Dark Matter And The First Stars A new phase of stellar evolution

Astro-ph/0705.0521

D. Spolyar

K. Freese

P. Gondolo

Our Results

- Dark Matter (DM) in proto-stellar haloes can dramatically alter the formation of the first stars
- The LSP (lightest supersymmetric particle) provides a heat source that prevents the protostar from further collapse, leading to a new stellar phase:
- The first stars in the universe are giant (> 1 A.U.) H/He stars powered by dark matter annihilation rather than by fusion

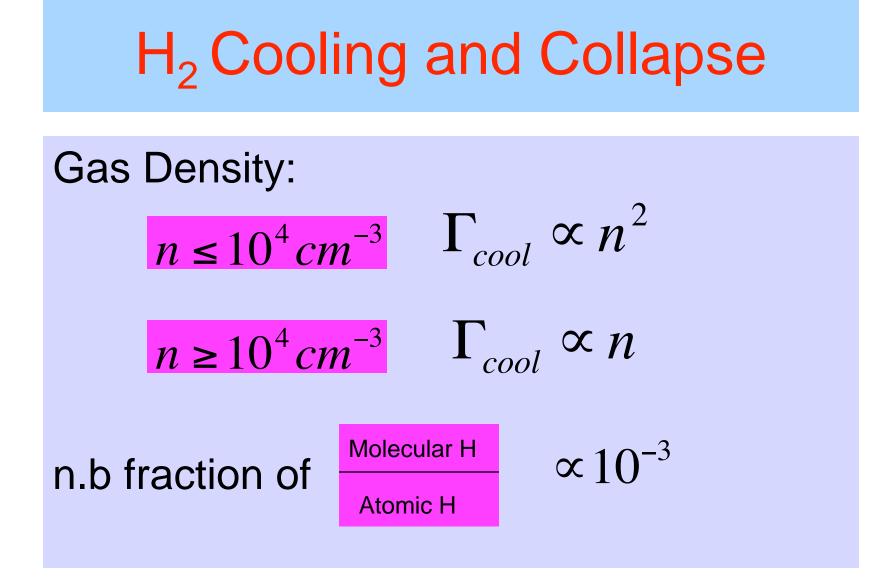
The First Stars

- Basic Properties:
 - Made only of H/He
 - Form inside DM haloes of (10⁵-10⁶) M_{\odot}
 - At <u>z =10-50</u>
- Important for:
 - End of Dark Ages.
 - Reionize the universe.
 - Provide enriched gas for later stellar generations.
 - May be precusors to black holes which power quasars.

Dark Matter + Pop III Stars

- DM in protostellar haloes alters star formation of PopIII stars:
 - Dark Matter annihilation heats the collapsing gas cloud preventing further collapse, which halts the march toward the main sequence.
 - A "Dark Star" may result forming (a new Stellar phase)

Outline


- Dark Matter
 - The LSP (lightest SUSY particle)
 - Density Profile
- DM annihilation: a heat source that overwhelms cooling in Pop III star formation
- Outcome: A new stellar phase
- Observable consequences

First Stars: Standard Picture

- Formation Basics:
 - At z = 10-50
 - Form inside DM haloes of $(10^5-10^6) M_{\odot}$
 - Baryons initially only 15%

