MHD SPH Simulations of Star Cluster Formation

Matthew Bate and Daniel Price

Real Star Cluster Formation

- Just finished a calculation 10 times more massive than Bate, Bonnell & Bromm 2003, Bate & Bonnell 2005, Bate 2005
 - 500 M_☉ cloud, using 35,000,000 SPH particles
 - Resolves opacity limit for fragmentation
 - Follows:
 - Binaries to I AU and discs to ~10 AU radius
 - All binaries (0.02 AU) and discs to \sim I AU radius
- Statistics much improved over earlier calculations
 - 1254 objects at 1.50 tff
 - Binaries: 146 Triples: 40 Quadruples: 25 Quintuples: 20

UK Astrophysical

Binarity as a Function of Primary Mass

- Figure from Hubber & Whitworth (2005)
 - Observations: Martin et al. 2000; Fisher & Marcy 1992; Duquennoy & Mayor 1991; Shatsky & Tokovinin 2002
 - New large cluster calculation: X

ETER

Stellar Mass Distribution

UK Astrophysical

- Competitive accretion/ejection gives
 - Salpeter-type slope at high-mass end igodol
 - Low-mass turn over
- ~4 times as many brown dwarfs as a typical star-forming region
 - Not due to sink particle approximation results almost identical for different sink parameters ullet

Where to now?

- Statistics now good enough to know that pure hydrodynamics + sink particles cannot reproduce observations in detail
- Need to include additional physics
- Radiative transfer
 - Have developed a method for flux-limited diffusion within SPH (Whitehouse, Bate & Monaghan 2005; Whitehouse & Bate 2006)
 - Currently performing star cluster simulations with radiative transfer
- Magnetic fields
 - Price & Monaghan 2005; Price & Rosswog 2006; Rosswog & Price 2007
 - Star formation simulations: Price & Bate 2007

Magnetohydrodynamics (MHD)

 One-fluid approximation to plasma physics

ETER

 Ideal MHD implies "flux frozen-ness" (gas flows along field lines)

$$\frac{d\rho}{dt} = -\rho\nabla\cdot\mathbf{v}$$

$$\frac{d\mathbf{v}}{dt} = -\frac{1}{\rho} \nabla \cdot \left[\left(P + \frac{1}{2} \frac{B^2}{\mu_0} \right) \mathbf{I} - \frac{\mathbf{B}\mathbf{B}}{\mu_0} \right]$$
$$\frac{du}{dt} = -\frac{P}{\rho} \nabla \cdot \mathbf{v}$$
$$\frac{d}{dt} \left(\frac{\mathbf{B}}{\rho} \right) = \left(\frac{\mathbf{B}}{\rho} \cdot \nabla \right) \mathbf{v}$$

 Function
 UK Astrophysical

 Fluids Facility

 $\overline{\nabla \cdot \mathbf{B}} = 0$

- Some formulations of the momentum equation are unstable igodol
 - We use the formulation of Morris (1996)
- Shocks
 - Use artificial dissipation terms for discontinuities in velocity, magnetic field, energy (Price & Monaghan 2004a)
- Maintaining $\nabla \cdot B = 0$: Use Euler potentials \bullet
 - Euler (1770), Stern (1976), Phillips & Monaghan (1985)
 - Use accurate SPH derivatives (Price 2004)

 $\mathbf{B} = \nabla \alpha \times \nabla \beta$

$$\frac{d\alpha}{dt} = 0, \frac{d\beta}{dt} = 0$$

UK Astrophysical

'advection of magnetic field lines'

Single & Binary Star Formation Price & Bate 2007

Resolution ~ 300,000 particles in core (30,000 required to resolve Jeans mass, ie. fragmentation)

- Dense core R=4x10¹⁶cm=0.013pc =2674 AU
- Embedded in warm, low density medium
- M=I M_☉ in core
- Initial uniform B_z field
- T~10K
- Solid body rotation
- Equation of state:

$$\begin{aligned} P &= K \rho^{\gamma} \\ \gamma &= 1, \qquad \rho \leq 10^{-14} \text{g cm}^{-3}, \\ \gamma &= 7/5, \qquad \rho > 10^{-14} \text{g cm}^{-3}, \end{aligned}$$

