Protostellar Turbulence and Cluster Formation

Fumitaka Nakamura (Niigata Univ.)
Zhi-Yun Li (Univ. of Virginia)

Ref. Li & Nakamura, 2006, ApJL, 640, L187 Nakamura & Li, 2007, ApJ, 662, 395

+ latest results

Cluster Forming Clump NGC1333 (Spitzer)

NGC1333

A nearby embedded cluster ~ 150 stars already formed.

Protostellar outflows influence cloud dynamics.

Outflow-driven turbulence?

(Norman & Silk 1980, McKee 1989, Shu et al. 1999) (SFE~10% (P*~40km/s,

 $\langle v \rangle \sim M_* P_* / M_c \sim SFE \times P_*$

 $\sim 5 \text{km/s} (SFE/0.1)(P_*/50 \text{km/s}) > 1-2 \text{km/s}$

NGC1333 Cluster Forming Region in CO

- Molecular outflows are overlapping and interacting with themselves
- •The envelope contains most of the mass in this system.

Cluster Formation in Parsec-Scale Dense Clumps: Global Issues

•What is the rate of star formation in cluster forming clumps?

star formation rate per free fall time (Krumholz & McKee 2005)

SFR_{ff}~1-5% for NGC 1333 (see also Krumholz & Tan 2007)

•Can outflows keep the cluster forming clumps close to a dynamical equilibrium?

(Tan et al. 2006)

Is there any unique characteristic of protostellar (outflow-driven) turbulence?

Numerical Model

- Centrally condensed, isothermal spherical cloud with uniform magnetic field
- We superimpose supersonic velocity field of a Mach 10 $(v_k^2 \propto k^{-3})$ turbulence in Fourier space.

 $\begin{aligned} &1.5 \text{ pc} = 9L_J \\ &\text{Effective radius} = 1.5L_J \\ &L_J = thermal \text{ Jeans length} \end{aligned}$

$$n_{H2} = 2.7 \times 10^{-4} \left(\frac{T}{20 \text{ K}}\right) \left(\frac{L_J}{0.17 \text{ pc}}\right) \text{ cm}^{-3}$$

$$L = 9L_J = 1.5 \left(\frac{L_J}{0.17 \text{ pc}}\right) \text{ pc}$$

$$M = 939 \left(\frac{T}{20 \text{ K}} \right) \left(\frac{L_J}{0.17 \text{ pc}} \right) \text{ M}_{\odot}$$

$$B_0 = 47 \,\alpha^{1/2} \left(\frac{T}{20 \,\text{K}}\right) \left(\frac{L_J}{0.17 \,\text{pc}}\right)^{-1/2} \,\mu\text{G}$$

$$B_0 = 75 \,\mu\,\mathrm{G}$$

Magnetically supercritical

flux-to-mass ratio 20% the critical value at the center

50% the critical value as a whole

Gravitational collapse time $t_g = L_J / C_s = 0.6 \left(\frac{T}{20 \text{ K}} \right)^{-1/2} \left(\frac{L_J}{0.17 \text{ pc}} \right) \text{Myr} \qquad 25\% \text{ longer than global free-fall time}$

Numerical Model (Protostellar Outflow)

Star formation

• a). strength parameterized by the outflow momentum per solar mass of star formed

(Matzner & McKee 2000; Nakamura & Li 2005)

$$P_*=50 \text{ km/s}$$
 ($P_*^{40 \text{km/s}}$, Matzner & McKee 2000)

• b). 75% of the momentum in a 30° "jets" around the local magnetic field direction and 25% of the momentum in a slower spherical component

Column Density Movie of Clump Evolution

- First star formed around t~0.4 t_g
- \bullet By t=1.5 t_g, 45 stars have formed, w/ star formation efficiency SFE $^{\sim}$ 6%

Column Density Evolution in Cluster Forming Clump

along x-axis (initial B field direction)

Oscillation around a dynamical equilibrium state? (see also Matzner & McKee 1999)

Column Density Movie of Clump Evolution

- First star formed around t~0.4 t_g
- \bullet By t=1.5 t_g, 45 stars have formed, w/ star formation efficiency SFE $^{\sim}$ 6%

Evolution of Star Formation Efficiency

• About 8% of gas converted into stars in 1.6 t_g =2.1 t_{ff} , yielding a rate SFR_{ff} \approx 4% or depletion time \approx 25 t_{ff}

Evolution of Scalar Momentum per unit Mass

- ◆ Initial turbulence decays quickly, controls first stars
- ◆ Majority of cluster members form in protostellar turbulence
 protostellar turbulence more directly relevant to cluster formation

A Slice through Protostellar Turbulence

- Dense gas collect near the bottom of potential well, where most stars form
- Momentum injected into envelope, where most mass resides collimated outflows more efficient in supporting clump
- Gravity plays an important role, setting up a circulation of mass infall & outflow roughly balanced

Power Spectrum of Protostellar Turbulence

 Most power near the break characteristic scale ~ typical length of outflows (see also Matzner 2007)

Anisotropic Energy Input

Number fraction of stars formed as a function of angle

Momentum input is anisotropic.

Initial Mass Function in Cluster Forming Clump

- The stellar IMF seems to be consistent with the Salpeter.
- For no magnetic field, the slope of the IMF tends to be steeper than the Salpeter.
- This trend appears to be consistent with the turbulent fragmentation model (Padoan & Nordlund 2000).

Role of Magnetic Fields in Cluster Formation

- Moderately strong magnetic fields slow down cluster formation by factor of a few
- Relatively weak magnetic fields amplified to equipartition level

dynamically significant but secondary to outflows

Summary

- 1. Outflows of reasonable strength can replenish dissipated turbulence and keep the clump close to an equilibrium
- 2. Quasi-equilibrium maintained through low rate of star formation
- 3. Collimated outflows are more efficient for clump support (contrary to simplest expectation)
- 4. Prominent break in the velocity power spectrum
- 5. Energy and momentum injection is anisotropic
- 6. Majority of stars probably form in protostellar turbulence
- 7. Protostellar turbulence can reproduce the stellar IMF similar to Salpeter, in the presence of magnetic fields