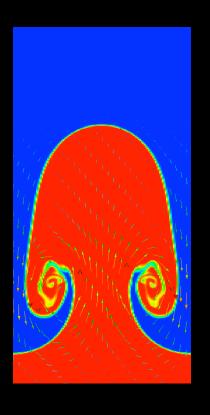
Radiation Feedback in ULIRGS: Are Photons Movers and Shakers?

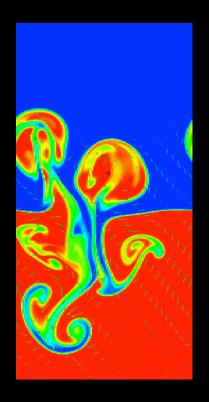
Shane Davis (CITA)

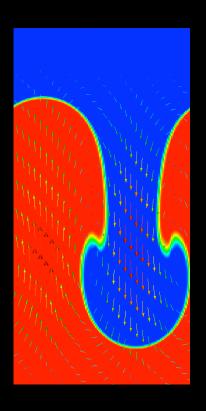
Yan-Fei Jiang (CfA)

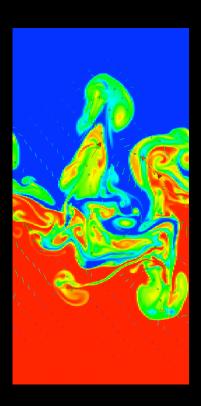
Jim Stone (Princeton)

Norm Murray (CITA)









Turbulence and Outflows in Star Forming Galaxies

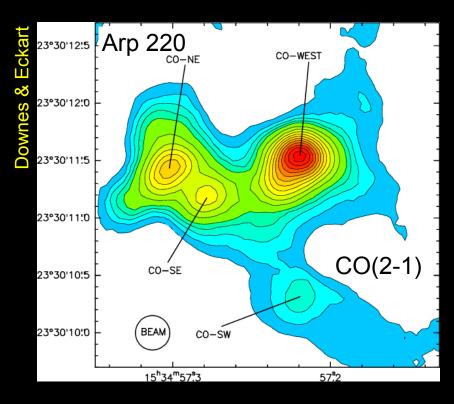
- What drives the high mach number turbulence?
- What drives the outflows (neutral and molecular gas)?

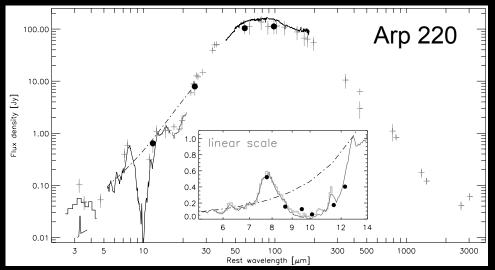
Radiation pressure from UV and IR on dust grains?

Credit: NOAO/AURA/NSF/WIYN

Ultraluminous Infrared Galaxies (ULIRGS)

From SEDs and molecular lines, there is evidence that some (most?) ULIRGs are optically thick to their own infrared emission





Spoon et al. 2004

Arp 220: Rangwala et al. (2011) estimate that $\tau \sim 5$ @ 100 μ m

The Role of Radiation Forces

Murray, Quataert & Thompson (2005) and others have argued that momentum injection from radiation pressure on dust is the primary driver of turbulence and winds in ULIRGS; starbursts, and may also drive disruption of GMCs

momentum injection:

$$\dot{p} \simeq (1 + \tau_{ir}) \frac{L}{c}$$
ultraviolet infrared

Numerical Simulations and Rayleigh Taylor Instability

Galaxy scale simulations can reproduce wind velocities and mass loss rates, but radiative feedback is important (Hopkins, Agertz, Keres)

$$\dot{p} = (1 + \eta \tau_{ir}) \frac{L}{c}$$

$$\eta \lesssim 1$$

Krumholz & Thompson (2012, 2013) argued based on radiation hydro simulations that the Rayleigh-Taylor instability inhibits radiation feedback

$$\dot{p} \lesssim rac{L}{c} \qquad \eta \ll 1$$
 $au_{
m ir} < 1$

Can we reproduce these results in our Athena radiation hydrodynamics sims?

