RRB convection

Subcritical transition

Conclusions 0000000000000000

CRITICAL TRANSITIONS IN ANISOTROPIC TURBULENCE

Benjamin Favier, Céline Guervilly & Edgar Knobloch

21 January 2021 - Staircases 2021 - KITP

RRB convection

Subcritical transition

Conclusions 0000000000000000

Outline

Introduction

Rotating Rayleigh-Bénard convection

Finite amplitude perturbation and subcritical transition

Conclusions: vortices, jets, interfaces...

RRB convection

Subcritical transition

Conclusions 0000000000000000

Motivations

NASA Earth observatory

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Motivations

D. Schwen

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Motivations

D. Schwen

NASA/JPL

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Motivations

NASA/JPL

• Coexistence of large coherent flows and small-scale turbulence

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Motivations

NASA/JPL

- Coexistence of large coherent flows and small-scale turbulence
- Broken scale invariance: large-scale quasi-2D and small-scale 3D?

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Motivations

NASA/JPL

- Coexistence of large coherent flows and small-scale turbulence
- Broken scale invariance: large-scale quasi-2D and small-scale 3D?
- Nonlinear transfers and/or direct forcing?

RB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

- Vortex stretching $\boldsymbol{\omega}\cdot \nabla \boldsymbol{u}$ leads to small-scale structures
- Dissipation anomaly: $\epsilon \to \text{cste}$ when $\nu \to 0$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

 $\begin{array}{c} \mathrm{Introduction} \\ \mathrm{000}{\bullet}\mathrm{000} \end{array}$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

- No vortex stretching $\boldsymbol{\omega}\cdot\nabla \boldsymbol{u}=0$ leads to enstrophy conservation
- No dissipation anomaly: $\epsilon \to 0$ when $\nu \to 0$

 $\begin{array}{c} \mathrm{Introduction} \\ \mathrm{0000}{\bullet}\mathrm{00} \end{array}$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

3D anisotropic

• Rotating, stratified, MHD, thin-layer turbulence...

 $\begin{array}{c} \mathrm{Introduction} \\ \mathrm{0000}{\bullet}\mathrm{00} \end{array}$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy cascades: from 3D to 2D flows

- Rotating, stratified, MHD, thin-layer turbulence...
- Multiple energy cascade scenarii: both direct and inverse, sometimes simultaneously!

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

2D-3D mixed behaviour and split cascade: examples Thin-layer flows

- Smith, Chasnov & Waleffe, PRL 77, 2467 (1996)
- Celani, Musacchio & Vincenzi, PRL 104, 184506 (2010)
- Benavides & Alexakis, J. Fluid Mech. 822, 364-385 (2017)
- van Kan & Alexakis, J. Fluid Mech. 864, 490-518 (2019)

Rotating flows

- Smith & Waleffe, Phys. Fluids 11, 1608-1622 (1999)
- Sen et al., Phys. Rev. E 86, 036319 (2012)
- Deusebio et al., Phys. Rev. E 90, 023005 (2014)
- Alexakis, J. Fluid Mech. 769, 46-78 (2015)
- Yokoyama & Takaoka, Phys. Rev. Fluids 2, 092602 (2017)

Rotating and stratified flows

- Bartello, J. Atmos. Sci. 52, 44104428 (1995)
- Marino et al., PRL 114, 114504 (2015)
- Herbert et al., J. Fluid Mech. 806, 165-204 (2016)

MHD flows

- A. Alexakis, Phys. Rev. E 84 056330 (2011)
- Favier et al., J. Fluid Mech. 681, 434461 (2011)
- Seshasayanan, Benavides & Alexakis, Phys. Rev. E 90 051003 (2014)

Experiments

- Shats, Byrne & Xia, PRL 105, 264501 (2010)
- Xia, Byrne, Falkovich & Shats, Nature Physics 7, 321-324 (2011)
- Pothérat & Klein, J. Fluid Mech. 761 168 (2014)

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Critical transition from 3D to 2D dynamics

 λ

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Critical transition from 3D to 2D dynamics

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Critical transition from 3D to 2D dynamics

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Critical transition from 3D to 2D dynamics

• All states are turbulent (*i.e.* $\lambda \neq Re$)

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Critical transition from 3D to 2D dynamics

- All states are turbulent (*i.e.* $\lambda \neq Re$)
- Nature of the transition?

