Stellar feedback in a galactic disk with HD and RHD

Joki Rosdahl

Sterrewacht Leiden Romain Teyssier, Joop Schaye, Oscar Agertz KITP, Santa Barbara, April 14th, 2014

Introduction The 'general' overcooling problem (Navarro & Benz, 1991)

Realistic galaxies require *efficient supernova feedback*

Without it, they are:
too compact, star forming
no outflows or fountains

But: modelling SNe by first principles does not work

- <u>SN feedback</u>: instantaneous thermal energy injection
 - <u>Good resolution</u>: Sedov blast → momentum conserving shell
 - <u>Practical resolution</u>: blast not resolved **→** energy radiates away

- <u>SN feedback</u>: instantaneous thermal energy injection
 - <u>Good resolution</u>: Sedov blast → momentum conserving shell
 - <u>Practical resolution</u>: blast not resolved **→** energy radiates away

- <u>SN feedback</u>: instantaneous thermal energy injection
 - <u>Good resolution</u>: Sedov blast → momentum conserving shell
 - <u>Practical resolution</u>: blast not resolved **→** energy radiates away

- <u>SN feedback</u>: instantaneous thermal energy injection
 - <u>Good resolution</u>: Sedov blast → momentum conserving shell
 - <u>Practical resolution</u>: blast not resolved → energy radiates away

• Missing physics: Cosmic rays, stellar winds, radiation

Layout: Feedback experiments with RAMSES

1.Simulation setup

2.Subgrid recipes

- Stochastic
- Kinetic
- Delayed cooling

3.Radiation feedback with radiationhydrodynamics

- -4×10⁹ M_☉ baryonic disc, 50% stars, 50% gas
- -3 10⁶ DM/stellar particles
- -CGM: $n_H \sim 10^{-6} \text{ cm}^{-3} \text{ gas at } 10^6 \text{ K}$

Simulation settings and physics

SN recipe 1: Stochastic thermal feedback

Stochastic thermal feedback

adapted to AMR from Dalla Vecchia & Schaye (2012)

Overcooling problem: short cooling time compared to time step

Solution:

Increase cooling time by depositing *more* energy.

The probability	available energy _	$E_{\rm SN}$
for a SN is then:	required energy	$\overline{E_{\text{cell}}(\Delta T_{\min})}$

Stochastic feedback: Kennicutt Schmidt relation

No agreement with observed KS relation... but can change SF efficiency

Stochastic feedback: Kennicutt Schmidt relation

but can change SF efficiency... but only way to get agreement is to cancel any feedback

SN recipe II: Kinetic feedback

Kinetic feedback

Implemented in RAMSES by Dubois (2008)

Problem: Sedov blast unresolved

Solution: Skip Sedov blast — mimic the result

Parameters: *r*_{bubble} \approx 150 pc $\eta_{\rm W} \approx 1-10 = \text{wind mass loading}$ *V*_W from energy conservation

Kinetic feedback: Kennicutt Schmidt relation

Kinetic feedback: Kennicutt Schmidt relation

Kinetic feedback: Kennicutt Schmidt relation

SN recipe III: Delayed cooling

Delayed cooling

Implemented in RAMSES by R. Teyssier

Overcooling problem:

cooling time is short compared to time step, and SN energy disappears before gas reacts

Solution:

Turn off cooling long enough to allow gas to react

Physical meaning:

- SN activity maintains an unresolved non-thermal *turbulence*
- Decays on unresolved sound-crossing time hydro solver maintains it on larger scales

Delayed cooling

Method:

- Inject SN energy, but also a turbulent energy tracer, σ_{turb} , which moves with the gas.
- Turn off cooling where $\sigma_{turb} > \sigma_{min}$
- Decay σ_{turb} on a timescale t_{diss}

Parameters:

- $t_{\rm diss} \approx 10$ Myr, depending on simulation
- $\sigma_{\min} \approx 100 \text{ km/s} (1/50 \text{ of SN velocity})$

Delayed cooling: results

Delayed cooling: results

SN recipes

Overcooling problem can be dealt with:

- suppressed SF, puffed up galaxies, outflows
- but perhaps not all at the same time

Recipes likely over-do SN feedback, but make up for lack of e.g.:

- Cosmic rays
- Stellar winds early
- Radiation feedback early

It is timely to look closer at those other processes:

- how do the actually work?
- are they fairly represented by current sub-grid recipes?

Radiation feedback, with radiation-hydrodynamics (RHD)

I. RHD method

II. Results: effect of adding stellar radiation

III.The nature of radiation feedback on a galactic scale Radiation heating? Padiation pressure?

Radiation pressure?

The code: Ramses-RT

<u>Radiation</u> Hydrodynamics in RAMSES

Rosdahl et al. (2013):

- Moment method radiative transfer (RT), with M1 closure
- Ionisation and heating of gas
- Radiation pressure added and tested
- Optically thick IR modelled with diffusion (hybrid method)
 IP transing and multi conttoring on dust
- ➡ IR trapping and multi-scattering on dust

Radiation bands IR, FUV, 3xUV

On-the-fly stellar particle emission from SEDs: Bruzual & Charlot (2003)

In call scatter indefinitely
In the scatter indefinitely
In the scatter indefinitely
In the scatter indefinitely
In the scatter indefinitely

Radiation feedback with RHD

I. RHD method

II. Results: effect of adding stellar radiation

III.The nature of radiation feedback on a galactic scale Radiation heating? Radiation pressure?

Radiation pressure?

Results: Visual comparison: no RT versus RT

Effect of RT feedback on star formation rate

Effect of RT feedback on outflows

• Radiation has little effect on outflows

Effect on Kennicutt Schmidt relation: no RT versus RT

Radiation feedback with RHD

I. RHD method

II. Results: effect of adding stellar radiation

III.The nature of radiation feedback on a galactic scale Radiation heating?

• Radiation pressure?

What is the nature of the the radiation feedback?

- Radiation pressure is weak
- Radiation heating dominates

What is the nature of the the radiation feedback?

- Radiation pressure is weak
- Photoionisation heating dominates: expands the gas and prevents collapse

Radiation pressure... Why is it weak?

- Recent works cite multi-scattering as a major contributor
- ...but we do not have any
- Not to say that it doesn't exist we just don't resolve it!

Conclusions

Radiation feedback is 'gentle' - not much like SN sub-grid recipes
Main effect is heating -> lower density peaks

➡Next:

-How does radiation feedback combine with more efficient SN feedback recipes?

-How does it behave in more/less massive halos?

Cosmological simulations