

The Quantum and Classical Properties of Spins on Surfaces

Andreas Heinrich IBM Research, USA

© 2013 IBM Corporation

Quantum or Classic: that is the question

	Top-down	Bottom-up
	Bit lines	
Address individual structure	\checkmark	×
Quantum vs. Classical	С	Q
Atomic-scale control	×	\checkmark

Quantum or classic

Spin excitations in STM **Science** (2004) ➢Quantum spins: A quantum antiferromagnet Science (2006) **Classical spins:** The smallest classical antiferromagnet **Science** (2012)

Scanning **T**unneling **M**icroscopy of Spins

Imaging with STM: Mn, Cu, and Fe on Cu₂N

Isolated magnetic atoms on patches of Cu₂N on Cu(100)
Atoms are hard to distinguish

Spin excitation spectroscopy

IBM

Mn on Cu₂N: An almost pure spin

Mn atom on CuN exhibits magnetic behavior: * spin-flip excitation in S = 5/2 system * small amount of zero-field splitting

Conservation of energy: inelastic spectroscopy

IBM

Conservation of spin-angular momentum

$$\left\langle \sigma_{f}, m_{f} \middle| \vec{\sigma} \cdot \vec{S} + u \middle| \sigma_{i}, m_{i} \right\rangle^{2}$$

Classical magnets in spintronics

Tunnel junctions show Tunneling Magneto Resistance. TMR can be used to electrically switch nanomagnets.

STM as a magnetic imaging tool

60 ML Dy(0001) with spin-polarized tip

Berbil-Bautista, Phys. Rev. Lett. (2007)

Tunnel junctions show Tunneling Magneto Resistance
Similar mechanism works on the atomic scale in STM

Quantum or classic

Spin excitations in STM Science (2004)

 Quantum spins:
A quantum antiferromagnet Science (2006)
Classical spins:

The smallest classical antiferromagnet *Science* (2012)

Atom manipulation on Cu₂N

IBM

Atom manipulation on Cu₂N

IBM

Spin-excitation spectroscopy of Mn chains

Strong spin-coupling in Mn-N-Mn dimers

Dimer has no zero-bias feature

Mn

Strong spin-coupling in Mn-N-Mn dimers

Heisenberg spin coupling for dimer

$$\hat{H} = J \, \hat{\vec{S}_1} \bullet \hat{\vec{S}_2}$$

$$\hat{H} = \frac{1}{2}JS_T^2$$

> Antiferromagnetic coupling: J > 0
> Ground state: S_T = 0
> First excited state: S_T = 1, energy: J
> NOT dependent on S
J = 6meV

What is the singlet wavefunction?

 \succ For two S = $\frac{1}{2}$ you know the singlet state ...

$$\left|S_{T}=0\right\rangle=\frac{1}{\sqrt{2}}\left(---\right)$$

For two S = 5/2 it is a bit more complicated:

$$\left|S_{T}=0\right\rangle = \frac{1}{\sqrt{6}} \overset{\text{ae}}{\in} \left|\frac{5}{2}, -\frac{5}{2}\right\rangle - \left|\frac{3}{2}, -\frac{3}{2}\right\rangle + \left|\frac{1}{2}, -\frac{1}{2}\right\rangle - \left|-\frac{1}{2}, \frac{1}{2}\right\rangle + \left|-\frac{3}{2}, \frac{3}{2}\right\rangle - \left|-\frac{5}{2}, \frac{5}{2}\right\rangle \overset{\text{o}}{\stackrel{\div}{\otimes}}$$

Heisenberg model for longer chains

$$H = J \sum_{i=1}^{N-1} \vec{S}_i \cdot \vec{S}_{i+1}$$

➢ Dimer ⇒ J = 6.2meV
➢ Trimer ⇒ S_i = 5/2

- Even chains
 - ground state spin = 0
 - * excited state spin = 1
- Odd chains
 - ☆ ground state spin = 5/2
 - * excited state spin = 3/2

No changes along the chain

Step energy is independent of location along chain
Excitation is a property of the chain, not its constituents

A novel type of atomic-scale magnet?

[e⁻ / a₀³]

Cu and N surface atoms form extended molecular bonds
N atoms are ligands to metals
N atoms are bridge atoms for superexchange interaction
A surface-embedded magnetic molecule?

Magnetism on surfaces

- Spin excitations in STM Science (2004)
- Quantum spins: A quantum antiferromagnet Science (2006)
- Classical spins: The smallest classical antiferromagnet Science (2012)

Lateral spin contrast in a chain of Fe atoms?

Highwocureentt: atom appears satibrt

Atomic-scale Tunneling Magneto Resistance junction.
Chain of 8 Fe atoms in "classical" Néel states.

Two stable antiferromagnetic states

Switching dynamics

IBM

Quantum not fully gone – low T switching

Quantum coherence needed

IBM

Switching of Néel vector in AFM chains – high T

1/T (K⁻¹)
Removal of 2 atoms increases tunneling by 1000x
Slope of thermal relaxation gives energetics

Switching dynamics: high T

Domain wall introduced by T fluctuations
Calculated energy cost is 2S²J = 9.6 meV
Measured E_a = 12 meV
Propagation of domain wall costs no energy

So what is the difference?

Fe chain has weaker coupling due to spacing
Fe has strong easy-axis magnetic anisotropy

A close-spaced Mn chain

Mn chain with same spacing as Fe chain
Tip has very high spin polarization

Summary

Spin excitation with STM

Classical antiferromagnet: two stable states

Quantum antiferromagnet: singlet ground state

What to learn from quantum spins on surfaces?

Susanne Baumann lleana Rau

Chris Lutz

Bruce Melior

Sebastian Loth

Cyrus Hirjibehedin Don

Don Eigler

Office of Naval Research

oldt and a second second

From AFM chains to arrays – kill quantum

Dense packing: a true advantage of AFM Note: lattice rotated by 45 degrees.

Heinrich | STM of spins at surfaces

© 2013 IBM Corporation

Antiferromagnetic data storage:

- > 12 Fe atoms per bit.
- ~100,000 x fewer magnetic atoms
- Bit density including spacer regions 70 T bit / in²

~100 x denser than current hard disk drive technology

The world's smallest magnetic Byte

New Storage Device Is Very Small, at 12 Atoms

What to learn from quantum spins on surfaces?

