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NHBGE captures large Ta - low Ro regime for Rayleigh-Benard convection

Sunday, September 30, 12
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Asymptotic reduction of the primitive equations

ut + u · ∇u +
1

Ro
ẑ× u = −P∇p + ΓT ẑ +

1

Re
∇2u

Tt + u · ∇T =
1

Pe
∇2T

∇ · u = 0,

where

Ro =
U

2ΩL
, P =

P̃

ρ0U2
, Re =

UL

ν
, Pe =

UL

κ
, Γ = −gαT̃ L

U2

and L and U are arbitrary horizontal length and velocity scales to be
selected depending on the process of interest. We suppose that
Ro ≡ ε� 1 and H/L = ε−1 with

∂x → ε−1∂x , ∂y → ε−1∂y , ∂z → ∂Z , ∂t → ε−2∂t + ∂τ .

The slow spatial scale Z is required by the boundary conditions.
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Asymptotic reduction of the primitive equations
An asymptotic expansion in ε with u ∼ v ∼W = O(1), T = T + εθ, and
Γ = O(ε−1), P = O(ε−1), leads at O(ε−1) to geostrophic balance:

ẑ× u⊥ = −∇⊥p, ∇⊥ · u⊥ = 0, u⊥ = (−ψy , ψx ), ψ ≡ p.

At O(1) the vertical vorticity ω ≡ ∇2
⊥ψ and vertical velocity W satisfy

∂tω + J[ψ, ω]− ∂ZW = Re−1∇2
⊥ω

∂tW + J[ψ,W ] + ∂Zψ = Γθ + Re−1∇2
⊥W .

Fluctuating buoyancy equation at O(ε1):

∂tθ + J[ψ, θ] + W ∂ZT = Pe−1∇2
⊥θ.

Mean buoyancy equation at O(ε1):

∂τT + ∂ZW θ = Pe−1∂ZZT .
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Summary of the reduced model
With the choice L/H = E 1/3 (E = ν/2ΩH2) and U = ν/L the resulting
system is

∂tω + J[ψ, ω]− ∂ZW = ∇2
⊥ω + O(E 1/3)

∂tW + J[ψ,W ] + ∂Zψ = σ−1RaE 4/3θ +∇2
⊥W + O(E 1/3)

∂tθ + J[ψ, θ] + W ∂ZT = σ−1∇2
⊥θ + O(E 1/3)

∂τT + ∂ZW θ = σ−1∂ZZT + O(E 1/3),

where Ra is the Rayleigh number and σ ≡ ν/κ is the Prandtl number; we
assume that RaE 4/3 = O(1), σ = O(1). These equations are to be solved
subject to the boundary conditions

W = ψZ = θ = 0, T = 1, on Z = 0,

W = ψZ = θ = 0, T = 0, on Z = 1,

and PBC in the horizontal. The overbar denotes horizontal average,
followed by an average over fast time, and J(f , g) ≡ fxgy − fygx . The
equations constitute a closed reduced system referred to as NHBGE
(nonhydrostatic balanced geostrophic equations).
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What have we achieved?
The nonhydrostatic balanced geostrophic equations (NHBGE)

eliminate thin Ekman boundary layers; thermal layers remain

filter out fast inertial waves; moreover, on the scales of interest the
inviscid dispersion relation for modes ∝ exp i(λt + k⊥ · x⊥ + kzZ ) is

λ2reduced =
k2z
k2⊥
, cf. λ2NS =

k2z
k2⊥ + E 2/3k2z

These facts allow us to integrate the NHBGE with less resolution and
much larger time step than have to be used when solving the primitive
equations. Note that the resulting equations

describe asymptotically precisely the fluid problem even though they
do not look like NSE

are fully three-dimensional

are fully nonlinear

moreover, they are D4+̇T 2-symmetric, i.e., there is no handedness to
the flow at leading order. Thus as E → 0 the numbers of cyclonic
and anticyclonic vortices should become equal.
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Exact single mode solutions
The reduced equations have exact (but unstable) steady solutions of the
form (ψ,W , θ) = Re(σ−1A(Z ), σ−1B(Z ),C (Z )) exp ik⊥x , where

d2B

dZ 2
−k2⊥NuRaE 4/3

(
1 +

1

2k2⊥
|B|2

)−1
B = 0;Nu−1 =

∫ 1

0
(1+

1

2k2⊥
|B|2)−1dZ

This is a nonlinear eigenvalue problem for the Nusselt number Nu given
RaE 4/3 which can be used to generate highly nonlinear states:
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Regimes described by the reduced system
The reduced equations describe four distinct dynamical regimes,
depending on the values of the Rayleigh number Ra ≡ gα∆TH3/νκ and
the Prandtl number σ ≡ ν/κ:

Cellular convection (C)
Convective Taylor columns (T)
Convective plumes (P)
Geostrophic turbulence (G)
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Regimes described by the reduced system

Volume renders of θ for RaE 4/3 = 20, 40, 80, 120, 160 and σ = 7 (left) and
RaE 4/3 = 160 and σ = 1, 3, 7, 15,∞ (right)
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Evolution of  barotropic mode

Sunday, September 30, 12

Julien et al., GAFD 106, 392–428 (2012): Ra E 4/3 = 100, σ = 1

Edgar Knobloch (UC Berkeley) Geostrophic turbulence 28 January 2021 10 / 33



Spontaneous formation of large scale vortices

Rubio et al., PRL 112, 144501 (2014): Ra E 4/3 = 100, σ = 1
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Barotropic/baroclinic vorticity equations
Let ω = 〈ω〉+ ω′, ψ = 〈ψ〉+ ψ′, where 〈. . . 〉 denotes a depth average.