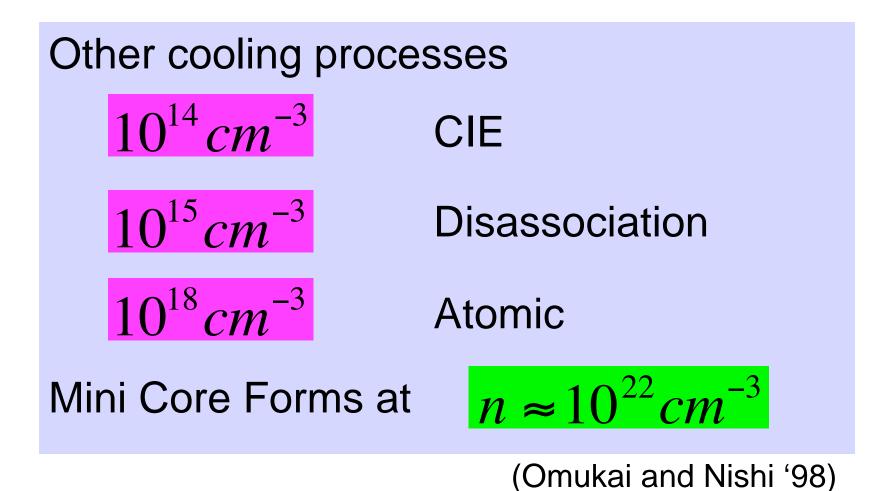
Dominant cooling Mechanism to allow collapse into a star is H₂

(Hollenbach and McKee '79)

Cooling

3-Body Reaction

$$n \approx 10^8 cm^{-3}$$


$$H+H+H \rightarrow H_2+H$$

Becomes 100% molecular

$$n \approx 10^{10} cm^{-3}$$

Opacity → less efficient cooling

Two Scales

• Jeans Mass ~ 1000 M_{\odot}

at
$$n \approx 10^4 cm^{-3}$$

Central Core Mass (requires cooling)

↓ accretion

Final stellar Mass??

Lightest Super Symmetric Particle: neutralino

- Most popular dark matter candidate.
- Mass 1Gev-10TeV (canonical value 100GeV)
- Self annihilation rate in the early universe determines the density today.
- The annihilation rate comes purely from particle physics and automatically gives the right answer for the relic density!

Dark Matter Annihilation

- Annihilation mediated by weak interaction.
- Thus for the standard neutralino (WIMPS):

$$\Omega_{\chi}h^2 = \frac{3 \times 10^{-27} \ cm^3/\text{sec}}{\langle \sigma v \rangle_{ann}}$$

• On going searches: LHC, CDMS XENON, GLAST, ICECUBE

Dark Matter

Our Canonical Case:

$$\langle \sigma v \rangle_{ann} = 3 \times 10^{-26} cm^3 / sec$$

$$M_{\chi} = 100 GeV$$

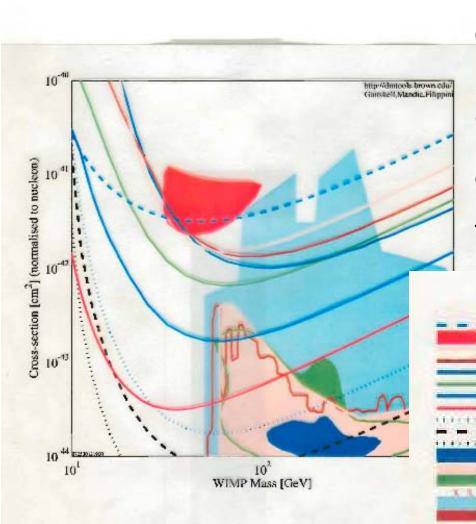
Minimal supergravity (SUGRA)

Mass 50GeV-2TeV

 $-\langle \sigma v \rangle_{ann}$ can be an order of magnitude bigger

Nonthermal relics

 $< OV >_{ann}$ can be much larger!


Dark Matter

- We consider a range:
 - Mass: 1GeV-10TeV
 - a range of Cross sections
- Results apply to other candidates
 - Sterile v
 - K-K particles

Detecting Dark Matter Particles

- Accelerators
- Direct Detection
- Indirect Detection (Neutrinos)
 - Sun (Silk, Olive, Srednicki '85)
 - Earth (Freese '86; Krauss, Srednicki, Wilczek '86)
- Indirect Detection (Gamma Rays, positrons)
 - Milky Way Halo
 - Galactic Center
 - Anomalous signals seen in HEAT (e+), HESS, CANGAROO, WMAP, EGRET, etc.