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Critical transition from 3D to 2D dynamics

- All states are turbulent (*i.e.* $\lambda \neq Re$)
- Nature of the transition?
- Is the forcing playing any role? Lack of universality?

RRB convection

Subcritical transition 00000000 Conclusions 0000000000000000

Outline

Introduction

Rotating Rayleigh-Bénard convection

Finite amplitude perturbation and subcritical transition

Conclusions: vortices, jets, interfaces...

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Rayleigh-Bénard Cartesian model

- Periodic boundary conditions in the horizontal directions
- Fixed temperature T_0 at z = 0 and $T_0 + \Delta T$ at z = d
- Stress-free and impermeable $\partial_z u_x = \partial_z u_y = u_z = 0$ at z = 0, d

RRB convection

Subcritical transition 00000000 Conclusions 0000000000000000

$Regime \ diagram \ {}_{\rm (rapid-rotation \ limit)}$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

"Classical" rotating convection

Example with
$$Ta = 10^6$$
 and $Ra = 10^7$

 Subcritical transition 00000000

Conclusions 0000000000000000

Flow decomposition

The horizontal flow can be decomposed as the slow 2D mode

$$\begin{split} \langle u \rangle_z(x,y,t) &= \int_0^1 u(x,y,z,t) \, \mathrm{d}z \\ \langle v \rangle_z(x,y,t) &= \int_0^1 v(x,y,z,t) \, \mathrm{d}z \ , \end{split}$$

and the fast 3D mode

$$\begin{split} &u'(x,y,z,t) = u(x,y,z,t) - \langle u \rangle_z \left(x,y,t \right) \\ &v'(x,y,z,t) = v(x,y,z,t) - \langle v \rangle_z \left(x,y,t \right) \\ &w'(x,y,z,t) = w(x,y,z,t) \end{split}$$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy spectra

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy spectra

Subcritical transition 00000000

Conclusions 0000000000000000

Regime diagram

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Rotating convection with inverse cascade

Example with $Ta = 10^{10}$ and $Ra = 2 \times 10^{8}$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Rotating convection with inverse cascade

Example with $Ta = 10^{10}$ and $Ra = 2 \times 10^{8}$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Rotating convection with inverse cascade

Example with $Ta = 10^{10}$ and $Ra = 2 \times 10^8$

Temperature

RRB convection

Subcritical transition 00000000 Conclusions 0000000000000000

Energy spectra

RRB convection

Subcritical transition 00000000 Conclusions 0000000000000000

Energy spectra

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Non-local energy transfer

$$\mathcal{T}(Q,K) = -\int_{V} \boldsymbol{u}_{K} \cdot \left(\boldsymbol{u} \cdot \nabla \boldsymbol{u}_{Q}\right) \mathrm{d}V$$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Vortex merging

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Conditions for inverse transfers

RRB convection 0000000000

Subcritical transition 00000000

Conclusions 0000000000000000

Conditions for inverse transfers

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Conditions for inverse transfers

Julien et al. (2012), Rubio et al. (2014), Favier et al. (2014), Guervilly et al. (2014)

 roduction
 RRB convection

 000000
 0000000000

Subcritical transition 00000000

Conclusions 0000000000000000

Conditions for inverse transfers

Julien et al. (2012), Rubio et al. (2014), Favier et al. (2014), Guervilly et al. (2014)

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Outline

Introduction

Rotating Rayleigh-Bénard convection

Finite amplitude perturbation and subcritical transition

Conclusions: vortices, jets, interfaces...

RRB convection

Subcritical transition 0 = 0000000

Conclusions 0000000000000000

Reference solution

RRB convection

Subcritical transition 0000000

Conclusions 0000000000000000

Reference solution

RRB convection

Subcritical transition 00000000

Conclusions 000000000000000

Finite amplitude initial conditions

We consider the aribtrary initial conditions given by

$$\boldsymbol{u}(t=0) = \left(A\sin\left(\frac{2\pi y}{\lambda}\right), -A\sin\left(\frac{2\pi x}{\lambda}\right), 0\right) \qquad \quad \boldsymbol{\theta}(t=0) = 0$$

$$K_0 = \frac{1}{V} \int_V \frac{1}{2} \boldsymbol{u}^2 \mathrm{d}V = \frac{A^2}{2}$$

 $K(t) = K_0 \exp(-8\pi^2 Pr \ t/\lambda^2)$

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

RRB convection

Subcritical transition $0000 \bullet 000$

Conclusions 0000000000000000

Varying the vortex dipole amplitude A

Bistability between two turbulent states!

