Interlayer Superconductivity in Graphene Materials

Malek Zareyan Mir Vahid Hosseini

وزارت علوم ، تحقیقات و فناوری مرکز تحصیلات تکمیلی در علوم پایه گاوازنگ - زنجان

Institute for Advanced Studies in Basic Sciences Gava Zang, Zanjan, Iran

Spintronics13, 20 December 2013 KITP UCSB

Outline

- **1. Superconducivity in Graphene Materials**
- 2. BCS theory of interlayer pairing in bilayer graphene
- 3. Exotic thermodynamics: Temperature-Induced condensation
- 4. Conclusion

Proximity Induced Interlayer Superconductivity

Ti/AI (10/70nm) superconducting bilayer on top of graphene sheet

[Heersche et al, Nature (2007)]

Monolayer-Bilayer Step Structures

[Shuai-Hua Ji et al, Nature Materials (2011)]

LETTERS

Superconductivity in the intercalated graphite compounds C₆Yb and C₆Ca

THOMAS E. WELLER¹, MARK ELLERBY¹*, SIDDHARTH S. SAXENA²*, ROBERT P. SMITH² AND NEAL T. SKIPPER¹

¹Department of Physics and Astronomy, University College London, Gower Street, London WCIE 68T, UK ²Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK *e-mail: mark ellerby@ucl.ac.uk; sss21@cam.ac.uk

Published online: 29 September 2005; doi:10.1038/nphys0010

Ca intercalated bilayer graphene as a thinnest limit of superconducting C₆Ca

Kohei Kanetani^a, Katsuaki Sugawara^{b,1}, Takafumi Sato^a, Ryota Shimizu^b, Katsuya Iwaya^b, Taro Hitosugi^b, and Takashi Takahashi^{a,b}

*Department of Physics, Tohoku University, Sendai 980-8578, Japan; and ^bWorld Premier International Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Edited by Ado Jorio, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, and accepted by the Editorial Board October 9, 2012 (received for review May 25, 2012)

NAS

BCS Theory of Interlayer Superconductivity

$$\begin{split} H_0 &= -\mu \sum_{\ell,\sigma,i} n_{\ell,i,\sigma} - t \sum_{\ell,\sigma,\langle i,j \rangle} (a^+_{\ell,i,\sigma} b_{\ell,j,\sigma} + \text{H.c.}) \\ &- t_\perp \sum_{i,\sigma} (a^+_{1,i,\sigma} b_{2,i,\sigma} + \text{H.c.}), \end{split}$$

$$V_{\perp} = -g_{\perp} \sum_{i} \sum_{\sigma,\sigma'} a^{\dagger}_{1,i,\sigma} a_{1,i,\sigma} b^{\dagger}_{2,i,\sigma'} b_{2,i,\sigma'},$$

[M. V. Hosseini, MZ, Phys. Rev. Lett (2012), Phys. Rev. B (2012)]

Symmetry of the Order Parameter

 $\Delta_{i,\perp} = -g_{\perp} \langle a_{1,i,\downarrow} b_{2,i,\uparrow} + a_{1,i,\uparrow} b_{2,i,\downarrow} \rangle,$

Bernal Stacking: Pseudospin part is anti-symmetric

Pauli exclusion principle:

Pair wave function: s-wave Spin-Triplet state

Partial pairing: exotic thermodynamics

Temperature-induced condensation

Entropy of S (ordered) state can be higher than the N (less ordered) state!

[M. V. Hosseini, MZ, Phys. Rev. Lett (2012)]

Partial pairing due to Bernal Stacking

Starting from a partially paired state at low temperature: : thermal excitation can redistribute unpaired electrons in the states with partially pairing

Partial pairing: exotic thermodynamics

Reentrant Superconducting Phase in Conical-Ferromagnet–Superconductor Nanostructures

Chien-Te Wu,1,* Oriol T. Valls,1,† and Klaus Halterman2,‡

Conclusion

Interlayer pairing of chiral electrons in graphene matterials:
Relativistic quantum mechanical nature of electrons:

-temperature induced condensation (pairing)-Step monolayer-bilayer proximity systems