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Quantum or Classic: that is the question
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Quantum or classic

Spin excitations in STM 
Science (2004) 

Quantum spins:

A quantum antiferromagnet
Science (2006)

Classical spins:

The smallest classical antiferromagnet

Science (2012) 
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Thin decoupling layer

Non-magnetic tip

Non-magnetic sample

Scanning Tunneling Microscopy of Spins

Magnetic atom
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Imaging with STM: Mn, Cu, and Fe on Cu2N

 Isolated magnetic atoms on patches of Cu2N on Cu(100)

 Atoms are hard to distinguish

Cu2N on Cu(100)



© 2013 IBM CorporationHeinrich | STM of spins at surfaces 6

Thin decoupling layer

Non-magnetic tip

Non-magnetic sample

Spin excitation spectroscopy

Magnetic atom

EZ = gμBB

B

E
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Mn on Cu2N: An almost pure spin

Mn atom on CuN exhibits magnetic behavior:

 spin-flip excitation in S = 5/2 system

 small amount of zero-field splitting
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5.5 kBT

Conservation of energy: inelastic spectroscopy

EZ = gμBB
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Conservation of spin-angular momentum
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Classical magnets in spintronics

 Tunnel junctions show Tunneling Magneto Resistance.

 TMR can be used to electrically switch nanomagnets.
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Ø ~ 100nm

Cu

Magnet 1

Magnet 2
insulator

current

J.S. Moodera, et al. PRL (1995)

Cu
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STM as a magnetic imaging tool

 Tunnel junctions show Tunneling Magneto Resistance

 Similar mechanism works on the atomic scale in STM

11

Cu

Magnet 1
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Ø ~ 100nm

Cu
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60 ML Dy(0001) with spin-polarized tip

Berbil-Bautista, Phys. Rev. Lett. (2007)

Cr Cr
Cr

Cr

Cr

Cr

Cr

Cr

Cr



© 2013 IBM CorporationHeinrich | STM of spins at surfaces 12

Quantum or classic

Spin excitations in STM 
Science (2004) 

Quantum spins:

A quantum antiferromagnet
Science (2006)

Classical spins:

The smallest classical antiferromagnet

Science (2012) 
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Cu

Fe
Mn

Mn

13

Pick up atom

Atom manipulation on Cu2N

 Move tip in

 Apply 2.0V

 Pull tip back
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Mn

Cu

Fe
Mn

Mn

14

Pick up atom

Atom manipulation on Cu2N

Drop off

 Move tip in

 Apply -0.5V

 Pull tip back
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Spin-excitation spectroscopy of Mn chains
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Strong spin-coupling in Mn-N-Mn dimers

 Dimer has no zero-bias 

feature
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Strong spin-coupling in Mn-N-Mn dimers

 Dimer has no zero-bias 

feature

 Large step at ~6mV 

splits into three distinct 

steps at high fields
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Heisenberg spin coupling for dimer

Antiferromagnetic coupling: J > 0

Ground state: ST = 0

First excited state: ST = 1 , energy: J 

NOT dependent on S
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What is the singlet wavefunction?

 For two S = ½ you know the singlet state …

 For two S = 5/2 it is a bit more complicated:
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 Dimer  J = 6.2meV

 Trimer  Si = 5/2

 Even chains

 ground state spin = 0

 excited state spin = 1

 Odd chains

 ground state spin = 5/2

 excited state spin = 3/2
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No changes along the chain

 Step energy is independent of location along chain

 Excitation is a property of the chain, not its constituents

78Å
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A novel type of atomic-scale magnet?

Bare CuN Mn on Cu-site/CuN Mn dimer on Cu-site/CuN

Cu and N surface atoms form extended molecular bonds

N atoms are ligands to metals

N atoms are bridge atoms for superexchange interaction

A surface-embedded magnetic molecule?

Cu+ Cu+ Cu+
N- N-

Cu+

N- Mn+

Cu+

Mn+

N- N-

Cu+

Cu+

Cu+
N- N-

Mn+

DFT calculations by C.-Y. Lin and B.A. Jones
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Magnetism on surfaces

Spin excitations in STM 
Science (2004) 

Quantum spins:

A quantum antiferromagnet

Science (2006)

Classical spins:

The smallest classical antiferromagnet

Science (2012) 
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Lateral spin contrast in a chain of Fe atoms?