RRB convection

Subcritical transition 00000000

Conclusions 000000000000000

Bi-stable states

Vertical vorticity

Streamlines

Energy spectra

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Bi-stable states

Vertical vorticity

Streamlines

Energy spectra

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy balance

Vertically-averaged Navier-Stokes equations:

$$\frac{\partial \langle \boldsymbol{u} \rangle_z}{\partial t} + \langle \boldsymbol{u} \rangle_z \cdot \nabla_h \langle \boldsymbol{u} \rangle_z = -\nabla_h \langle p \rangle_z + Pr \nabla_h^2 \langle \boldsymbol{u} \rangle_z \underbrace{- \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z}_{- \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z}$$

Subcritical transition 00000000

Conclusions 0000000000000000

Energy balance

Vertically-averaged Navier-Stokes equations:

$$\frac{\partial \langle \boldsymbol{u} \rangle_z}{\partial t} + \langle \boldsymbol{u} \rangle_z \cdot \nabla_h \langle \boldsymbol{u} \rangle_z = -\nabla_h \langle p \rangle_z + Pr \nabla_h^2 \langle \boldsymbol{u} \rangle_z \underbrace{- \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z}_{\text{Poundule stresses}}$$

$$\frac{dK_{2D}}{dt} = \underbrace{\frac{Pr}{\lambda^2} \iint \langle \boldsymbol{u} \rangle_z \cdot \nabla_h^2 \langle \boldsymbol{u} \rangle_z \, \mathrm{d}S}_{\mathcal{D}} + \underbrace{\left(\frac{-1}{\lambda^2} \iint \langle \boldsymbol{u} \rangle_z \cdot \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z \, \mathrm{d}S}_{\mathcal{F}}\right)}_{\mathcal{F}}$$

~ / \

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy balance

Vertically-averaged Navier-Stokes equations:

$$\frac{\partial \langle \boldsymbol{u} \rangle_z}{\partial t} + \langle \boldsymbol{u} \rangle_z \cdot \nabla_h \langle \boldsymbol{u} \rangle_z = -\nabla_h \langle p \rangle_z + Pr \nabla_h^2 \langle \boldsymbol{u} \rangle_z \underbrace{- \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z}_{\text{Denseline formula}}$$

$$\frac{dK_{2D}}{dt} = \underbrace{\frac{Pr}{\lambda^2} \iint \langle \boldsymbol{u} \rangle_z \cdot \nabla_h^2 \langle \boldsymbol{u} \rangle_z \, \mathrm{d}S}_{\mathcal{D}} + \underbrace{\left(\frac{-1}{\lambda^2} \iint \langle \boldsymbol{u} \rangle_z \cdot \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z \, \mathrm{d}S}_{\mathcal{F}}\right)}_{\mathcal{F}}$$

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Energy balance

Vertically-averaged Navier-Stokes equations:

$$\frac{\partial \langle \boldsymbol{u} \rangle_z}{\partial t} + \langle \boldsymbol{u} \rangle_z \cdot \nabla_h \langle \boldsymbol{u} \rangle_z = -\nabla_h \langle p \rangle_z + Pr \nabla_h^2 \langle \boldsymbol{u} \rangle_z \underbrace{- \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z}_{\text{Remedia stresson}}$$

$$\frac{dK_{2D}}{dt} = \underbrace{\frac{Pr}{\lambda^2} \iint \langle \boldsymbol{u} \rangle_z \cdot \nabla_h^2 \langle \boldsymbol{u} \rangle_z \, \mathrm{d}S}_{\mathcal{D}} + \underbrace{\left(\frac{-1}{\lambda^2} \iint \langle \boldsymbol{u} \rangle_z \cdot \langle \nabla \cdot \boldsymbol{u}' \boldsymbol{u}' \rangle_z \, \mathrm{d}S}_{\mathcal{F}}\right)}_{\mathcal{F}}$$

RRB convection

Subcritical transition 0000000

Conclusions 0000000000000000

RRB convection

Subcritical transition 0000000

Conclusions 0000000000000000

RRB convection

Subcritical transition 0000000

Conclusions 0000000000000000

RRB convection

Subcritical transition 0000000

Conclusions 0000000000000000

Positive feedback

Vertical vorticity ω_z

Temperature gradient $|\nabla T|$

RRB convection

Subcritical transition 0000000

Conclusions 0000000000000000

Positive feedback

Vertical vorticity ω_z

RRB convection

Subcritical transition 0000000

Conclusions 0000000000000000

- Small-scale anisotropy induced by large-scale vorticity? Large-scale shear?
- Increase in the small-scale phase correlation?