Then
〈ω〉t + J[〈ψ〉, 〈ω〉] + 〈J[ψ′, ω′]〉 = ∇2

⊥〈ω〉
and

ω′t + J[〈ψ〉, ω′] + J[ψ′, 〈ω〉] + J[ψ′, ω′]′ − DW = ∇2
⊥ω
′.

Thus the baroclinic-baroclinic term acts as a source term for the
barotropic mode. Without this term the barotropic flow is identical to 2D
hydrodynamics and an inverse energy cascade to large scales is expected.
In fact this is so even in the presence of this term, and leads to a k−3⊥ pile
up at large scales, eg., Smith and Waleffe, Phys. Fluids 11, 1608 (1999).

However, the fluctuation equation is fully 3D and hence exhibits the usual

k
−5/3
⊥ energy spectrum expected from Kolmogorov theory.

The emergence of a coherent structure from a turbulent state has been
termed spectral condensation [PRL 95, 263901 (2005); 101, 194504
(2008); 112, 144501 (2014), cf H Xia, M Shats, G Falkovich, A Frishman]
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Time evolution of baroclinic and barotropic modes
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Validation: E = 10−7 (Stellmach 2012, unpublished)

RAPIDLY ROTATING CONVECTION:
DNS SHOW REGIMES SIMILAR TO REDUCED EQUATIONS2 Results

2.1 Columnar Regime

Figure 1: Side- and topview of the temperatue-deviation δT in the columnar regime;
red: positive deviation, blue: negative deviation
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Figure 2: kurtosis (left) and skewness (right) profiles of the temperature deviation δT in the
columnar regime

2

2.2 Convective-Taylor-Column Regime

Figure 5: Side- and topview of the temperatue-deviation δT in the convective taylor-column
regime; red: positive deviation, blue: negative deviation
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Figure 6: kurtosis (left) and skewness (right) profiles of the temperature deviation δT in the
convective taylor column regime
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2.3 Plume Regime

Figure 9: Side- and topview of the temperatue-deviation δT in the plume regime; red: positive
deviation, blue: negative deviation
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Figure 10: kurtosis (left) and skewness (right) profiles of the teperature deviation δT in the
plume regime
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2.4 GT Regime

Figure 13: Side- and topview of the temperatue-deviation δT in the geostrophic turbulence
regime; red: positive deviation, blue: negative deviation
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Figure 14: kurtosis (left) and skewness (right) profiles of the teperature deviation δT in the
plume regime
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Cellular Convective Taylor Columns

Plumes Geostrophic turbulence

Cellular regime: σ = 1, Ra E 4/3 = 11; CTC regime: σ = 15, Ra E 4/3 = 15; Plume
regime: σ = 3, Ra E 4/3 = 50; GT regime: σ = 1, Ra E 4/3 = 90
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Validation (ctd)
The primitive equations have to be solved at finite Ekman number:

Guervilly, Hughes & Jones, JFM 758, 407 (2014): E = 5× 10−6,
Ra E 4/3 = 68, σ = 1
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Validation (ctd)
The primitive equations have to be solved at finite Ekman number:

Favier, Silvers & Proctor, PF 26, 096605 (2014): E = 10−5,
Ra E 4/3 = 107.7, σ = 1
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Validation (ctd)

Favier, Silvers & Proctor, PF 26, 096605 (2014): E = 10−5,
Ra E 4/3 = 107.7, σ = 1
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Validation (ctd)

The primitive equations have to be solved at finite Ekman number:

Guervilly, Hughes & Jones, JFM 758, 407 (2014): E = 5× 10−6,
Ra E 4/3 = 34, σ = 1
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Effect of horizontal aspect ratio: jet formation

Parameters: Ra E 4/3 = 90, σ = 1; aspect ratios A = 1, 1.1, 2, 3, 4, 5 and 6

Julien et al., JFM 837, R4 (2018)
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Validation
The primitive equations have to be solved at finite (and finite) Ekman
number:

Guervilly & Hughes, PRF 2, 113503 (2017): E = 10−5, Ra E 4/3 = 62
Edgar Knobloch (UC Berkeley) Geostrophic turbulence 28 January 2021 21 / 33



Salt-finger turbulence in two dimensions
The nondimensional equations for fluctuations around the conduction state
ψ = 0, Ttotal = Stotal = z are

τ

σ

[
∂

∂t
∇2ψ + J(ψ,∇2ψ)

]
=

1

τ

∂T̃

∂x
− 1

τRρ

∂S̃

∂x
+∇4ψ,

∂

∂t
T̃ + J(ψ, T̃ ) +

∂ψ

∂x
= τ−1∇2T̃ ,

∂

∂t
S̃ + J(ψ, S̃) +

∂ψ

∂x
= ∇2S̃ .