 Atomic-scale Tunneling Magneto Resistance junction.

 Chain of 8 Fe atoms in “classical” Néel states.

tip

insulator

metal

Low current: 

atom appears short

High current: 

atom appears tall
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Two stable antiferromagnetic states
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Switching dynamics

26

	

T = 4.75K, B = 3T

	



© 2013 IBM CorporationHeinrich | STM of spins at surfaces

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.1

1

10

100

 

 

27

1/T (K-1)

S
w

it
c
h
in

g
 r

a
te

 (
s

-1
)

(1x6)

(1x8)

 Removal of 2 atoms increases tunneling by 1000x

 Quantum coherence needed

Quantum not fully gone – low T switching



© 2013 IBM CorporationHeinrich | STM of spins at surfaces

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.1

1

10

100

 

 

28

1/T (K-1)

S
w

it
c
h
in

g
 r

a
te

 (
s

-1
)

(1x6)

(1x8)

 Removal of 2 atoms increases tunneling by 1000x

 Slope of thermal relaxation gives energetics

Switching of Néel vector in AFM chains – high T
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Switching dynamics: high T

 Domain wall introduced by T fluctuations

 Calculated energy cost is 2S2J = 9.6 meV

 Measured Ea = 12 meV

 Propagation of domain wall costs no energy
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So what is the difference?

 Fe chain has weaker coupling due to spacing

 Fe has strong easy-axis magnetic anisotropy

30
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Mn Mn Mn
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A close-spaced Mn chain

31
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Summary

32

Spin excitation 

with STM

Classical antiferromagnet:

two stable states

Quantum antiferromagnet:
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What to learn from quantum spins on surfaces?

Quantum state in real time

| 2 , -2 

| 2 , +2 | S , mz 

z

Energy spectrum

E

Bz

| 2 , -2 

| 2 , -1 

| 2 , 0 

| 2 , +1 

| 2 , +2 

Time evolution

T1

t

<mz>Spin-

sensitive

STM



© 2013 IBM CorporationHeinrich | STM of spins at surfaces 34

Chris

Lutz

Don 

Eigler

Bruce

Melior
Susanne

Baumann

Sebastian

Loth

Cyrus

Hirjibehedin

Ileana

Rau



© 2013 IBM CorporationHeinrich | STM of spins at surfaces 35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.1

1

10

100

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.1

1

10

100

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.1

1

10

100

 

 
1/T (K-1)

S
w

it
c
h
in

g
 r

a
te

 (
s

-1
)

(1x6)

(1x8)

(2x6)

 Weak coupling of 2 chains
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From AFM chains to arrays – kill quantum
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Dense packing: a true advantage of AFM
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 12 Fe atoms per bit.

 ~100,000 x fewer 

magnetic atoms

 Bit density including 

spacer regions

70 T bit / in2

 ~100 x denser than 

current hard disk 

drive technology

Antiferromagnetic 

data storage:
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The world’s smallest magnetic Byte
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New Storage Device Is Very Small, at 12 Atoms

39
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New research findings at I.B.M. allow for miniaturized data storage in atomic-scale antiferromagnets. The binary

representation of 'S' (01010011) was stored in eight iron atom arrays.

By JOHN MARKOFF

Published: January 12, 2012

SAN JOSE, Calif. — Researchers at I.B.M. have stored and retrieved

digital 1s and 0s from an array of just 12 atoms, pushing the

boundaries of the magnetic storage of information to the edge of what

is possible.

The findings, being reported Thursday

in the journal Science, could help lead

to a new class of nanomaterials for a

generation of memory chips and disk

drives that will not only have greater

capabilities than the current silicon-

based computers but will consume

significantly less power. And they may

offer a new direction for research in

quantum computing.

“Magnetic materials are extremely useful and strategically

important to many major economies, but there aren’t that

many of them,” said Shan X. Wang, director of the Center
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What to learn from quantum spins on surfaces?

Quantum state in real time
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