Radiation Transfer and Radiation Hydrodynamics

Radiation transfer equation (grey):

$$\frac{1}{c}\frac{\partial I}{\partial t} + \hat{n} \cdot \nabla I = \eta - \chi_{t}I + \chi_{s}J - \chi_{s}\frac{\mathbf{v} \cdot \mathbf{H}}{c} + \left(\frac{\hat{n} \cdot \mathbf{v}}{c}\right)(2\eta + \chi_{t}I + 2\chi_{s}J)$$

Radiation energy equation:

$$\frac{1}{c}\frac{\partial E_{\rm r}}{\partial t} + \nabla \cdot \mathbf{F}_{\rm r} = \chi_{\rm a} \left(aT^4 - E_{\rm r} \right) + \left(\chi_{\rm a} - \chi_{\rm s} \right) \frac{\mathbf{v}}{c^2} \cdot \left(\mathbf{F}_{\rm r} - \mathbf{v}E_{\rm r} - \mathbf{v} \cdot \mathbf{P}_r \right)$$

Radiation momentum equation:

$$\frac{1}{c^2} \frac{\partial \mathbf{F_r}}{\partial t} + \nabla \cdot \boxed{\mathbf{P_r}} = -\frac{\chi_t}{c} \left(\mathbf{F_r} - \mathbf{v} E_r - \mathbf{v} \cdot \mathbf{P_r} \right) + \chi_a \frac{\mathbf{v}}{c} \left(a T^4 - E_r \right)$$

How do we handle the radiation pressure?

$$f = \frac{P_{
m r}}{E_{
m r}}$$

Equation of Radiation Hydrodynamics

Standard hydro equations: sound crossing time

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial \left(\rho \mathbf{v}\right)}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v}\right) + \nabla P = -\mathbf{S}_{r}(\mathbf{P})$$

stiff source terms: radiation relaxation time

$$\frac{\partial E}{\partial t} + \nabla \cdot (E\mathbf{v} + P\mathbf{v}) = -cS_{\mathbf{r}}(E)$$

Radiation subsystem: light crossing time

$$\frac{1}{c^2} \frac{\partial \mathbf{F}_{r}}{\partial t} + \nabla \cdot (\mathbf{f} E_{r}) = \mathbf{S}_{r}(\mathbf{P})$$
$$\frac{1}{c} \frac{\partial E_{r}}{\partial t} + \nabla \cdot \mathbf{F}_{r} = S_{r}(E)$$

What do you do for f?

Sekora & Stone (2010) Jiang, Stone & Davis (2012)

Common Solution: Flux-limited Diffusion (FLD)

Replace momentum eq. with diffusion approximation:

$$\mathbf{F}_{\mathrm{r}} = -\lambda(E_{\mathrm{r}}, \chi) \frac{c}{3\chi} \nabla E_{\mathrm{r}}$$

optically thin
$$|F_{\rm T}| \to c E_{\rm T}$$
 optically thick
$$\lambda(E_{\rm T},\chi) \to 1$$

Flux comes directly from energy density solve one PDE instead of four

But several issues: e.g. limiter is a simple function of local variables; flux always points along gradient of energy density

Our Method: Variable Eddington Tensor (VET)

On each timestep we compute f_{ij} by solving the time-independent transfer equation:

$$\hat{n} \cdot \nabla I = \chi_{\mathrm{t}} (S - I)$$

Davis, Stone & Jiang (2012)

Short Characteristics: Solve radiative transfer equation at each grid zone along a set of rays using intensities, emissivities, and opacities interpolated from neighboring zones

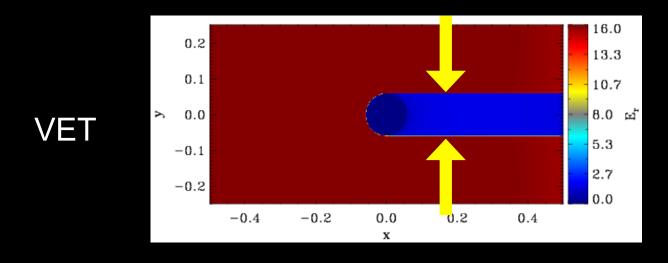
$$\hat{n} \cdot \nabla I = \eta - \chi_{t}I + \chi_{s}J - \chi_{s}\frac{\mathbf{v} \cdot \mathbf{H}}{c} + \left(\frac{\hat{n} \cdot \mathbf{v}}{c}\right)(2\eta + \chi_{t}I + 2\chi_{s}J)$$

