Skyrmion Dynamics and Topological Transport Phenomena

Yoshi Tokura RIKEN Center for Emergent Matter Science (CEMS) & Department of Applied Physics, University of Tokyo

"skyrmion", the concept originally introduced by Tony Skyrme (1922-87) to describe the state of nucleon: to model a particle as a topological soliton

CEMS

Skyrmions and topological transport phenomena

Skyrmions in multiferoics toward E-control and light control

Collaborators

RIKEN (Japan) X. Z. Yu, , S. Seki N. Nagaosa, Y. Tokunaga, (Korea) D. Okuyama, Y. Taguchi, M. Kawasaki, J. H. Han, J. H. Park T. Arima, N. Ogawa, M. Kubota

Univ. of Tokyo (Japan)

Y. Kanazawa, Y. Onose, S. Ishiwata, A. Tsukazaki, M. Ichikawa, Y. Shiomi, K. Shibata, F. Kagawa, Y. Okamura, M. Mochizuki

NIMS (Japan)

Y. Matsui, K. Kimoto, W. Z. Zhang

Naoya Kanzawa

Shinichiro Seki

Sung Kyun Kwan Univ.

MPI (Germany)

D. S. Inosov, J. H. Kim, B. Keimer

PSI (Switzerland)

J. White, N. Egetenmeyer, J. Gavilance

Groningen Univ. (Holland) M. Mostovoy

What is magnetic skyrmion?

5 ~ 100 nm

Topologically-stable spin vortex with particle-like nature

Lateral component of M of some bubbles

"skyrmion number"

$$S = \frac{1}{4\pi} \int \vec{n} \cdot \frac{\partial \vec{n}}{\partial x} \times \frac{\partial \vec{n}}{\partial y} d\vec{r} = -1$$

a pair of Bloch lines

Skyrmion

Continuum

approximation

<u>Cf. Spin chirality</u>

 $\vec{S}_i \cdot (\vec{S}_i \times \vec{S}_k)$

 $=1/2 \Omega$ Solid angle

Mapping to a sphere

Solid angle $\Omega = 4\pi$

Total spin Chirality $= \frac{1}{4\pi S^3} \int d^2 \mathbf{r} \mathbf{S} \cdot (\nabla_x \mathbf{S} \times \nabla_y \mathbf{S})$ $= N_S \quad \text{Skyrmion number}$

Skyrmion carries emergent magnetic field.

Helical spin order in B20-type crystals

Crystal structure

- : Transition-metal element
- : Group 14 element
 - Cubic (P2₁3)
 - Noncentrosymmetric

Magnetic structure

Three well-separated energy scales

ferromagnetic interaction($S_i \cdot S_j$) > Dzyaloshinsky-Moriya interaction($S_i \times S_j$) > magnetic anisotopy \rightarrow one-handed helical spin structure

(a long wavelength 17.5 - 230 nm, weakly locked helix direction <111> or <100>)

Chiral lattice structure

6

Toward real space observation of Skyrmion

otruoturo

M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Science (2006)

$$H = \sum \left(-J\vec{S}_i \cdot \vec{S}_j + \vec{D}_{ij} \cdot (\vec{S}_i \times \vec{S}_j) \right)$$

Helical spin structure

Long period ~*aJ/D* ~*10nm-300nm*

Helical spin order in B20-type crystals

Crystal structure

- : Transition-metal element
- : Group 14 element
 - Cubic (P2₁3)
 - Noncentrosymmetric

Magnetic structure

Three well-separated energy scales

ferromagnetic interaction($S_i \cdot S_j$) > Dzyaloshinsky-Moriya interaction($S_i \times S_j$) > magnetic anisotopy \rightarrow one-handed helical spin structure

(a long wavelength 17.5 – 230 nm, weakly locked helix direction <111> or <100>)

Real Space Observation of Skyrmion crystal

X.Z. Yu, Y.T et al. Nature (2010).