The three dimensionless ratios are the Prandtl number σ, the inverse Lewis
number τ and the density ratio Rρ specifying the contribution of T and S
to the background density gradient. A fourth dimensionless ratio, the
Schmidt number Sc, is also important:

σ =
ν

κT
, τ =

κS

κT
, Sc =

ν

κS
, Rρ =

αTβT

αSβS
.

We adopt doubly periodic boundary conditions for ψ, T̃ and S̃ , and focus
on the salt-finger regime 1 < Rρ < τ−1.
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The regime τ � 1
We consider two cases, distinguished by the magnitude of the Schmidt
number Sc. For Sc = O(1), i.e. κS ∼ ν, we obtain the small Prandtl
number regime σ = O(τ) of astrophysical relevance. This results in a
modified Rayleigh-Bénard convection (MRBC) system with salinity-driven
instability and rapidly diffusing temperature. The large Schmidt number
regim, i.e. κS � ν (equivalently τ � σ), is relevant for oceanic
thermohaline flows where Sc ≈ 700 and τ ≈ 0.01. This results in a model
where inertial forces are small and salinity is the only slowly diffusing
quantity, leading to the inertia-free salt convection (IFSC) model.

In all cases we suppose that the density ratio Rρ is large and comparable
to τ−1. This is a reasonable assumption for many geophysical and
astrophysical applications. We therefore define the O(1) parameter

Ra ≡ 1

Rρτ
=

RaS

RaT

and refer to Ra as the Rayleigh ratio.
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The MRBC and IFSC models
With

Ttotal = z + τ T , Stotal = z + Ra−1 S

and Sc = O(1) (κS ∼ ν) we obtain the MRBC model:

1

Sc

[
∂

∂t
∇2ψ + J(ψ,∇2ψ)

]
= −∂S

∂x
+

(
∇4 + ∆−1∂2x

)
ψ ,

∂

∂t
S + J(ψ,S) + Ra

∂ψ

∂x
= ∇2S .

Here the inverse Laplacian comes from solving

∂ψ

∂x
= ∇2T .

With Sc� 1 (κS � ν) we obtain instead the IFSC model:(
∂2x +∇6

)
ψ = ∂x∇2S ,

∂

∂t
S + J(ψ,S) + Ra

∂ψ

∂x
= ∇2S .

These reduced equations are solved in doubly periodic domains.
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The IFSC model
The model has growing finger solutions: (ψ,S) = (ψ0,S0) exp{λt + ikx}.
These are exact nonlinear solutions in the presence of PBC in (x , z).
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Results from a 32`opt × 32`opt simulation for Ra = 1.1. (a) Evolution of the total

energy ES and the salinity flux |FS | with time. The dashed line marks t = 138,

where both quantities peak. (b) The finger-dominated state at t = 138. (c) The

instantaneous statistically steady state at t = 4800, the end of this simulation.

Distances are measured in units of `opt, the wavelength of the optimal mode.
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IFSC: Turbulent salt-finger convection
(a)
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The MRBC model: Ra = 2, Sc = 1
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The MRBC model: Ra = 2, Sc = 1
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The MRBC model: Ra = 2 and Sc = 1
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Space-time evolution of the jet profile Ū(z , t) in the MRBC system when
Ra = 2 and Sc = 1
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The MRBC model: Ra = 2 and Sc = 1
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Advantages of the asymptotic approach:
The reduced equations are asymptotically exact as E → 0, Ra E 4/3 = O(1)

The reduced equations permit study of regimes relevant to geophysical and

astrophysical flows

The equations contain no small or large parameters

The equations capture, apparently correctly, the physics of RRRBC,

including Taylor columns, plumes and geostrophic turbulence

They capture the formation of large scale structure: domain-size vortices

and jets

Equations offer opportunity to study fundamental properties of

2+ε-dimensional flows

Disadvantages of the asymptotic approach:

The equations focus on one particular regime: L/H = O(Ro) and may not

describe other regimes

Applications always require finite E : when are the dynamics at a given E

captured by the reduced equations?

The equations only represent slow dynamics; no inertial wave turbulence

Ekman pumping is absent; may be added as subdominant boundary forcing
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Future:
What is special about L/H = O(Ro) that allows closure?
Are there other regimes where closure is possible?
The approach points to the importance of phases of the small scales:
can this be confirmed and the interaction between the large scales
and the phases of the small scales be understood?
Is homogeneous anisotropic turbulence in some sense (which?)
unstable to the formation of large scale structure?
Is this a subcritical bifurcation? Or are the large scale structures
noise-sustained?
Can a similar description of the fast dynamics be developed and the
two descriptions coupled?
Can vortices be computed as localized structures of the NHBGE?
Can their stability properties be determined and interactions among
them studied?

The approach generalizes to other systems with strong restraints, including

salt-finger convection, magnetoconvection, magnetorotational instability,

Langmuir circulation, shear flows, stratified flows, GSF instability etc.
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