Radiation Hydrodynamics with VET in Athena

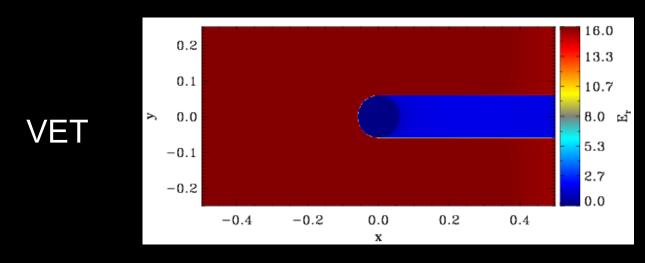
On each timestep we:

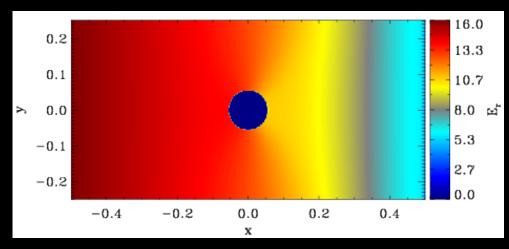
- 1) Solve the equations of (magneto)hydrodynamics using standard Athena algorithms
- Solve time-independent radiative transfer to compute the Eddington tensor with densities and temperatures from step 1
- 3) Solve the time-dependent radiation energy and momentum equations using the Eddington tensor from step 2
- Update hydro variables with radiation source terms from step 3

Example: Cloud Irradiation (Proga et al. 2014)



Example: Cloud Irradiation (Proga et al. 2014)





Hydrostatic Equiliibrium in a ULIRG Disk

Assume IR radiation dominates and dust opacities is proportional to T²

$$F \sim F_{\rm ir} \sim {\rm const}$$

 $\kappa \sim \kappa_{\rm ir} \propto T^2$

Radiative equilibrium tells us temperature must increase if disk is optically thick

$$T^4 = \frac{3F}{4\sigma} \left(\frac{2}{3} + \tau \right)$$

If g ~ const and radiation pressure dominates then hydrostatic equilibrium is impossible

$$-\frac{1}{\rho}\frac{dP}{dz} + \frac{\kappa F}{c} = \varrho$$

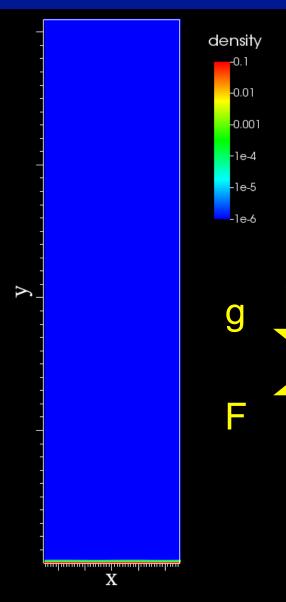
2D simulations of Dusty Gas with IR Radiation Field

Krumholz & Thompson (2012)

- Constant gravity and IR flux incident at lower boundary
- 2D Atmosphere is initially isothermal
- Sinusoidal density perturbation
- Radiation field is assumed to be blackbody with T ~ 80 K
- Initial optical depth and Eddington ratio:

$$\frac{\kappa F}{cg} = (0.25, 0.5) \left(\frac{T}{80K}\right)^2$$

$$\tau = 3, 10$$



Radiation Hydrodynamics Simulations with ORION FLD

		T03F0.50	T10F0.25	T10F0.50
Krumholz & Thompson (2012) Movies show (log) density from three different atmospheres with varying initial optical depth and Eddington ratio	\boldsymbol{z}			
			\sim	

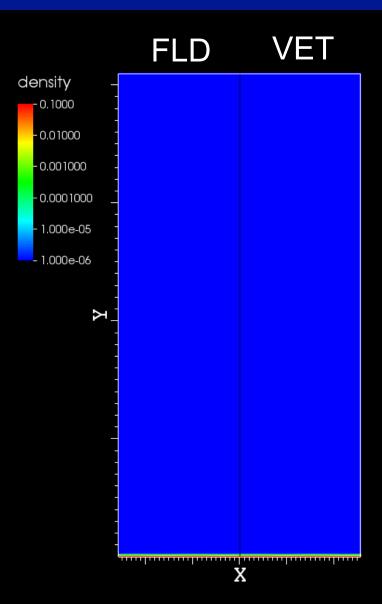
 ${\mathcal X}$

Radiation Hydrodynamics Simulations with Athena

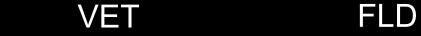
Same setup as Krumholz & Thompson (2012), except with random perturbation in addition to sinusoidal perturbations