RRB convection

Subcritical transition

Conclusions •000000000000000

Outline

Introduction

Rotating Rayleigh-Bénard convection

Finite amplitude perturbation and subcritical transition

Conclusions: vortices, jets, interfaces...

RRB convection

Subcritical transition 00000000

Conclusions

• Coexistence of two numerically stable turbulent states at identical control parameter values, one with a large-scale vortex structure and one without.
RRB convection 00000000000

Subcritical transition 00000000

Conclusions

- Coexistence of two numerically stable turbulent states at identical control parameter values, one with a large-scale vortex structure and one without.
- This is a new example of multi-stability in turbulent flows
 - Rotating homogeneous turbulence (Yokoyama & Takaoka 2017)
 - Turbulent Couette flows (Mujica & Lathrop 2006, Zimmerman et al. 2011, Huisman et al. 2014, Xia et al. 2018)
 - von Kármán flows (Ravelet et al. 2004)
 - Thin-layer turbulence (van Kan & Alexakis 2019)
 - ...

RRB convection 00000000000

Subcritical transition 00000000

Conclusions

- Coexistence of two numerically stable turbulent states at identical control parameter values, one with a large-scale vortex structure and one without.
- This is a new example of multi-stability in turbulent flows
 - Rotating homogeneous turbulence (Yokoyama & Takaoka 2017)
 - Turbulent Couette flows (Mujica & Lathrop 2006, Zimmerman et al. 2011, Huisman et al. 2014, Xia et al. 2018)
 - von Kármán flows (Ravelet et al. 2004)
 - Thin-layer turbulence (van Kan & Alexakis 2019)
 - ...
- Positive feedback of the vortex on the 3D fluctuations, leading to anti-diffusive effects and an enhanced energy transfer towards the 2D manifold.

RRB convection

Subcritical transition

Open questions

• Is it possible to observe this bifurcation in rotating (Yokoyama & Takaoka 2017), MHD (Alexakis 2011) or thin-layer turbulence (Benavides & Alexakis 2017)?

RRB convection

Subcritical transition

Open questions

- Is it possible to observe this bifurcation in rotating (Yokoyama & Takaoka 2017), MHD (Alexakis 2011) or thin-layer turbulence (Benavides & Alexakis 2017)?
- Can it be viewed as a large-scale instability over a turbulent background (Fauve et al. 2017)?

RRB convection

Subcritical transition 00000000

Open questions

- Is it possible to observe this bifurcation in rotating (Yokoyama & Takaoka 2017), MHD (Alexakis 2011) or thin-layer turbulence (Benavides & Alexakis 2017)?
- Can it be viewed as a large-scale instability over a turbulent background (Fauve et al. 2017)?
- Can we hope to find optimal perturbations? Genetic algorithms? Direct adjoint methods?

RRB convection

Subcritical transition

Open questions

- Is it possible to observe this bifurcation in rotating (Yokoyama & Takaoka 2017), MHD (Alexakis 2011) or thin-layer turbulence (Benavides & Alexakis 2017)?
- Can it be viewed as a large-scale instability over a turbulent background (Fauve et al. 2017)?
- Can we hope to find optimal perturbations? Genetic algorithms? Direct adjoint methods?
- Does the forcing play any role?

RRB convection

Subcritical transition 00000000

 $\begin{array}{c} {\rm Conclusions} \\ {\rm 000} {\color{red}{\bullet}} {\rm 00000000000} \end{array}$

Could the forcing play a role?

• Similar transitions are observed in thin-layer turbulence...

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Could the forcing play a role?

• Similar transitions are observed in thin-layer turbulence...

• ... but the nature of the bifurcation is different! (van Kan & Alexakis 2019)

RRB convection

Subcritical transition 00000000

Conclusions 0000000000000000

Could the forcing play a role?

• Similar transitions are observed in thin-layer turbulence...

• ... but the nature of the bifurcation is different! (van Kan & Alexakis 2019)

- Could it be due to the difference in forcing?
 - 3D stochastic forcing f_{3D} independant of the solution u?
 - 2D stochastic forcing f_{2D} independent of the solution u?
 - Instability f(u)?