Status of Direct Detection Experiments

Red region: DAMA experiment claimed detection via annual modulation (Drukier Freese, Spergel 1986; Freese,Frieman, Gould 1987); hard to explain in light of null results from other experiments. Spin-dependent Interactions still possible. The future: 1 ton XENON detector.

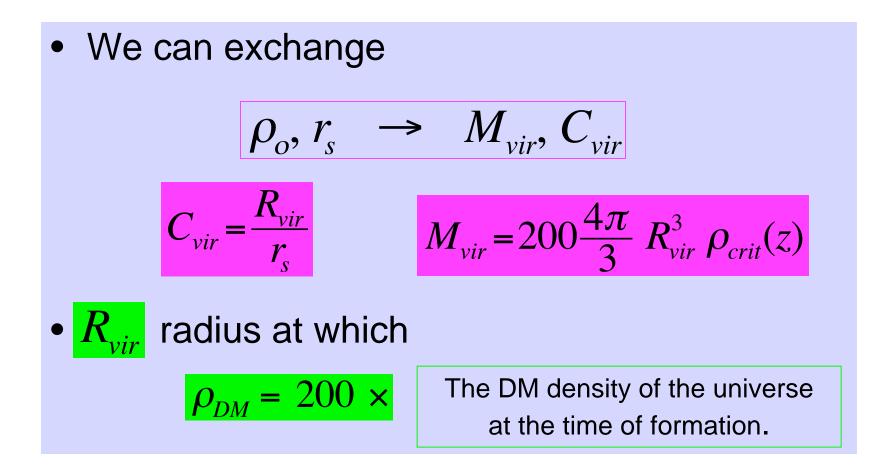
	DATA found too to bottom on else.
	DATA issued top to bottom on plot CDMS (Soundar) 2005 Si (7 keV threshold)
	DAMA 2000 55k kg days Nal Ann.Mod 3sigma, wo DAMA 1996 limit
	CAMPACT AND THE CENTRAL AND MICH OF SERVICE, WO DAMA 1990 HTT
2.	CRESST 2004 10.7 serving Carry Car
	inderweites i mital intel die 82-days die 2000+3002+2005 billu
	CRESST 2004 10.7 kg-day CaWO4 Edelweiss I final limit, 62 kg-days Gc 2000+3062+2003 limit WARP 2.3L, 96.5 kg-days \$5 ksV Greshold
	ZEIGLIN H LIMM HELEPHEND
	CDMS (Soudan) 2004 + 2005 Ge (7 keV threshold)
	XENON10 2007 (Net 136 kg-d, BG Subtract)
÷.,	CDMS Soudan X007 projected
	SuperCDMS (Projected) 2 STG Soudan SuperCDMS (Projected) 25kg (7 ST@Snolnb) Rutz de Austriz Troita/Rozzlawski 2006, CMSSM Markov Chain Monte
÷.	SuperCDMS (Projected) 23kg (7 ST@Suclab)
	Ruiz de Austri Doute Roszławski 2006 CMSSM Markow Chain Monte
	Bate et. al 2003
	Ruiz de Austri/Trona/Rozzkowski 2006, CMS5M Merkov Chain Monte
2	Ellis et al Theory region post-LEP beechmark points
	Baltz and Gondolo 2003
	Baltz and Goudolo, 2004. Merkov Cham Moore Carlos
	THER AND CONCERN AND SHERE CAMPS SHOW CAMPS SHOWE CALLS

Hierarchical Structure Formation

Smallest objects form firstPop III stars $(10^5 M_{\odot})$ Merge \rightarrow galaxiesMerge \rightarrow clusters etc.

