Radial Gas Distributions and the Gas Depletion Time Problem

Leo Blitz
Eugene Chiang
Erik Rosolowsky
Andrew West

Consider Gas Depletion Times

Atomic, molecular gas and star formation in M94

Radial Surface Density Profiles

HI roughly constant with R;

Saturates at ~8-10 M_☉pc⁻²

CO is monotonically decreasing (almost)

roughly exponential

M33 HI and Stellar Surface Densities

Gas in the center is not always primarily molecular

Gas Depletion Time

Wong 2001

Molecular Gas Depletion Time

molecule – rich galaxies

Molecular Gas Depletion Time

molecule – rich galaxies

The Gas Depletion Problem

- Do we live in a special era?
- Does the Madau plot imply that we are running out of gas?
 - Problem is not running out of gas; gas is in the wrong phase and wrong place.
 - Star formation rate in disk of MW
 constant for last 5 x 10⁹ y.
 - Problem is most severe in galactic centers (scale 5 kpc), but is also a problem in many galactic disks.

Two Standard Solutions

- Infall Galaxies are still accreting gas from the IGM.
 - This gas will preferentially fall to the outside of galaxies, not to the center where we need it.
 - Primordial infall has not been observed.
 Evidence weighs against HVCs. No zero metallicity gas has been observed.

M31

If the solution to the gas depletion problem is infall, why isn't it infalling on the most massive galaxy in the local group?

Two Standard Solutions

- Infall Galaxies are still accreting gas from the IGM.
 - This gas will preferentially fall in at large radii of galaxies, not in center where we need it.
 - Primordial infall has not been observed. Evidence weighs against HVCs. No zero metallicity gas has been observed.
- Inflow Viscosity, angular momentum transfer (spiral arms) brings gas to center.
 - Has not been observed although velocities are 5-7 km s⁻¹, except in bars. The reservoir of HI exists mostly beyond where stellar spiral arms are found.
 - Has small effect at large radii beyond stellar disk.

HI Self-Torque?

- 1. Outer HI disk fed by satellite accretion
- 2. HI cools to Q_{HI} ≈ 1
- 3. Q_{HI} ≈ 1 gas forms trailing spirals by swing amplification
- 4. Trailing spirals transmit angular momentum outward

HI Map of Outer Milky Way

$$\sum \sum \sim 1$$
 $m \sim \text{several}$

1.80
1.50
1.30
1.10
1.00
0.80
0.70
0.60
0.50

Levine, Blitz, & Heiles 06

$$t_{
m inflow} \equiv rac{R}{\dot{R}} \sim rac{L_z}{ au}$$

$$\sim rac{\Sigma R^3 v_\phi}{m (\delta \Phi)^2 R/4 G}$$

$$\sim 10^{11} \, {
m yr} \left(rac{10}{m}
ight) \left(rac{kR}{2\pi}
ight)^2 imes$$

$$\left(rac{\Sigma}{4 M_{\odot} {
m pc}^{-2}}
ight) \left(rac{4 M_{\odot} {
m pc}^{-2}}{\delta \Sigma}
ight)^2$$

$$\gg \Sigma/\dot{\Sigma}_{
m SFR} \sim 10^9 \, {
m yr}$$

Is there a scaling that makes sense of the different gas distributions in

If so, it could help understand evolution of gas in galaxies.

HI + H₂ radial profiles of 13 Galaxies

CO on HI in M33

Engargiola et al. (2003)

The Role of Pressure in GMC Formation

Let's assume that

$$\Sigma(\mathrm{H}_2)/\Sigma(\mathrm{HI}) = f(\mathrm{P}_{\mathrm{ext}}) \text{ only}$$

$$P_{\mathrm{EXT}} = (2\mathrm{G})^{0.5} \Sigma_{\mathrm{g}} v_{\mathrm{g}} \{ \rho_*^{0.5} + (\pi/4) \rho_{\mathrm{g}} \}^{0.5} \}$$
but, almost everywhere, $\rho_* >> \rho_{\mathrm{g}}$

$$P_{\mathrm{EXT}} = 0.84 (\mathrm{G}\Sigma_*)^{0.5} \Sigma_{\mathrm{g}} v_{\mathrm{g}} h_*^{-0.5}$$
but, v_{g} and h_* are constant in disk galaxies

Prediction 1: The location where $\Sigma(H_2)/\Sigma(HI) = 1$ occurs is at the same value of Σ_* in *all* disk galaxies.

Prediction 2: *f*(Pext) is a well defined function of the four observables, two that vary little, for all galaxies.

28 Galaxies from the BIMA SONG Survey

Blitz & Rosolowsky 2004

22 with measured $\Sigma(HI)$

$$<\Sigma_*> = 120$$

+/-10 M_o pc⁻²

For 28 galaxies rms scatter = 40%

This implies that the radius where $\Sigma(H_2)/\Sigma(HI) = 1$ is a proxy for a gravity scaling of the disk at $120 \text{ M}_{\odot}\text{pc}^{-2}$

Pressure vs. H₂/HI

Blitz & Rosolowsky (2006)

 P_O is the pressure at the location where $\Sigma(H_2)/\Sigma(HI) = 1$ Occurs is at the same value of Σ_* in *all* disk galaxies.

HI radial profiles of 13 Galaxies

HI + H₂ radial profiles of 13 Galaxies

HI + H₂ normalized radial profiles of 18 Galaxies

HI + H₂ normalized radial profiles of 18 Galaxies

Restatement of Gas Depletion Problem

- How can galaxies retain an approximately self-similar neutral gas distribution for more than a few 10⁹ y if the molecular gas is being depleted that fast?
- Hint: Most galaxies reside in groups.

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution

21 cm HI Distribution

M51 Tidal Disruption

Arp 85 NGC 5195 SB0 pec NGC 5194 SA(s)be per

Leo Triplet

Verheijen & Sancisi (2001)

Giovanelli & Haynes (1979)

Suggestion

- Galaxies in groups redistribute their outer HI though out of the plane, distant tidal interactions.
- Half of this gas will lose angular momentum and fall into the central regions and convert HI to H₂ through hydrostatic pressure.
- The H₂, in turn is converted into stars.
- Can use entire reservoir of HI.
- This is what feeds the normal star formation in galaxies and gets around the gas depletion problem.
- Explains lack of zero metallicity intergroup gas in Local Group.
- This process is rapid compared to inflow.

Predictions

- Essentially all galaxy groups will contain intercluster gas. This gas will often look as if it is a tidal remnant. Roughly speaking, the mass will be $\sim 10^8$ 10^9 M $_{\odot}$.
- The star formation rate in galaxies is determined, on average, by the mass of intercluster gas divided by the infall (dynamical) time for the gas.
 - However, this SFR will lag the observed amount of gas by the infall time $(10^8 10^9 \text{ y})$.

Summary & Conclusions

- 1. Is there evidence for a "universal" gas radial profile?
- GMCs form on filaments of pre-existing HI in galaxy disks.
- 3. Location where $\Sigma(HI) = \Sigma(H_2)$ (i.e. where $\Sigma_* = 120 \text{ M}_{\odot}\text{pc}^{-2}$) may be a fundamentally important scale for star formation in galaxies.
- 4. The molecular gas fraction is determined by hydrostatic pressure.
- 5. The gas depletion problem may be solved by tidal angular momentum exchange of the outermost HI gas in groups.