Important Parameters

$$\alpha = \frac{\mathrm{E_{therm}}}{\mathrm{E_{grav}}}$$

Gravity vs pressure

Gravity vs rotation

$$\left(\frac{M}{\Phi}\right) / \left(\frac{M}{\Phi}\right)_{crit}$$

Gravity vs magnetic field

Field orientation: B_z or B_x

Important Parameters

Daniel Price and Matthew Bate, University of Exeter, UK

Daniel Price and Matthew Bate, University of Exeter, UK

Effect of magnetic fields on circumstellar disc formation:

VERSITY OF

ETER

- Discs form later
- Less massive
- Smaller
- Slower accretion rates
- Less prone to gravitational instability

UK Astrophysical

Binary Star Formation

e.g. Boss & Bodenheimer (1979), Burkert & Bodenheimer (1993), Bate & Burkert (1997)

 $\alpha = 0.26$ $\beta = 0.16$ $\rho = \rho_0 (1 + 0.1 \cos{(m\phi)})$

m=2

Magnetic Fields and Binary Formation: B_z

В ₂ =0µG	t _{rf} =0.99	Β _z =40μG	t _{ff} =0.99	В ₂ =80 <i>µ</i> G	t _{ff} =0.99	sitv [a/cm ²]
						column den
						2 0
10	LA UA 00					 1.5
В _z =110µG	t _{ff} =0.99	Β _z =160μG	t _{ff} =0.99	Β _z =200μG	t _{ff} =0.99	
						 1
						 0.5

Daniel Price and Matthew Bate, University of Exeter, UK

Magnetic Fields and Binary Formation: B_x

[g/cm ²]	column density	pol					
	2.5	2	1.5		1	0.5	
					 	· ·	
t _{ff} =0.999				t _{ff} =0.999			
B _x =80µG				В _х =200µG			
t _{ff} =0.999				t _{ff} =0.999			
Β _x =40μG				Β _x =160μG			
t _{ff} =0.999				t _{ff} =0.999			
			100 AU				
B _x =0µG				B _x =110µG			

Daniel Price and Matthew Bate, University of Exeter, UK

EXETER

UK Astrophysical

Impact of Magnetic Fields on Binary Formation

- Magnetic braking is usually thought of as primary effect of magnetic fields
 - e.g. Hosking & Whitworth 2004; Machida et al. 2004, 2005, 2006; Banerjee & Pudritz 2006
- We find magnetic pressure is the dominant cause of suppressed fragmentation
 - see also Boss 2005

Astrophysical POUNDATION **Finite** Fluids Facility Magnetic Tension Forces Can Aid Fragmentation Full MHD (B_x field) No magnetic tension forces $M/\phi = 20$ 1.5 ក្ខ $/\phi = 10$ 1.5 0.5 0.5 200 A

- Effect of magnetic tension strongly dependent on field orientation
- Tension acts to increase fragmentation (c.f. Boss 2000,2002)

Magnetic Cushioning

First MHD Star Cluster Formation Calculations

- Repeat Bate, Bonnell & Bromm (2003)
 - 50 M $_{\odot}$ cloud, diameter 0.4 pc, mean thermal Jeans mass 1 M $_{\odot}$
 - Same resolution: 3,500,000 particles
 - Four times fewer particles per M_{\odot} than Price & Bate (2007)
 - Magnetic field: 0, 10, 20, 40 microgauss
 - Mass-to-flux (M/ Φ) ratio: Infinity, 20, 10, 5
 - Plasma beta (ratio of thermal to magnetic pressure) : Infinity, 7, 3.5, 2
- Follow to 1.6 initial cloud free-fall times (same as original calculation)
 - 300,000 yrs

Conclusions

- MHD star formation calculations now possible with SPH
- The effects of magnetic fields are complicated (Price & Bate 2007)
 - Magnetic pressure can be more important than magnetic tension in inhibiting fragmentation

UK Astrophysical

Fluids Facility

- Although magnetic tension is responsible for magnetic braking, it can aid binary formation
- Binary formation still possible even with strong fields (M/ Φ ~3) for perturbed clouds
- Star cluster formation
 - Strong magnetic fields (M/ Φ ~5)
 - Decrease the star formation efficiency
 - May decrease the ratio of low to high mass objects (i.e. fewer brown dwarfs)
 - Can produce large-scale voids and magnetic structures in the gas
 - Weak fields do not appear to drastically alter the hydrodynamic picture