Numerical Simulations

• NFW Profile (Navarro, Frank, white '96)


$$\rho(r) = \frac{\rho_o}{\frac{r}{r_s} (1 + \frac{r}{r_s})^2}$$

$$\rho_o =$$
 "Central Density"

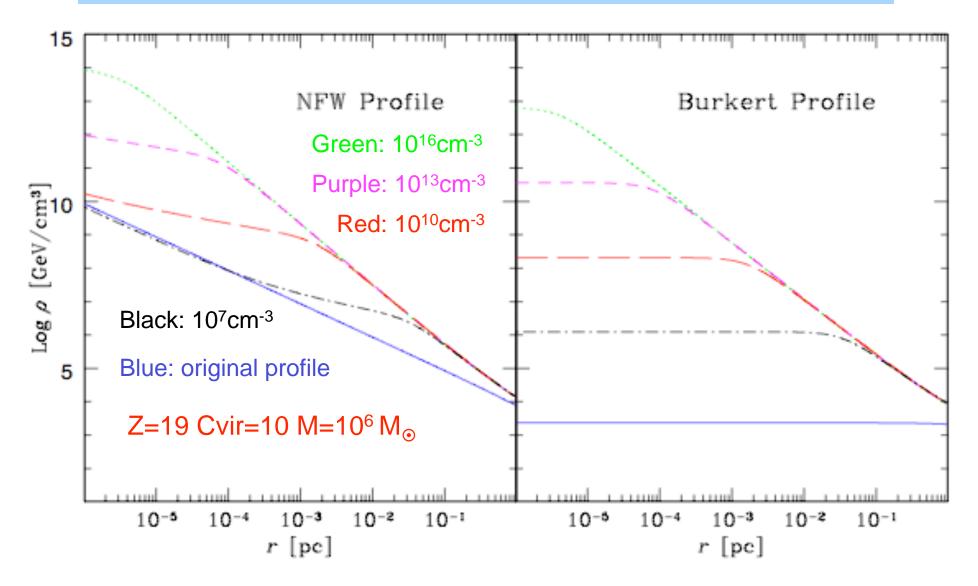
$$\rho(r_s) = 1/4 \ \rho_o$$

$$r_s = \frac{\text{"Scale Radius"}}{\text{Scale Radius"}}$$

Dark Matter Density Profile

- Adiabatic contraction (a prescription):
 - As baryons fall into core, DM particles respond to potential well.

r M(r) = constant


 Profile that we find:

$$\rho_{\chi}(r) = r^{-1.9}$$
 Outside Core

$$\rho_{\chi}(n) = 5 \text{ GeV} (n/cm^{-3})^{0.8}$$

(using prescription from Blumenthal, Faber, Flores, and Primack '86)

Dark Matter Profile

(Outer slope r^{-1.9}, profile matches Abel, Bryan, Norman '02)

Adiabatic Conditions

- Dynamical time vs. orbital time
- Caveat: Spherical symmetry vs. mergers
- Matches simulated profiles in relevant regime even of large baryon density
- In the context of describing galactic dark matter haloes, adiabatic contraction has been wildly successful even beyond the regime where it should be valid.

On: Adiabatic Contraction

- Peebles '72 Young '81: simulations of black hole with collisionless baryons. Found density profile r^{-1.5}. Doesn't apply here: 1) point source BH 2) isothermal sphere for collisionless matter is a bad approximation (vs NFW).
- Merritt '03: Starting with collisionless matter with density r⁰-r⁻² responding to central black hole, numerically found final profile r^{-2.25}-r^{-2.5}, i.e., much steeper.
- Case of merging black holes and effect on profile of collisionless matter has not been studied numerical due to spurious relaxation.
- We are working on this.

Dark Matter Heating

Heating rate: $Q_{ann} = n_{\chi}^{2} < \sigma v > \times m_{\chi} \qquad = \frac{\rho_{\chi}^{2} < \sigma v >}{m_{\chi}}$

Fraction of annihilation energy deposited in the gas:

$$\Gamma_{DMHeating} = f_Q Q_{ann}$$

Previous work noted that at $n \le 10^4 cm^{-3}$ annihilation products simply escape (Ripamonti,Mapelli,Ferrara 07)