H-T Phase diagram

Bulk sample

FeGe: from helical to skyrmion crystal at 260K

X.Z. Yu et al. Nat. Mater.(2010)

Real-space fictitous magnetic field in a skyrmion spin texture

A: skyrmion size

High skyrmion density *Ż* Large topological Hall Effect

Ultrathin epitaxial thin films of MnSi

MnSi

Si substrate

Skyrmion phase mapping by topological Hall resistivity

See also the late paper on FeGe thin film; S. X. Huang and C. L. Chien, Phys. Rev. Lett. **108**, 267201 (2012)

Magnetic phase diagram in B20 compounds

16

Mn_{1-x}Fe_xGe (Control of DM interaction)

^a Shibata et al. Nat. Nanotech. (2013)

+ (left-handed) - (right-handed) b Mn/Fe Ge Ge 1~ С e.g.) 4₃ helix e.g.) 4, helix External Countermagnetic field Clockwise Clockwise d \otimes \otimes (CW) (CCW) B B Electron beam В В е Over-focused imagé plane

Magnetic phase diagram in B20 compounds

Small angle neutron scattering on MnGe (polyXtal)

Evidence for multiple-q <100> structure even at B=0

with Keimer group

Topological Hall effect in MnGe

$H > H_{\rm C}$

Induced ferromagnetic state \rightarrow "Conventional" anomalous Hall effect Solid lines: estimate of $\rho_{yx}^{A} = R_0 B_z + \mu_0 R_S M_z$

$$\mu_0 R_S = S_{\rm A} \rho_{xx}^2$$

Components of THE

Nearly temperature independent

Real-space fictitous magnetic field in a skyrmion spin texture

Topological Nernst Effect

 $e_N = E_y / |\nabla_x T|$ $\alpha_{xy}^{T} = \frac{\pi^2}{3} \frac{k_B^2 T}{e} \left(\frac{\partial \sigma_{xy}^T}{\partial \varepsilon} \right)_{\zeta = u} \approx \tilde{R}_0 B_{eff}$ Nernst effect $\alpha_{xy} = \sigma_{xx} \left[e_N + S_{xx} \left\{ \left(\sigma_{xy} / \sigma_{xx} \right) + \left(\kappa_{xy} / \kappa_{xx} \right) \right\} \right]$ $2\overline{(c)}$ 140K() 160K(•) (10⁻³ V/KΩcm) Mott relation: $\boldsymbol{\alpha} = eL_0T(\partial \boldsymbol{\sigma}/\partial \varepsilon)_{\varepsilon=\mu}$ 0.80.2 100K (b) (a) -(o) 100K -4 - 70K(▲) 0.6 50K(), 40K(0.130K(⊽) 140K 20K $e_{\rm N}~(\mu V/{\rm K})$ 10 30K $\mu_0 H(T)$ 0.4 160K ${\pmb lpha}_{\rm xy}^{\rm T}$ (10⁻³ V/K\Omegacm) 0.2 (d) α_{xy}^{T} $\int \propto \lambda(T)^{-3}$ -0.1 $\widetilde{R}_0 B_{\rm eff}$ 50K 40K 70K 50K 10 6 8 0 2 0 $\widetilde{R}_0 = 1.1 \times 10^{-4} \text{ V/KT}\Omega \text{cm}$ $\mu_0 H(\mathbf{T})$ $B_{eff}(20K) = -40 \text{ T}$ 50 150 100 Shiomi et al. PRB (2013)

22

 $T(\mathbf{K})$

Current drive of skyrmions and emergent EM field

Manipulation of single skyrmion in FeGe by pulse currents

T = 230 K, B = 150 mT, I = 100 mA (pulse width/interval = 0.5/3.5 s)

Lorentz TEM observation of thin flake of Cu₂OSeO₃

the same as

space group

Cu₂OSeO₃ : *P* distribution in skyrmion

<u>S. Seki</u> et al., PRB(2012) *d-p* hybridization model mi P_{ij} · e_{ij} $\vec{p}_{ij} \propto (\vec{e}_{ij} \cdot \vec{m}_i)^2 \vec{e}_{ij}$ Cu²⁺ O²⁻ Local M Local P $\otimes H$ \otimes H || [110] $\otimes H \parallel [001]$ \otimes H || [111] (c)(d) (b)**→**[110] ▶[110] $\rightarrow [\overline{1}10]$ *P* = 0 🚫 P **↓**[110] -1 $m^{z}, \rho + 1$ $[\overline{1}\overline{1}2]$ *****[001]

Skyrmion particle can locally carry **electric dipole** or **quadrupole**

Skyrmion excitations as electromagnons showing directional dichroism

Skyrmion transport phenomena

- Iow-current drive of Skyrmions (<100A/cm²) processing speed ∝ I*(Sk density); energy-cost per bit∝ I
- optical, e-beam (spin-current) control,; E-drive (multiferroics)