and negative wave vector transfers.

Figure 4(a) shows a selection of spin wave spectra measured
along the [011] ("̄X̄) direction, and Fig. 4(b) along the [010]
("̄M̄) direction for positive wave vector transfers. The dashed
line is a guide to the eye connecting the maxima of the loss

165436-4

First experimental observation of
optical spin wave modes on
ultrathin metallic films.
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Spin waves on 8Co/Cu(001) - dispersion and linewidths
SURFACE SPIN WAVES OF fcc COBALT FILMS ON . . . PHYSICAL REVIEW B 86, 165436 (2012)

FIG. 10. Comparison of the theoretical dispersion (open circles)
with experimental data (open squares and triangles).

due to details of the electronic structure. The large wave vector
dispersion relation, however, depends on sums of products of
exchange integrals by oscillatory functions of the wave vector.
Small uncertainties in the determination of the electronic
structure may lead to large variations of spin wave energies
at large wave vectors. This may explain why the discrepancy
between theory and experiment in the large wave vector region
is much larger than at small wave vectors. This reasoning is
especially compelling to us because the discrepancy between
theory and experiment starts to increase noticeably around the
same wave vector region where the dispersion relation ceases
to be quadratic.

We now turn to the linewidth of the spin wave peaks.
These linewidths represent the hallmark of itinerant magnetism
and are a direct consequence of the system’s electronic
structure. No adjustable parameter was employed in their
determination. We recall that the only parameters in our
calculations are those describing the hopping integrals and
the effective Coulomb interaction; they are the output of ab
initio calculations specifically designed for the geometry of
the system in question.

The calculated spectral linewidths agree nicely with those
extracted from the experimental results for small and interme-
diate wave vectors. When plotted vs the spin wave energy
then the agreement is nearly perfect for wave vectors up
to q‖ = 0.88 Å, the largest wave vector for which we have
attempted to deduct a FWHM from the experimental data
(Fig. 11). In both cases the data are fit by a linear relation
between the FWHM and the spin wave peak energy with the
slope of 0.43. The only difference is a minor offset on the
energy scale. This difference may be not significant, because
of experimental errors in the determination of the FWHM at
low energies.

The roughly linear relationship between linewidth and spin
wave energy can be understood as follows: The lifetime of
a spin wave with energy h̄ω is inversely proportional to the
density of Stoner excitations at h̄ω (Landau damping), which
is given by the spectral density associated with the mean-field
transverse susceptibility. It has been shown12 that this spectral

FIG. 11. Full width at half maximum (FWHM) of the spin wave
peak vs the spin wave energy. Solid squares are the experimental data
from Fig. 9, the open circles are from theory. When fitted to a linear
relation the theoretical results follow the same slope. See text for
further discussion.

density is proportional to an integral over the interval (EF −
h̄ω,EF ) of a product of single-particle Green functions. Since
h̄ω is typically much smaller than the electronic bandwidth,
the integrand is approximately constant over the integration
interval and the result is roughly linear in h̄ω. According to
this argument the linear relation between linewidth and energy
should display zero linewidth for zero spin wave energy while
the linewidth in Fig. 11 actually approaches zero for a finite
spin wave energy. The reason for this is related to the spectrum
of available Stoner excitations h̄ω(q). Inspection of the band
structure of fcc cobalt42 shows that the main channel for
Stoner excitations with q‖ along the [110] direction closes at
a minimum wave vector of qc = 0.25 Å−1, corresponding to a
spin wave energy of 22 meV. This critical qc is shown in Fig. 11
as an arrow pointing to the corresponding spin wave energy.

One of the main difficulties in interpreting spin wave spectra
measured by electron energy loss spectroscopy comes from the
very nature of the probe: The electron beam penetrates a few
atomic layers close to the surface of the magnetic film and
interacts in a complicated fashion with the magnetization of
these layers. A complete calculation of the spectra would re-
quire detailed multiple scattering calculations combined with
a spectral function that is not quite the same as the transverse
susceptibility described by Eq. (18). Also details of the surface
potential enter critically into such calculations since the energy
of the probing electron is small.43 Here, we merely make a
crude attempt at describing the contribution of deeper layers
to the calculated spin wave spectra. We assume that the electron
beam penetrates the magnetic film with an exponentially
decaying intensity, characterized by a decay length λdec, and
no phase shift. The resulting spectral density is given by

AMS(ω) = − 1
π

Im
∑

l,l′

e
− (l+l′)d

λdec χ+−
ll′ (ω; $q||), (20)

where d is the interlayer distance. The layer indices l, l′

run from 0 to 7, 0 being the surface layer. The decay length
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Including SOC

Within our method, including SOC corresponds to adding to the
hamiltonian,

HSO =
∑

l

∑
µν

λl
2
[
Lz
µν(c†lµ↑clν↑ − c†lµ↓clν↓) + L+

µνc
†
lµ↓clν↑ + L−µνc

†
lµ↑clν↓

]
which is nothing but ∑

l
λl~Ll · ~Sl

in second-quantized form in terms of localized atomic orbitals {l, µ}.

