A General Hybrid Radiation Transport Scheme for Star Formation Simulations on an AMR grid

Mikhail Klassen

PhD Candidate, McMaster University Rolf Kuiper, Ralph Pudritz (Supervisor), Thomas Peters Robi Banerjee, Lars Buntemeyer, Helen Kirk

KITP Santa Barbara, May 2014

Context

- Star formation proceeds inside of turbulent, magnetized, and highly filamentary clouds (André et al. 2013)
- Radiation feedback is connected to a wide range of physical problems on a wide range of scales: from protoplanetary disks (Williams & Cieza 2011) to galaxies and the circumgalactic medium (e.g. Ceverino & Klypin 2009, Hopkins et al. 2013)

STScI-PRC2011-38

SI06 Star-forming region containing IRS4. NASA / ESA / Hubble Heritage Team (STScI/AURA)

Motivation

- We also want to study the impact of radiation feedback on these environments: suppression of fragmentation, creation of outflows, radiation pressure
- We are interested in correctly modelling the environments of star formation, including all of the effects of supersonic turbulence and magnetic fields

Herschel/SPIRE 250µm dust map of the Polaris flare (Miville-Deschênes et al. 2010), processed by André et al (2010) to map the filaments

Characterizing filaments

- Apparent characteristic width of 0.1 pc (Arzoumanian et al. 2011)
- Velocity-coherent structures (Hacar et al. 2013)
- Stability (Ostriker 1964)
- Magnetic field alignment (Chapman et al. 2011)
- Clustered star formation at intersections (Schneider et al. 2012)
- Formation of HII regions (e.g. Dale & Bonnell 2011)

Herschel column density map of part of Aquila star-forming region by André et al (2010). Blue triangles show bound prestellar (Könyves et al. 2010)

IC5146. ESA / Herschel / PACS / Gould Belt Survey

Hybrid radiation transport

Kuiper & Klessen (2013)

Kuiper et al. (2010)

$$\frac{1}{c}\frac{\partial I}{\partial t} + \boldsymbol{\Omega} \cdot \nabla I + \sigma I = \frac{c}{4\pi}(\sigma_a B + \sigma_s E),$$

.

$$E(\mathbf{r},t) = \frac{1}{c} \int_{4\pi} d\Omega I(\mathbf{r},\Omega,t).$$

$$\frac{\partial E}{\partial t} + \nabla \cdot F = c \sigma_a (B - E),$$

$$\frac{\partial E}{\partial t} + \nabla \cdot F = c \sigma_a (B - E),$$

$$\boldsymbol{F_{\mathrm{rad}}} = -D\boldsymbol{\nabla}E_R,$$

$$D = \frac{\lambda c}{\kappa_R \rho}$$

c.f. Levermore & Pomraning (1981)

$$\partial_t \rho \epsilon = -\kappa_P \rho c \left(a_R T^4 - E_R \right) + Q_{\text{sources}}$$
$$\partial_t E_R - \boldsymbol{\nabla} \cdot F = +\kappa_P \rho c \left(a_R T^4 - E_R \right)$$

Radiation from stars typically added one of two ways:

$$E = \frac{L}{4\pi r^2 c},$$

e.g. Krumholz et al. (2007)

$$\sum_{i} L_{i} W(\boldsymbol{x} - \boldsymbol{x}_{i}),$$

e.g. A. Myers et al. (2011)

$$\partial_t \rho \epsilon = -\kappa_P \rho c \left(a_R T^4 - E_R \right) + Q_{\text{sources}}$$
$$\partial_t E_R - \boldsymbol{\nabla} \cdot F = +\kappa_P \rho c \left(a_R T^4 - E_R \right)$$

Alternatively, we use a raytracer to compute the source term and its coupling to the matter internal energy

$$Q_{\text{sources}} = -\nabla \cdot F_*$$
$$F_*(r) = \sigma T_*^4 \left(\frac{R_*}{r}\right)^2 \exp(-\tau)$$

"Hybrid-Characteristics" raytracing (Rijkhorst et al. 2006)

We compute the specific "irradiation" for each cell in the simulation grid.

- Update the energies/temperatures including new source terms and continue the evolution.
- 2T method on a Cartesian AMR grid that can handle multiple sources: i.e. clustered star formation on GMC scale

Testing the method

Under development

Currently in testing/development

- Radiation feedback from evolving sink particles, using protostellar evolution subgrid model, in a turbulent, magnetized medium (Klassen et al. 2012a,b)
- Updating FLASH4 with ionizing radiation (Peters et al. 2010)
- Multifrequency RT

Science goals

- Simulate clustered star formation in the turbulent, magnetized, filamentary interstellar medium
- Study massive stars and their outflows
- Resolve the structure of protoplanetary disks and measure their properties

Studying filaments

via hydrodynamic simulations

Star formation in filamentary molecular clouds

from H. Kirk, Klassen, Pudritz, & Pillsworth (2014, in prep.)

 M_{\odot} HD X-Axis Projection

 M_{\odot} HD X-Axis Projection

Radial Separation (pc)

Magnetic fields in filaments

 $1200~M_{\odot}$ Turbulent MHD Simulation Z-Axis Projected Density and B-field Orientation

Length (pc)

Summary

- Study of the ISM linked to star formation feedback a challenging problem requiring detailed numerical simulation
- We are implementing a 2T hybrid radiation transport method in FLASH on AMR grids
 - Ionizing feedback and multifrequency treatment to come
- This method is ideally suited for studying star formation in the turbulent, magnetized, filamentary ISM and down to protoplanetary disk scales

Thank you