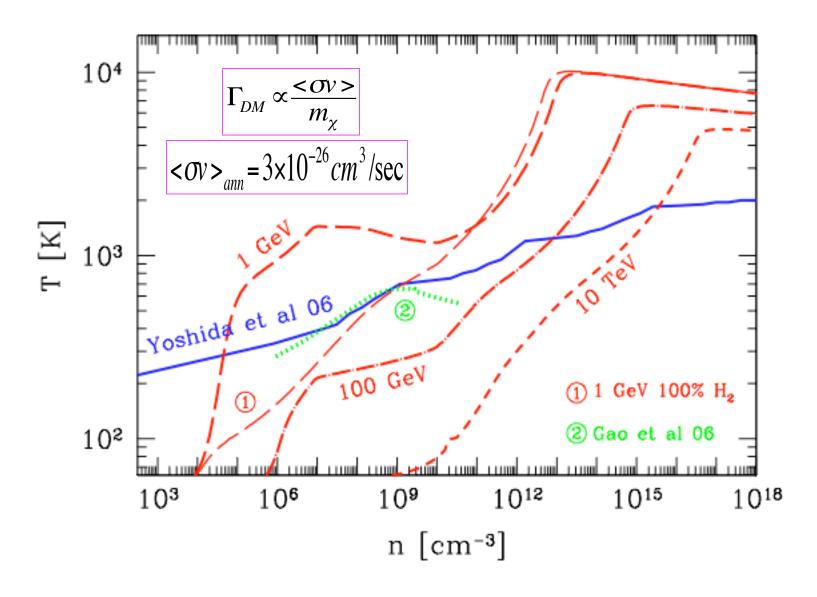
1/3 electrons1/3 photons1/3 neutrinos

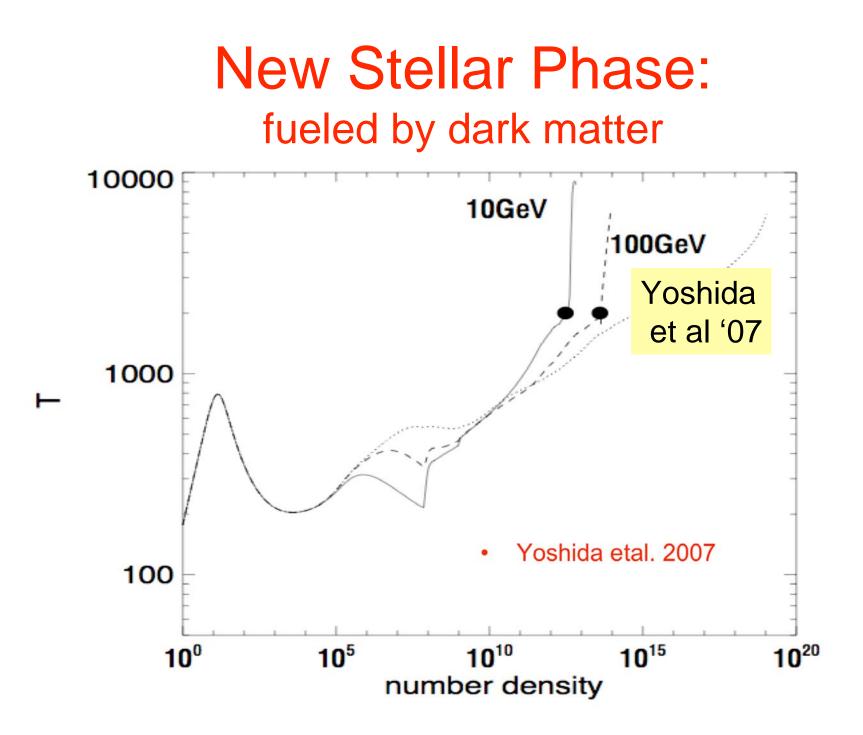
Crucial Transition

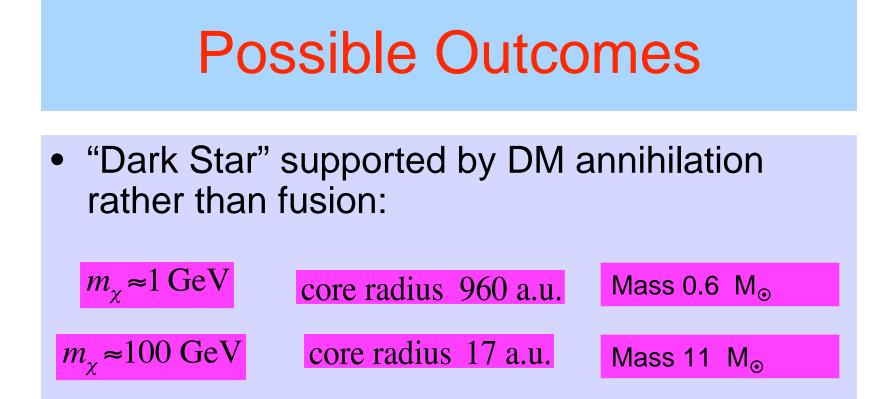
- At sufficiently high densities, most of the annihilation energy is trapped inside the core and heats it up
- When:

$$m_{\chi} \approx 1 \text{ GeV} \rightarrow n \approx 10^{9}/\text{cm}^{3}$$

$$m_{\chi} \approx 100 \text{ GeV} \rightarrow n \approx 10^{13}/\text{cm}^{3}$$


$$m_{\chi} \approx 10 \text{ TeV} \rightarrow n \approx 10^{15-16}/\text{cm}^{3}$$


• The DM heating dominates over all cooling mechanisms, impeding the further collapse of the core


Dependence on concentration

- N.b. For Cvir = 1 at z=19, the DM density is lower by a factor of 4, annihilation rate by factor of 16, s.t. have to go to n=10¹⁴ cm⁻³ (about an order of magnitude higher) before heating products remain stuck in protostar
- Same basic behavior (dark matter heating wins)

DM Heating dominates over cooling when the red lines cross the blue/green lines (standard evolutionary tracks from simulations). Then heating impedes further collapse.

- Could still exist today.
- Would not re-ionize the universe.
- Would not produce the heavy elements

Lifetime

• Life time:

$$T_e \approx \frac{m_{\chi}}{\rho_{\chi} < \sigma v >}$$

• For example for our canonical case:

 $T_e \approx 600$ million years for $n \approx 10^{13} cm^{-3}$

 v.s. dynamical time of <10³yr: the core may fill in with DM again s.t. annihilation heating continues for a longer time