A. T. Costa (IF-UFF) Spin Dynamics and SOC KITP 9 / 1



Including SOC

SOC couples transverse spin excitations, given by

χ+−
ll′ (t) = −iθ(t)

〈[
S+

l (t),S−l′ (0)
]〉

to longitudinal spin excitations and charge excitations,

χ↑−ll′ (t) = −iθ(t)
〈[

n↑l (t),S−l′ (0)
]〉

χ↓−ll′ (t) = −iθ(t)
〈[

n↓l (t),S−l′ (0)
]〉

χ−−ll′ (t) = −iθ(t)
〈[

S−l (t),S−l′ (0)
]〉

Equations of motion for these four matrices in four orbital indices
must be solved simultaneously.

PRB 82, 014428 (2010)
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Including SOC

The solution has a form that closely resembles the traditional RPA
expression,

~χ = ~χ0 + (Ω− B)−1B̄~χ,

which is solved by

~χ(Ω) = [I − (Ω− B)−1B̄]−1~χ0(Ω),

where the superscript 0 denotes mean-field quantities and the vector ~χ
is a compact notation for the set of four susceptibilities

~χ =
(
χ+−, χ↑−, χ↓−, χ−−

)T
.

PRB 82, 014428 (2010)
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Results - Fe/W(110)

Anisotropy - gap in the SW spectrum
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Results - Fe/W(110)
±~Q asymmetry in the SW dispersion relation:
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Results - Fe/W(110)
±~Q asymmetry in the SW spectra
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2Fe/W(110) - Comparison to experiment
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Experiments: Tang, Zhang, Tudosa,
Prokop, Etzkorn and Kirschner, PRL 99,
087202 (2007)
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Spin Pumping
We obtain FMR spectra from our formalism by taking |~Q| → 0.
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Spin pumping without SOC
“Damping” comes only from “leakage” to the semi-infinite substrate.
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our calculations
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Spin pumping with SOC
By including SOC in the calculation of FMR spectra we can evaluate
the relative importance of intrinsic and spin-pumping contributions to
the damping.
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Single atoms on metallic surfaces

Ancient history: D. Mills and P. Lederer, 1967
Single magnetic impurity in a transition metal host show a resonance
of zero linewidth if monitored by a long wavelength probe. If
only the local response is measured, there is a considerable g
shift and large linewidth.

They employed a simple one-band model with intra-atomic repulsion in
the impurity site only.

D. L. Mills and P. Lederer, Phys. Rev. 160, 590 (1967).
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The experimental technique: ISTS
Inelastic Scanning Tunneling Spectroscopy: sample-tip bias is varied.
Steps in the dI

dV signal indicate excitation.

A. J. Heinrich et al.,
Science 306, 466 (2004).
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Is this a magnetic excitation?

A. J. Heinrich et al.,
Science 306, 466 (2004).

Red dots on panel B were
obtained for a Mn atom at the
edge of an oxide path.
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Metallic surfaces – Fe adatom on Cu(111) surface

ḡ ≈ 2
PRL 106, 037205 (2011).
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Fe adatom on Cu(111) surface - Calculations

g = 1.8; magnetic anisotropy ∼ 1 meV.
PRL 106, 037205 (2011).
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The role of surface states

Cu(111) × Ag(111)
Both have free-electron-like states localized at the surface layer.

In Cu(1111), the surface state is well below the Fermi level.
In Ag(111) it is very close to EF (∼ EF − 50 meV)

Coupling of the Fe adatom
with the Ag(111) surface
state generates a spin-split
bound state
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Fe adatom on Ag(111) - ISTS

ISTS at
(a) Fe adatom
(b) Ag substrate
(c) Fe adatom
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Fe adatom on Ag(111) - theory

Experiment: g ≈ 3.1. Theory: g ≈ 3.3
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Origin of the large g shift

It is difficult to present a simple explanation for the origin of the
anomalous g (although we know it is connected to the surface state).
A hint: for a single magnetic site,

χ = χ0
1 + Uχ0

= χ
(R)
0 + iχ(I )

0

1 + Uχ(R)
0 + iUχ(I )

0

But, for small Ω,

χ
(R)
0 ≈ χ0(0) + αΩ, χ

(I )
0 ≈ −βΩ.

Thus,
χ(I ) ≈ βΩ

{1 + U [χ0(0) + αΩ]}2 + (UβΩ)2 .
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Resonance condition

From the last expression we extract the resonance condition

Ωr =
| 1
U + χ0(0)|√
α2 + β2 .

In the absence of a Zeeman field B, χ0(0) = − 1
U ⇒ Ωr = 0.

Fe is actually a rare case: Co, Cr and Mn all have g ∼ 2.
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Concluding remarks

It is possible to understand several aspects of the spin dynamics
from a microscopic point of view, with an ab-initio-like theory
(i.e. relying only on information about the electronic structure of
the system).
SOC has been incorporated to our method of calculating spin
excitations; the phenomenology of spin excitations in the presence
of SOC is reproduced by our microscopic method.
Further developments: IST spectrum directly from our method;
dynamical coupling through “interacting” substrates (Pd).
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