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Thermoelectric transport: FL description 

strong electron-electron interaction 
resonance scattering effects Example: Kondo effect 
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Bulk metals (Fermi Liquid Theory): 

strongly correlated metals 



Q: How do the effects of strong electron correlations  
manifest themselves in the thermoelectric transport  
through the nanostructures? 

Q: What are possible mechanisms for enhancement of  
the thermoelectric power? 

Q: Is the thermo-transport through nanostructures  
always characterized by the Fermi-Liquid concept? 



Sequential tunneling at Coulomb blockade 

Beenakker & Staring 1992 
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For a bulk metal 
eS~T/EF<<1 

Too 
large?? 

Mott’s rule would give 
for sequential tunneling  

eS~1 
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Effect of co-tunneling at weak coupling 
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Weak coupling 

Turek & Matveev, 2002 

 Sequential 
close to 

degeneracy 
point 

Smax is much smaller than 
Beenakker&Staring estimation, 
more consistent with the Mott’s 
rule result eS~1 but enhanced 
compared to bulk eS~T/EF<<1 

Co-tunneling 
far from the 
degeneracy 

point 

N=1/2 

    
No Coulomb energy is payed 



Conductance 
Thermovoltage 

Weak coupling 

Strong coupling 

From weak to strong coupling 

Molenkamp, MK et al, 2005 

Mott law is obeyed 

Mott law is violated 
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Q1: How does the Kondo effect influence  a thermoelectric  
transport through the nano-structures? 

Q2: What are the manifestations of Kondo effect in  
the thermoelectric transport through the nanostructures? 

Q3: Is there a room for NFL enhancement of thermopower  
in the nanostructures? 



Realization of Kondo-effect in nanostructures I 

D.Goldhaber-Gordon et al, Nature, 1998 

R.M. Potok et al, Nature, 2007 

1CK 

2CK 



Realization of Kondo-effect in nanostructures II 

S.Amasha et al, PRL 2011 



Flensberg - Matveev – Furusaki setup 

Flensberg 1993, Matveev 1995, Furusaki, Matveev 1996 

QPC 

1CK – 2CK 



Model 

Metallic regime 

Assumptions: 

Strong coupling regime 

Weak Coulomb Blockade 

Strong coupling limit and effective model  



Strong coupling and the Kondo physics 
(Matveev & Andreev, 2002) 
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N-channel Kondo: 
spin-1/2 impurity 

+N orbital channels 
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QPC is a quasi-spin-1/2 orbital “impurity” + 
two spin     and     channels:                      

2-channel Kondo. Symmetry of channels is 
protected by TRS 
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Reflection plays 
a role of spin-

flip 



FL and non-FL behavior 
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Kondo screening 
of the impurity 

spin overscreening 

Magnetic susceptibility 
χ=const as T->0 

Magnetic susceptibility 
χ∼ ln(Tk/T) 

Fermi-liquid 
behavior 

Non-Fermi-liquid 
behavior 

eS~T/Tk eS~(T/Tk)    ln(Tk/T) 1/2 

Matveev&Andreev, 2002 



Two Kondo regimes 

Spinless fermions:  
QPC is fully spin-polarized: 1CK 
Fermi liquid behavior: 

Spinful fermions:  
QPC is non-polarized: 
 isotropic 2CK 
Non Fermi liquid behavior: 

Q1: How does one regime crossover to another one?  
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Enhancement by non-Fermi-liquid effects 

Enhancement of thermopower by electron-electron interaction !  

Matveev, Andreev, 2001-2002 



Quantum 
dot 

QPC 

Reflection plays 
a role of spin-
flip in Kondo 

problem 
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Zeeman 
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How does magnetic field influence two Kondo regimes? 

Parallel to the plane magnetic field 





Characteristic scales of magnetic field 

Field of full polarization BC 

Field B*< BC  where spin-down 
electron is fully reflected     

(model dependent) 
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Instability of non-FL fixed point 
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'' σσσσσ∑ +J1 

J2 

The symmetric state J1=J2  
and the non-FL fixed point 
is only stable if protected 
by the basic symmetry 

(Time Reversal Symmetry) 

Magnetic field breaks TRS and drives 
system  to the 1-channel Kondo with 

decreasing the temperature T 

Suppression of thermopower by 
magnetic field  

Non FL 
fixed point 

B=0 

   0≠B



The main result: B<<B* 
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point 

At a finite B  a gap in Γ(N) opens up at 

the degeneracy point N=1/2 

Effect of 
B 



Theoretical predictions: gate voltage dependence 



Theoretical predictions: B and T -dependences 



Giant Fermi-liquid behavior in magnetic field  

For  

Effects of magnetic field on thermopower 
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Theoretical predictions: derivatives 

minT maxT
B=0: Smax/T diverges at T = 0; 
Finite B: Smax/T saturates below Tmin  

Existence of maximum in dS/dB 



Message to take home 
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Flensberg – Matveev - Furusaki setup in external  
parallel magnetic field in the presence of SOI 
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Strong Zeeman effect vs strong spin-orbit interaction 
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Spectra 



Strong spin-orbit interaction at 

Scattering 
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Theoretical predictions: strong spin-orbit  

B/BC

eS
m

a
x

T

T +�T
x

y

z

~BSOI

Vg

V
~B

⇥



Perspectives: 

•  Multi-channel Kondo effect 

•  Influence of noise 
 
•  Influence of finite s-d voltage 

•  Quenches with the gate and s-d voltage 

•  SOI in quantum dot 

µ



Conclusions 

• Thermopower of a quantum dot can be much larger than  in the 
bulk eSBULK ~T/EF 
 
•  Kondo physics in thermopower of an open dot; magnetic field leads 
to crossover from 2CK to 1CK 

•  Magnetic field suppresses thermopower and restores FL behavior 
at T< Tmin 

•  Spin – orbit interaction “protects” the NFL at magnetic fields  
B < BSO 

•  Interplay between linear and quadratic Zeeman effect leads to 
non-monotonic B- behavior of thermopower 

T.K.T. Nguyen, MK and V.E. Kravtsov, PRB 82, (2010) 
MK and Z. Ratiani (2013) 


