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Experimental Phenomena 
• Current induced domain wall motion 

• Efficient 
• Opposite electron flow 

• Efficient Magnetic Reversal 
• Quasi-static measurements of torque 

• Confusing thickness dependence 

Overview 

Theoretical Approaches 
• First Principles calculations 
• Semiclassical Transport 

• Drift Diffusion 
• Boltzmann Equation 

• Magnetization dynamics 
• One dimensional models 
• Micromagnetics 

Physical Processes 
• Current induced torque in ferromagnet 

• Adiabatic spin transfer torque 
• Non-adiabatic spin transfer torque 

• Interfacial spin orbit coupling 
• Current-independent Dzyaloshinskii-Moriya 

interaction 
• Current dependent 

• Damping-like torque 
• Field-like torque 

Uncertainties 
• Uncharacterized disorder 
• Unknown physical parameters 
• Complicated dynamics 
• Competing processes 



Current-dependent torques, independent of gradients 
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Simple system – bilayer thin film wire 

Torque from current flow 
through a magnetization 
pattern 

Torque from current flow 
In adjacent layer 

Spin Hall effect 
Spin transfer torque  

Torque from interfacial 
spin orbit coupling 
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Spin Hall Effect – spin current due to spin-orbit interaction 

current 

Mott scattering 

spin current 

Spin asymmetry due to 
spin-orbit interaction 

Spin Hall effect 
D’yakonov and Perel’ (1971), 
Hirsch (1999), Zhang (2000) 

Intrinsic – spin-orbit coupling 
in the band structure 

Extrinsic – spin-orbit coupling 
at defects 



Model 1: Spin Hall Effect + Spin Transfer Torque 
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● Spin Hall effect 
Treat with drift diffusion. 
 

● Spin Transfer Torque, 
Slonczewski, Berger (1996) 
 Treat with circuit theory or 

equivalent 
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Interfacial absorption of the transverse spin current 
 Effective (anti)damping due to spin transfer torque 
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Modification of thermal spin wave amplitudes  

due to spin Hall effect spin transfer torque 

V. E. Demidov, S. Urazhdin, E. R. J. Edwards, M. D. Stiles, R. D. McMichael, and  

S. O. Demokritov, Phys. Rev. Lett. 107, 107204 (2011) 
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Magnetization switching  
due to spin Hall effect spin transfer torque 

Spin torque switching with the giant spin Hall effect of tantalum 
Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph and R. A. Buhrman, 
Science 4 May 2012: 555-558 



Simple system – bilayer thin film wire 

Torque from current flow 
through a magnetization 
pattern 

Torque from current flow 
In adjacent layer 

Spin Hall effect 
Spin transfer torque  

Torque from interfacial 
spin orbit coupling 
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Domain wall motion in Pt/Co/MgO 
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Miron et al., Nature Materials 10, 419 (2011) 

● Velocity twice 
expected value 
 

● Motion against 
electron flow 
 

● Possibly explained 
by “field-like” 
torques (or 
Dzyaloshinskii-
Moriya interaction) 



Model 2: 2d Rashba model 
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● Rashba interaction 
Treat with Boltzmann equation. 
 

● Torque due to spin accumulation and 
exchange interaction. 



Field-like torques 

Kim et al., Nature Materials, 
12, 240 (2012) 

Field-like 
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Direct measurement 
through small amplitude 
displacements 



Layer thickness dependence of the current induced effective 
field vector in Ta|CoFeB|MgO 

J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, H. Ohno, Nature Materials (2012) 
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Why Semiclassical Calculations? 
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• Origin of most of what we know about transport. 

• It’s how people think. 

• Easier and enables systematic studies. 

• Structural details of system, necessary for first-
principles are not known. 

Why not? 

● Can be difficult to be sure that all physics is included 
correctly. 

● Not strictly valid for small thicknesses. 



spin-orbit energy 

exchange energy 

Rashba field due to influence of Pt spin-orbit coupling  
on Co electronic structure 

16 

ˆJ Jx
ˆM Mz

0 

Pt Co 

See also: 
“Spin-orbit torques in Pt/Co 
films from first principles,” 
Frank Freimuth, Stefan 
Blügel, Yuriy Mokrousov, 
arXiv:1305.4873  
 



Why Boltzmann equation, why not drift-diffusion? 

● Drift-diffusion equation gives no current-in-the-plane GMR. 

● Boltzmann equation does (Camley & Barnas (1989)). 

Electrons explicitly flowing 
in all directions allows spin 
flow between layers. 

FM1 

NM 

FM2 

FM1 

NM 

FM2 

0 0 Current, Spin current 

0 0 Current, Spin current 
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3d Boltzmann transport model (after Camley & Barnas) 

Simple model: 
● Spherical Fermi surfaces 
● Spin-dependent scattering 
● Arbitrary spin direction 
● “extrinsic” spin Hall effect 
● Delta function interfacial potential 
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Ignore Intrinsic contributions: 
● Intrinsic spin Hall effect 
● Interface contribution 



More details of Boltzmann equation 

● Linearized to Fermi surface. 
 
 

● “Matrix” Boltzmann equation – full spin coherence at each 
k point, but incoherent for different k’s. 
 
 
 
 

● Solve for arbitrary solution with 2d translational 
invariance. 

● Join solutions between layers by matching with 
transmission and reflection coefficients. 
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Spin currents with bulk spin orbit coupling (no interfacial) 
 Predominantly damping-like torque 
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Spin currents with interfacial spin orbit coupling (no bulk) 
 Predominantly field-like torque 
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 Torque driven by spin current injection from FM 



Two mechanisms are largely independent 
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Thickness dependence 

J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. 

Fukami, T. Suzuki, S. Mitani, H. Ohno, Nature 

Materials (2012) 
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When FM and NM resistivities are very different,  
the drift-diffusion approximation can be significantly off. 

Drift-diffusion result 

NM FM/ 8  

NM FM/ 4  

NM FM/ 2  



Current in NM layer may be very different than bulk value. 

Suppressed by diffuse 
boundary scattering 

Enhanced by injection 
from ferromagnet 
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Boltzmann equation calculations of spin transfer torques  
in magnetic bilayers with strong spin orbit coupling 

More information at http://cnst.nist.gov 

Review articles on spin transfer torque: JMMM 320 

● Captures essential physics of 

● Spin Hall effect + spin transfer torque, 

● 2-d Rashba model. 

● Two mechanisms are largely independent. 

● Captures some but not all of the experimental behavior 
(thickness dependence). 

● Drift-diffusion approximation can be quantitatively off. 

● Current in NM layer may be very different than bulk value. 

Papers: PRB 87, 174411 (2013) (arXiv:1301.4513) 

See also: arXiv:1309.1356, arXiv:1308.3341, arXiv:1308.1198 

http://cnst.nist.gov/
http://arxiv.org/abs/1301.4513
http://arxiv.org/abs/1309.1356
http://arxiv.org/abs/1308.3341
http://arxiv.org/abs/1308.1198

