MEl\aIES of

2 R
. MAND£)5TAM

13,2009




THE MANDELSTAM

REPRESENTATION

PHYSICAL REVIEW VOLUME 112, NUMBER 4 NOVEMBER 15, 1958

Determination of the Pion-Nucleon Scattering Amplitude from Dispersion
Relations and Unitarity. General Theory

S. MANDELSTAM*
Department of Physics, Columbia University, New York, New York
(Received June 27, 1958)

A method is proposed for using relativistic dispersion relations, together with unitarity, to determine the
pion-nucleon scattering amplitude. The usual dispersion relations by themselves are not sufficient, and we
have to assume a representation which exhibits the analytic properties of the scattering amplitude as a func-
tion of the energy and the momentum transfer. Unitarity conditions for the two reactions w4 — =N
and N-+N — 27 will be required, and they will be approximated by neglecting states with more than two
particles. The method makes use of an iteration procedure analogous to that used by Chew and Low for the

corresponding problem in the static theory. One has to introduce two coupling constants; the pion-pion
coupling constant can be found by fitting the sum of the threshold scattering lengths with experiment. It is
hoped that this method avoids some of the formal difficulties of the Tamm-Dancoff and Bethe Salpcter
methods and, in particular, the existence of ghost states. The assumptions introduced are justified in per-
turbation theory.

As an incidental result, we find the precise limits of the region for which the absorptive part of the scatter-
ing amplitude is an analytic function of the momentum transfer, and hence the boundaries of the region in
which the partial-wave expansion is valid.
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Theory of the Low-Energy Pion-Pion Interaction®

GEOFFREY F. CHEW AND STANLEY MANDELSTAMT 7
Lawrence Radiation Laboratory and Department of Physics, University of California, Berkeley, California

(Received January 18, 1960)

The double-dispersion representation is applied to the problem of pion-pion scattering, and it is shown
that, if inelastic effects are important only at very high energies and S-wave scattering dominates at low
energy, a set of integral equations for the low-energy amplitudes can be derived. The solution of these
equations depends on only one arbitrary real parameter, which may be defined as the pion-pion coupling
constant. The order of magnitude of the new constant is established, and a procedure for solving the integral
equations by iteration is outlined. If P-wave scattering is large the equations become singular and must
be modified. Such a modification can be performed, at the expense of introducing an extra parameter, but
is not considered here.




III. THE DOUBLE-DISPERSION REPRESENTATION

A prescription for extending the scattering amplitude
to complex values of s, {, and #, subject to (II.3), has

been given by one of us.! This rule is embodied by the
representation®
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Fubini, High Energy Conference, Berkeley, 1966
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We shall apply crossing with the aid of the generalized
superconvergence mentioned in Sec. I1.? These relations
are a consequence of Regge asymptotic behavior and
the usual analyticity properties. We assume that a
scattering amplitude A (s,f) satisfies dispersion relations
with only a right-hand cut and has the asymptotic
behavior
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The following relation is then asymptotically true as

N becomes large:

N o (s) Ver ()41
/ dt ImA (s,H)~> . (5.2)
r a(s)41

By considering the functions "4 (s,t), we derive the
further equations

N yr(s)i\far(s)‘i'n'i-l
/ dt 1* ImA (s,0)~2_ s (5:3)
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Dynamics Based on Rising Regge Trajectories™

STANLEY MANDELSTAM
Department of Physics, University of California, Berkeley, California
(Received 5 September 1967)

An outline is given of a dynamical scheme based on rising Regge trajectories. The fundamental approxi-
mation is that the scattering amplitude can be approximated by the contribution of a finite number of
Regge poles. An additional simplifying assumption is that the Regge trajectories are straight lines or,
equivalently, that the scattering amplitude is dominated by narrow resonances. Unitarity is introduced by
means of the Cheng-Sharp equations, but, in the narrow-resonance approximation, we adopt a very trivial
solution of these equations. Crossing is introduced by means of the generalized superconvergence relations
due to Igi and to Horn and Schmid. Levinson’s theorem is not used; the bootstrap condition is the absence
of Kronecker-8 singularities in the J plane. It is hoped that this scheme avoids some of the disadvantages
of conventional schemes. In the narrow-resonance approximation one has to solve numerical equations, not
integral equations. The scheme is applied to the pseudoscalar, vector, and axial-vector nonets considered
as bound states of the NN system. As only one channel is being examined, we have to introduce certain
parameters from experiment, but we obtain reasonable values for the other parameters.

Narrow Resonance Approximation ~ Linear Regge Trajectories

Dynamics = Generalized Superconvergence Relations
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BOOTSTRAP OF THE p REGGE TRAJECTORY

David J. Gross*
Lyman Laboratory, Harvard University, Cambridge, Massachusetts
(Received 12 October 1967)

The amplitude for w +m—=7+7 is considered within a dynamical scheme proposed by
Mandelstam, based on rising Regge trajectories, the narrow-resonance approximation,
and generalized superconvergence relations., The p trajectory is shown to qualitatively
bootstrap itself. Also, a world consisting only of the particles on a vacuum trajectory
is shown to be inconsistent within this approximation.

Mandelstam has recently proposed a dynam- fixed t,°
ical scheme’ based on approximating the am- ; B |
plitude by a finite number of Regge poles in f(s,t,u)=csc9tf0l 50 (s,2)=f G, t,s). (2)
all channels. Crossing is imposed by gener- :
alized superconvergence relations.?»® In the The basic assumption is! that G7(¢) can be
first approximation, which is essentially the approximated by one “p” trajectory
narrow-resonance approximation (NRA), the 7
trajectories are assumed to be straight lines G ) =B@)/[T-a)], (3)

T g : Ox, 00

and unitarity determines the Regge residue
up to an entire function, which can then be and that o(¢)=at +b. Unitarity and analyticity
approximated by a finite polynomial. This in the NRA then determine the form of B(¢) up
approximation, which can be systematically to an entire function E (¢),
improved, allows one to derive algebraic re-
lations between a finite number of parameters. at +b % 3
The relations may be sufficient to determine <4qtqt'a> t*[(at +b)(at +b+1)]"
these parameters self-consistently. Blt)= e I'(at +b +%) E®). (4)




E(¢)

at+b

E[(1-b)/a] =

lven without saying anything more about E (¢),
valuation of this equation at f=-b/a, a(f)=0,
nd at = (1-b)/a, a(t)=1 yields

(2-3b)/a=%; Na=vV2.

1 this form of a self-consistent bootstrap,

" is not arbitrary; it must surely lie above
l-b)/a and below (3—b)/a. Since we are ne-
lecting daughter trajectories (clearly impor-
ant here near ¢{~0) other trajectories with

_4(at+b+ 1)r(at+b)[t+2(1—b)/a—z]< e )
4

(8)

(7)

Ne Na

rof N! We have

E(t) _F(a(t)+2)<e
E((1-b)/a) ~ 2 4?2,

and E (¢) changes by only 4% as «(t) varies from
0 to 1. Note that in this lowest approximation
we cannot say anything about the absolute val-
ue of E and, like all other bootstrap models,
have no way of knowing whether the p trajec-
tory will continue to be self-consistent when
other channels and particles are added.
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Construction of a crossing - symmetric,
Regge behaved amplitude for linearly

rising trajectories Nuovo Cim. A57:190-197,1968
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