$$\frac{\kappa F}{cg} = 0.5 \left(\frac{T}{80 \text{K}}\right)^2$$

$$\tau = 3$$

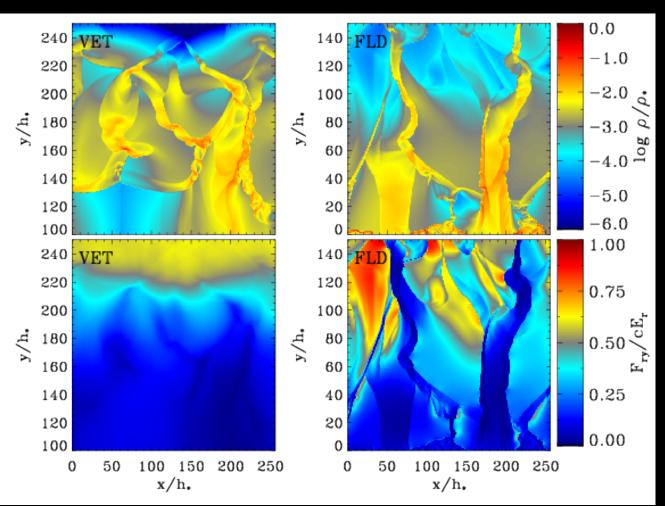


Difference Between FLD and VET



log density

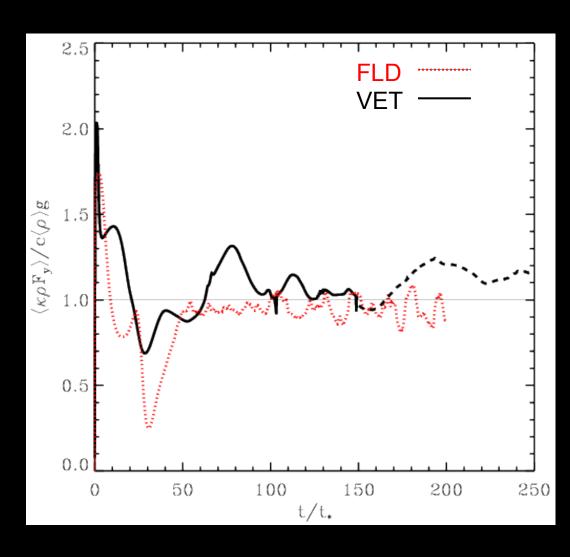
vertical flux energy density



Force Balance

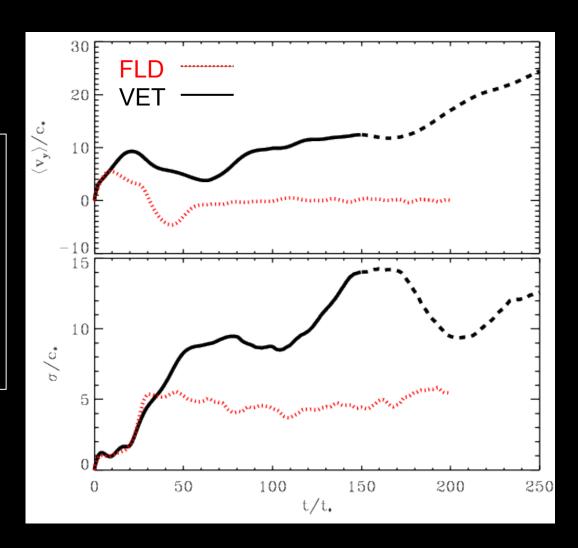
Radiation force matches or exceeds gravity:

$$\frac{\langle \kappa \rho F \rangle}{c \langle \rho \rangle g} \gtrsim 1$$



Mass Weighted Velocity and Velocity Dispersion

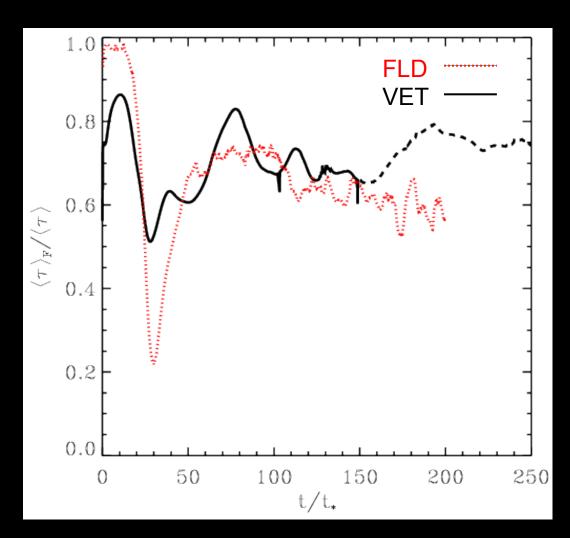
Velocity dispersion Mach number is too low: $\mathcal{M} \sim 15$ (8 km/s). But mean velocity continues increasing: gas is unbound!



Implications for Momentum Feedback

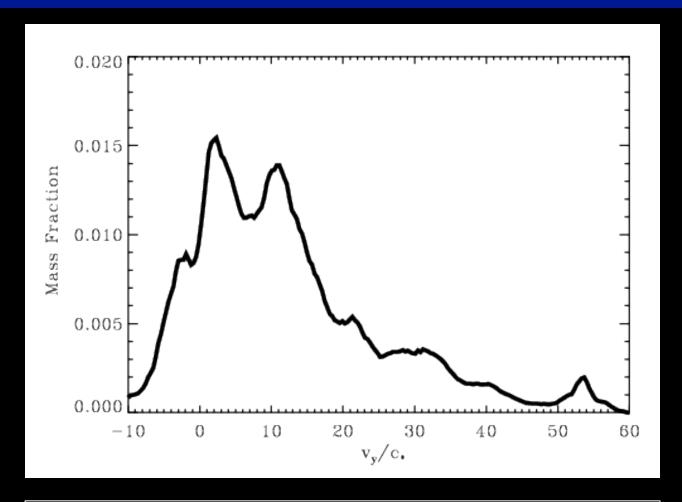
RTI may or may not significantly inhibit momentum injection:

$$\dot{p} \simeq \langle \tau \rangle_F \frac{L}{c}$$
 $\langle \tau \rangle_F \simeq \kappa_{\rm E} \Sigma$
 $\kappa_{\rm E} \equiv \frac{cg}{F}$



$$\langle \tau \rangle_F \simeq 6 \quad \eta \simeq \langle \tau \rangle_F / \langle \tau \rangle \simeq 0.7$$

Mass Weighted Velocity Distribution and Outflows

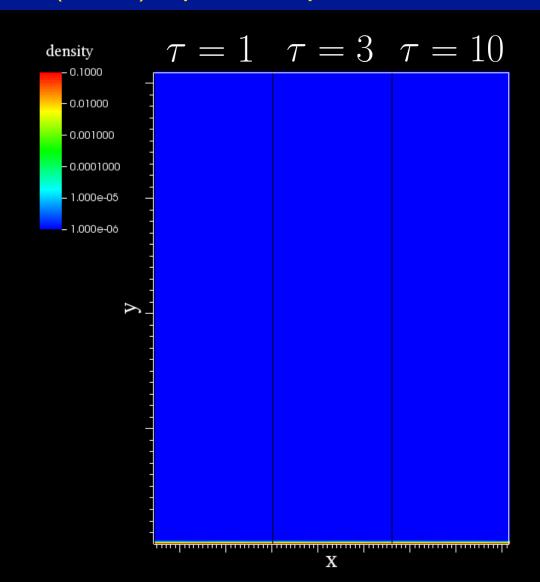


A few % of mass has velocity greater than ~ 4 times velocity dispersion

Varying the (Initial) Optical Depth

Same setup as above, but with varying optical depth

$$\frac{\kappa F}{cg} = 0.5 \left(\frac{T}{80K}\right)^2$$



Summary

- VET is better than FLD
- We confirm the importance of the Rayleigh-Taylor instability in limiting the Eddington ratio to be near unity.
- The precise Eddington ratio depends on transfer method. In VET radiation provides a modest acceleration above gravity and gas appears to be unbound.
- A small fraction of mass is accelerated to high velocities mechanism for launching of outflows?
- Our results depend on optical depth: runs with $\tau \sim 1$ show little net acceleration and low velocity dispersion.
- More realistic setups are needed.