Second Possibility Dark Stellar phase

- Shorter than current lifetime of the universe.
- Outer material accretes onto core
 - Accretion shock
- Once T~10⁶ K:
 - Deuterium burning, pp chain, Helmholz contraction, CNO cycle.
- Star reaches main sequence
 - Pop III star formation is delayed.
- Which is the most likely outcome? work with N. Yoshida

Possible effects

- Reionization: Delayed due to later formation of Pop III stars? Sped up by DM annihilation products?
- Pop III initial mass function: Nuggets of 10⁻³ M_☉ form as usual, but DM at Eddington luminosity could slow prevent spherical accretion → different stellar mass distribution
- Make Larger objects? Accrete to make 10⁹ M_☉ BH observed at z~6.
- Accretion process (Tan and McKee '03)

Observables

- Dark stars are giant objects with core radii > 1 a.u.
 - Find them with lensing? JWST?
- v annihilation products in AMANDA or ICECUBE.
- γ in GLAST, HESS, VERITAS, MAGIC, etc.
- Reionization of the universe affected
 - 21 cm line.

Observables (continued)

 Can neutralinos be discovered this way or can we learn more about their properties?

Summary

- DM annihilation heating in Pop III protostars can delay/block their production.
- A new stellar phase DARK STARS
 - Produced by DM annihilating and not by fusion.

New Effect: Annihilation in the First Stars!

- Today's stars do not Form in DM Haloes.
- The first stars do!
- As the first stars contract they bring DM in with them.
 - Densities with interesting annihilation rates.