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Binary fluid convection: Dimensionless equations

ut + (u · ∇)u = −∇P + PrR[T + SC ]ẑ + Pr∇2u,

Tt + (u · ∇)T = ∇2T ,

Ct + (u · ∇)C = τ∇2C −∇2T ,

where u = (u,w) in (x , z) coordinates. The Prandtl number Pr , Lewis
number τ , Rayleigh number R and the separation ratio S are defined by

Pr =
ν

κT
, τ =

κC
κT

, R =
gαT∆T `3

νκT
, S =

αC

αT
SSoret

The boundary conditions are

at z = 1 : u = w = T = ηz = 0,

at z = 0 : u = w = T − 1 = ηz = 0,

with periodic boundary conditions (PBC) with period Γ in x . Here
η ≡ C − T whose gradient is proportional to the mass flux. We are
interested in the regime τ < 1, S < 0 (double diffusive convection).
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Dispersive chaos: Bretherton and Spiegel (1983)

Bretherton and Spiegel. Phys. Lett. A 96, 152 (1983)

Edgar Knobloch (UC Berkeley) Localized structures 2 March 2021 3 / 1



Formation of a convecton

Batiste et al., J. Fluid Mech. 560, 149–158 (2006)
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Relaxation oscillations at R = 1774
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Batiste et al., J. Fluid Mech. 560, 149–158 (2006)
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Formation of a convecton
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Bifurcation diagram showing N as a function of the Rayleigh number R
when Γ = 60.
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Bifurcation diagram
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Batiste et al., J. Fluid Mech. 560, 149–158 (2006)
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Odd and even convectons

Batiste et al., J. Fluid Mech. 560, 149–158 (2006)
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Odd and even convectons

Odd branch
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(b) Even branch

Both are stationary structures because of reflection symmetry:
R2 ◦ R1 (odd convectons) and R1 (even convectons)
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Stability of the convectons
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Batiste et al., J. Fluid Mech. 560, 149 (2006)
Edgar Knobloch (UC Berkeley) Localized structures 2 March 2021 10 / 1



Depinning: Γ = 60
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Depinning of fronts outside the pinning region
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Swift-Hohenberg equation in one spatial dimension
The Swift-Hohenberg equation

ut = ru −
(
q2c + ∂2x

)2
u + f (u)

is very simple but has very remarkable properties. These are a consequence
of the following:

Fourth order in space

Intrinsic length scale 2π/qc
Bistability due to competing nonlinear terms: f (u) = b3u

3 − b5u
5

Symmetries: R1 : x → −x , u → u; R2 : x → x , u → −u
Variational dynamics

ut = −δF
δu
,

where

F =

∫ ∞
−∞

dx

{
− 1

2
ru2 +

1

2

[
(q2c + ∂2x )u

]2 − ∫ u

0
f (v) dv

}
In the following we think of F [u] as the (free) energy of the system
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Snakes-and-ladders structure of the pinning region: SH35
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Depinning: SH23

New cells are nucleated symmetrically on either side of the structure
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Collisions of LS: SH35 with broken R2 symmetry

ut = ru −
(
1 + ∂2x

)2
u + 2u3 − u5 + ε(∂xu)2
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ε = 0.03 ε = 0.1

Asymmetric states are no longer stationary

Edgar Knobloch (UC Berkeley) Localized structures 2 March 2021 15 / 1



Collision of like pulses for r = −0.65, ε = 0.1

 0  50  100  150  200  250

Houghton and Knobloch, PRE 84, 016204 (2011)
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Collision of unlike pulses: ε = 0.1, r = −0.65
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repulsion attraction

Like fronts repel, unlike fronts attract
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Collision of unlike pulses: ε = 0.1, r = −0.65

 0  50  100  150  200  250  0  50  100  150  200  250

attraction repulsion

Like fronts repel, unlike fronts attract
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Binary fluid convection with S = −0.1, τ = 0.01, σ = 7

Newton’s law of cooling:

(1− β)θz + βθ = 0 on z = 1, θ = 0 on z = 0.

Here β = 1:
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Mercader et al., JFM 722, 240 (2013)
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Γ = 20, S = −0.5, σ = 0.6, τ = 0.03, R = 2750, β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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Conclusions

The fidelity of the SHE as a model of double diffusive convection is quite
astonishing. This is despite

its simplicity and even its variational structure

no double diffusive effects are explicitly included

the model cannot in fact be ’derived’ by any systematic procedure

It is a ’minimal’ model that contains an intrinsic scale and bistability, no
more, no less.

Is this a case (in the immortal words of P Diamond) of

all models are wrong, but some models are useful, or

some models are too good to be true, others are too true to be good?
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