RRB convection

Subcritical transition

Conclusions 0000000000000000

"Subcritical" layering

Nonlinear double-diffusive convection

(Veronis (1965), Huppert & Moore (1976), Knobloch & Proctor (1981), ...)

Chong, Yang, Yang, Verzicco & Lohse, JFM (2020)

Yang, Chen, Verzicco & Lohse, PNAS (2020)

RRB convection

Subcritical transition 00000000 Conclusions 0000000000000000

Shear-induced double-diffusive layering

Radko, JFM 805 (2016)

RRB convection

Subcritical transition

Jets in anisotropic boxes

Guervilly & Hughes, PRF 2 (2017)

Julien, Knobloch & Plumley, JFM 837 (2018)

RRB convection

Subcritical transition 00000000 Conclusions 000000000000000

Jets in inclined boxes

Novi, Hardenberg, Hughes, Provenzale & Spiegel, PRE 99 (2019)

RRB convection

Subcritical transition 00000000 Conclusions 0000000000000000

Localised coherent structures

Initial perturbation is a localised shielded monopole:

$$\omega_z(t=0) = \omega_0 \left(1 - \frac{r^2}{r_0^2}\right) \exp(-r^2/r_0^2)$$

Velocity amplitude

Vertical vorticity

Streamlines

RRB convection

Subcritical transition 00000000

Conclusions 000000000000000

Localised coherent structures

Initial perturbation is a localised shielded monopole:

$$\omega_z(t=0) = \omega_0 \left(1 - \frac{r^2}{r_0^2}\right) \exp(-r^2/r_0^2)$$

Velocity amplitude Vertical vorticity Streamlines

This coherent structure remains stable (and might even grow to the box scale) by locally feeding on the small-scale perturbations.

RRB convection

Subcritical transition

Conclusions 0000000000000000

Thank you for your attention!

B. Favier, C. Guervilly & E. Knobloch, Subcritical turbulent condensate in rapidly rotating Rayleigh-Bénard convection, J. Fluid Mech. 864 R1 (2019)

RRB convection

Subcritical transition 00000000

Conclusions 00000000000000000

Role of the aspect ratio λ

RRB convection

Subcritical transition 00000000

Conclusions 00000000000000000

Governing equations in the Boussinesq approximation

• Momentum equation:

$$\frac{\partial \boldsymbol{u}}{\partial t} + \sigma \sqrt{Ta} \, \hat{\boldsymbol{z}} \times \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \sigma Ra\theta \, \hat{\boldsymbol{z}} + \sigma \nabla^2 \boldsymbol{u}$$

• Incompressibility condition:

$$\nabla\cdot\boldsymbol{u}=0$$

• Heat equation:

$$\frac{\partial \theta}{\partial t} + \boldsymbol{u} \cdot \nabla \theta = u_z + \nabla^2 \theta$$

$$\sigma = \frac{\nu}{\kappa}, \quad Ra = \frac{\alpha g \Delta T d^3}{\nu \kappa} \quad \text{and} \quad Ta = \frac{4\Omega^2 d^2}{\nu^2}$$

RRB convection

Subcritical transition 00000000

Conclusions 000000000000000000

Non-local energy transfer

$$\mathcal{T}(Q,K) = -\int_{V} \boldsymbol{u}_{K} \cdot \left(\boldsymbol{u} \cdot \nabla \boldsymbol{u}_{Q}\right) \mathrm{d}V$$

RRB convection

Subcritical transition 00000000

Conclusions 00000000000000000

Flow decomposition

The horizontal flow can be decomposed as the slow 2D ("vortex") mode

$$\begin{split} \langle u \rangle_z(x,y) &= \int_0^1 u(x,y,z) \, \mathrm{d}z \\ \langle v \rangle_z(x,y) &= \int_0^1 v(x,y,z) \, \mathrm{d}z \ , \end{split}$$

and the fast 3D ("wave") mode

$$\begin{split} &u'(x,y,z) = u(x,y,z) - \langle u \rangle_z \left(x,y \right) \\ &v'(x,y,z) = v(x,y,z) - \langle v \rangle_z \left(x,y \right) \\ &w'(x,y,z) = w(x,y,z) \end{split}$$

RRB convection

Subcritical transition

Conclusions 000000000000000000

Flow decomposition

RRB convection

Subcritical transition 00000000

Conclusions 000000000000000

Details on the transition

Guervilly et al. (2014)